blob: 2eb327eaa0342965db7d8750d19dda49b36f772b [file] [log] [blame]
#include "DMSrcSink.h"
#include "SamplePipeControllers.h"
#include "SkCommonFlags.h"
#include "SkDocument.h"
#include "SkMultiPictureDraw.h"
#include "SkOSFile.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkStream.h"
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getName();
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageSrc::ImageSrc(SkString path, int subsets) : fPath(path), fSubsets(subsets) {}
Error ImageSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
if (fSubsets == 0) {
// Decode the full image.
SkBitmap bitmap;
if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap)) {
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
}
encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it.
canvas->drawBitmap(bitmap, 0,0);
return "";
}
// Decode random subsets. This is a little involved.
SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get()));
if (!decoder) {
return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str());
}
stream->rewind();
int w,h;
if (!decoder->buildTileIndex(stream.detach(), &w, &h) || w*h == 1) {
return ""; // Not an error. Subset decoding is not always supported.
}
SkRandom rand;
for (int i = 0; i < fSubsets; i++) {
SkIRect rect;
do {
rect.fLeft = rand.nextULessThan(w);
rect.fTop = rand.nextULessThan(h);
rect.fRight = rand.nextULessThan(w);
rect.fBottom = rand.nextULessThan(h);
rect.sort();
} while (rect.isEmpty());
SkBitmap subset;
if (!decoder->decodeSubset(&subset, rect, kUnknown_SkColorType/*use best fit*/)) {
return SkStringPrintf("Could not decode subset %d.\n", i);
}
canvas->drawBitmap(subset, SkIntToScalar(rect.fLeft), SkIntToScalar(rect.fTop));
}
return "";
}
SkISize ImageSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkBitmap bitmap;
if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
encoded->size(),
&bitmap,
kUnknown_SkColorType,
SkImageDecoder::kDecodeBounds_Mode)) {
return SkISize::Make(0,0);
}
return bitmap.dimensions();
}
Name ImageSrc::name() const {
Name name = SkOSPath::Basename(fPath.c_str());
if (fSubsets > 0) {
name.appendf("-%d-subsets", fSubsets);
}
return name;
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(SkString path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
// This may be unnecessarily large.
return kSKPViewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
GrGLStandard api,
int samples,
bool dfText,
bool threaded)
: fContextType(ct)
, fGpuAPI(api)
, fSampleCount(samples)
, fUseDFText(dfText)
, fThreaded(threaded) {}
int GPUSink::enclave() const {
return fThreaded ? kAnyThread_Enclave : kGPUSink_Enclave;
}
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*) const {
GrContextFactory* factory = GetThreadLocalGrContextFactory();
if (FLAGS_abandonGpuContext) {
factory->abandonContexts();
}
if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) {
factory->destroyContexts();
}
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
SkAutoTUnref<SkSurface> surface(
NewGpuSurface(factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText));
if (!surface) {
return "Could not create a surface.";
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
dst->allocPixels(info);
canvas->readPixels(dst, 0,0);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
PDFSink::PDFSink() {}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst) const {
SkSize size;
size = src.size();
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
SkCanvas* canvas = doc->beginPage(size.width(), size.height());
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
doc->endPage();
doc->close();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
dst->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : fMatrix(matrix), fSink(sink) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const {
// We turn our arguments into a Src, then draw that Src into our Sink to fill bitmap or stream.
struct ProxySrc : public Src {
const Src& fSrc;
SkMatrix fMatrix;
ProxySrc(const Src& src, SkMatrix matrix) : fSrc(src), fMatrix(matrix) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
canvas->concat(fMatrix);
return fSrc.draw(canvas);
}
SkISize size() const SK_OVERRIDE { return fSrc.size(); }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(src, fMatrix);
return fSink->draw(proxy, bitmap, stream);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaPipe::ViaPipe(Sink* sink) : fSink(sink) {}
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const {
// We turn ourselves into another Src that draws our argument into bitmap/stream via pipe.
struct ProxySrc : public Src {
const Src& fSrc;
ProxySrc(const Src& src) : fSrc(src) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
SkISize size = this->size();
PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
SkGPipeWriter pipe;
const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags.
return fSrc.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
}
SkISize size() const SK_OVERRIDE { return fSrc.size(); }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(src);
return fSink->draw(proxy, bitmap, stream);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaSerialization::ViaSerialization(Sink* sink) : fSink(sink) {}
Error ViaSerialization::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const {
// Record our Src into a picture.
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Serialize it and then deserialize it.
SkDynamicMemoryWStream wStream;
pic->serialize(&wStream);
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream));
// Turn that deserialized picture into a Src, draw it into our Sink to fill bitmap or stream.
struct ProxySrc : public Src {
const SkPicture* fPic;
const SkISize fSize;
ProxySrc(const SkPicture* pic, SkISize size) : fPic(pic), fSize(size) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
canvas->drawPicture(fPic);
return "";
}
SkISize size() const SK_OVERRIDE { return fSize; }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(deserialized, src.size());
return fSink->draw(proxy, bitmap, stream);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: fW(w)
, fH(h)
, fFactory(factory)
, fSink(sink) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream) const {
// Record our Src into a picture.
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height(), fFactory.get()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Turn that picture into a Src that draws into our Sink via tiles + MPD.
struct ProxySrc : public Src {
const int fW, fH;
const SkPicture* fPic;
const SkISize fSize;
ProxySrc(int w, int h, const SkPicture* pic, SkISize size)
: fW(w), fH(h), fPic(pic), fSize(size) {}
Error draw(SkCanvas* canvas) const SK_OVERRIDE {
const int xTiles = (fSize.width() + fW - 1) / fW,
yTiles = (fSize.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTDArray<SkSurface*> surfaces;
surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
SkSurface* s = canvas->newSurface(info);
if (!s) {
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
}
surfaces.push(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, fPic);
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
surfaces.unrefAll();
return "";
}
SkISize size() const SK_OVERRIDE { return fSize; }
Name name() const SK_OVERRIDE { sk_throw(); return ""; } // No one should be calling this.
} proxy(fW, fH, pic, src.size());
return fSink->draw(proxy, bitmap, stream);
}
} // namespace DM