| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrDashingEffect.h" |
| |
| #include "GrBatch.h" |
| #include "GrBatchTarget.h" |
| #include "GrBatchTest.h" |
| #include "GrBufferAllocPool.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrContext.h" |
| #include "GrCoordTransform.h" |
| #include "GrDefaultGeoProcFactory.h" |
| #include "GrDrawTarget.h" |
| #include "GrDrawTargetCaps.h" |
| #include "GrInvariantOutput.h" |
| #include "GrProcessor.h" |
| #include "GrResourceProvider.h" |
| #include "GrStrokeInfo.h" |
| #include "GrVertexBuffer.h" |
| #include "SkGr.h" |
| #include "gl/GrGLGeometryProcessor.h" |
| #include "gl/GrGLProcessor.h" |
| #include "gl/GrGLSL.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Returns whether or not the gpu can fast path the dash line effect. |
| bool GrDashingEffect::CanDrawDashLine(const SkPoint pts[2], const GrStrokeInfo& strokeInfo, |
| const SkMatrix& viewMatrix) { |
| // Pts must be either horizontal or vertical in src space |
| if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) { |
| return false; |
| } |
| |
| // May be able to relax this to include skew. As of now cannot do perspective |
| // because of the non uniform scaling of bloating a rect |
| if (!viewMatrix.preservesRightAngles()) { |
| return false; |
| } |
| |
| if (!strokeInfo.isDashed() || 2 != strokeInfo.dashCount()) { |
| return false; |
| } |
| |
| const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo(); |
| if (0 == info.fIntervals[0] && 0 == info.fIntervals[1]) { |
| return false; |
| } |
| |
| SkPaint::Cap cap = strokeInfo.getStrokeRec().getCap(); |
| // Current we do don't handle Round or Square cap dashes |
| if (SkPaint::kRound_Cap == cap && info.fIntervals[0] != 0.f) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| struct DashLineVertex { |
| SkPoint fPos; |
| SkPoint fDashPos; |
| SkScalar fIntervalLength; |
| SkRect fRect; |
| }; |
| struct DashCircleVertex { |
| SkPoint fPos; |
| SkPoint fDashPos; |
| SkScalar fIntervalLength; |
| SkScalar fRadius; |
| SkScalar fCenterX; |
| }; |
| |
| enum DashAAMode { |
| kBW_DashAAMode, |
| kEdgeAA_DashAAMode, |
| kMSAA_DashAAMode, |
| |
| kDashAAModeCount, |
| }; |
| }; |
| |
| static void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale, |
| const SkMatrix& viewMatrix, const SkPoint pts[2]) { |
| SkVector vecSrc = pts[1] - pts[0]; |
| SkScalar magSrc = vecSrc.length(); |
| SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0; |
| vecSrc.scale(invSrc); |
| |
| SkVector vecSrcPerp; |
| vecSrc.rotateCW(&vecSrcPerp); |
| viewMatrix.mapVectors(&vecSrc, 1); |
| viewMatrix.mapVectors(&vecSrcPerp, 1); |
| |
| // parallelScale tells how much to scale along the line parallel to the dash line |
| // perpScale tells how much to scale in the direction perpendicular to the dash line |
| *parallelScale = vecSrc.length(); |
| *perpScale = vecSrcPerp.length(); |
| } |
| |
| // calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1] |
| // Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot |
| static void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = NULL) { |
| SkVector vec = pts[1] - pts[0]; |
| SkScalar mag = vec.length(); |
| SkScalar inv = mag ? SkScalarInvert(mag) : 0; |
| |
| vec.scale(inv); |
| rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); |
| if (ptsRot) { |
| rotMatrix->mapPoints(ptsRot, pts, 2); |
| // correction for numerical issues if map doesn't make ptsRot exactly horizontal |
| ptsRot[1].fY = pts[0].fY; |
| } |
| } |
| |
| // Assumes phase < sum of all intervals |
| static SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) { |
| SkASSERT(phase < intervals[0] + intervals[1]); |
| if (phase >= intervals[0] && phase != 0) { |
| SkScalar srcIntervalLen = intervals[0] + intervals[1]; |
| return srcIntervalLen - phase; |
| } |
| return 0; |
| } |
| |
| static SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2], |
| SkScalar phase, SkScalar* endingInt) { |
| if (pts[1].fX <= pts[0].fX) { |
| return 0; |
| } |
| SkScalar srcIntervalLen = intervals[0] + intervals[1]; |
| SkScalar totalLen = pts[1].fX - pts[0].fX; |
| SkScalar temp = SkScalarDiv(totalLen, srcIntervalLen); |
| SkScalar numFullIntervals = SkScalarFloorToScalar(temp); |
| *endingInt = totalLen - numFullIntervals * srcIntervalLen + phase; |
| temp = SkScalarDiv(*endingInt, srcIntervalLen); |
| *endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen; |
| if (0 == *endingInt) { |
| *endingInt = srcIntervalLen; |
| } |
| if (*endingInt > intervals[0]) { |
| if (0 == intervals[0]) { |
| *endingInt -= 0.01f; // make sure we capture the last zero size pnt (used if has caps) |
| } |
| return *endingInt - intervals[0]; |
| } |
| return 0; |
| } |
| |
| enum DashCap { |
| kRound_DashCap, |
| kNonRound_DashCap, |
| }; |
| |
| static int kDashVertices = 4; |
| |
| template <typename T> |
| void setup_dashed_rect_common(const SkRect& rect, const SkMatrix& matrix, T* vertices, int idx, |
| SkScalar offset, SkScalar bloatX, SkScalar bloatY, SkScalar len, |
| SkScalar stroke) { |
| SkScalar startDashX = offset - bloatX; |
| SkScalar endDashX = offset + len + bloatX; |
| SkScalar startDashY = -stroke - bloatY; |
| SkScalar endDashY = stroke + bloatY; |
| vertices[idx].fDashPos = SkPoint::Make(startDashX , startDashY); |
| vertices[idx + 1].fDashPos = SkPoint::Make(startDashX, endDashY); |
| vertices[idx + 2].fDashPos = SkPoint::Make(endDashX, endDashY); |
| vertices[idx + 3].fDashPos = SkPoint::Make(endDashX, startDashY); |
| |
| vertices[idx].fPos = SkPoint::Make(rect.fLeft, rect.fTop); |
| vertices[idx + 1].fPos = SkPoint::Make(rect.fLeft, rect.fBottom); |
| vertices[idx + 2].fPos = SkPoint::Make(rect.fRight, rect.fBottom); |
| vertices[idx + 3].fPos = SkPoint::Make(rect.fRight, rect.fTop); |
| |
| matrix.mapPointsWithStride(&vertices[idx].fPos, sizeof(T), 4); |
| } |
| |
| static void setup_dashed_rect(const SkRect& rect, void* vertices, int idx, |
| const SkMatrix& matrix, SkScalar offset, SkScalar bloatX, |
| SkScalar bloatY, SkScalar len, SkScalar stroke, |
| SkScalar startInterval, SkScalar endInterval, SkScalar strokeWidth, |
| DashCap cap, const size_t vertexStride) { |
| SkScalar intervalLength = startInterval + endInterval; |
| |
| if (kRound_DashCap == cap) { |
| SkASSERT(vertexStride == sizeof(DashCircleVertex)); |
| DashCircleVertex* verts = reinterpret_cast<DashCircleVertex*>(vertices); |
| |
| setup_dashed_rect_common<DashCircleVertex>(rect, matrix, verts, idx, offset, bloatX, |
| bloatY, len, stroke); |
| |
| SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f; |
| SkScalar centerX = SkScalarHalf(endInterval); |
| |
| for (int i = 0; i < kDashVertices; i++) { |
| verts[idx + i].fIntervalLength = intervalLength; |
| verts[idx + i].fRadius = radius; |
| verts[idx + i].fCenterX = centerX; |
| } |
| |
| } else { |
| SkASSERT(kNonRound_DashCap == cap && vertexStride == sizeof(DashLineVertex)); |
| DashLineVertex* verts = reinterpret_cast<DashLineVertex*>(vertices); |
| |
| setup_dashed_rect_common<DashLineVertex>(rect, matrix, verts, idx, offset, bloatX, |
| bloatY, len, stroke); |
| |
| SkScalar halfOffLen = SkScalarHalf(endInterval); |
| SkScalar halfStroke = SkScalarHalf(strokeWidth); |
| SkRect rectParam; |
| rectParam.set(halfOffLen + 0.5f, -halfStroke + 0.5f, |
| halfOffLen + startInterval - 0.5f, halfStroke - 0.5f); |
| for (int i = 0; i < kDashVertices; i++) { |
| verts[idx + i].fIntervalLength = intervalLength; |
| verts[idx + i].fRect = rectParam; |
| } |
| } |
| } |
| |
| static void setup_dashed_rect_pos(const SkRect& rect, int idx, const SkMatrix& matrix, |
| SkPoint* verts) { |
| verts[idx] = SkPoint::Make(rect.fLeft, rect.fTop); |
| verts[idx + 1] = SkPoint::Make(rect.fLeft, rect.fBottom); |
| verts[idx + 2] = SkPoint::Make(rect.fRight, rect.fBottom); |
| verts[idx + 3] = SkPoint::Make(rect.fRight, rect.fTop); |
| matrix.mapPoints(&verts[idx], 4); |
| } |
| |
| |
| /** |
| * An GrGeometryProcessor that renders a dashed line. |
| * This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair. |
| * Bounding geometry is rendered and the effect computes coverage based on the fragment's |
| * position relative to the dashed line. |
| */ |
| static GrGeometryProcessor* create_dash_gp(GrColor, |
| DashAAMode aaMode, |
| DashCap cap, |
| const SkMatrix& localMatrix); |
| |
| class DashBatch : public GrBatch { |
| public: |
| struct Geometry { |
| GrColor fColor; |
| SkMatrix fViewMatrix; |
| SkMatrix fSrcRotInv; |
| SkPoint fPtsRot[2]; |
| SkScalar fSrcStrokeWidth; |
| SkScalar fPhase; |
| SkScalar fIntervals[2]; |
| SkScalar fParallelScale; |
| SkScalar fPerpendicularScale; |
| }; |
| |
| static GrBatch* Create(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode, |
| bool fullDash) { |
| return SkNEW_ARGS(DashBatch, (geometry, cap, aaMode, fullDash)); |
| } |
| |
| const char* name() const override { return "DashBatch"; } |
| |
| void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| out->setKnownFourComponents(fGeoData[0].fColor); |
| } |
| void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void initBatchTracker(const GrPipelineInfo& init) override { |
| // Handle any color overrides |
| if (init.fColorIgnored) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
| fGeoData[0].fColor = init.fOverrideColor; |
| } |
| |
| // setup batch properties |
| fBatch.fColorIgnored = init.fColorIgnored; |
| fBatch.fColor = fGeoData[0].fColor; |
| fBatch.fUsesLocalCoords = init.fUsesLocalCoords; |
| fBatch.fCoverageIgnored = init.fCoverageIgnored; |
| } |
| |
| struct DashDraw { |
| SkScalar fStartOffset; |
| SkScalar fStrokeWidth; |
| SkScalar fLineLength; |
| SkScalar fHalfDevStroke; |
| SkScalar fDevBloatX; |
| SkScalar fDevBloatY; |
| bool fLineDone; |
| bool fHasStartRect; |
| bool fHasEndRect; |
| }; |
| |
| void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
| int instanceCount = fGeoData.count(); |
| |
| SkMatrix invert; |
| if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { |
| SkDebugf("Failed to invert\n"); |
| return; |
| } |
| |
| SkPaint::Cap cap = this->cap(); |
| |
| SkAutoTUnref<const GrGeometryProcessor> gp; |
| |
| bool isRoundCap = SkPaint::kRound_Cap == cap; |
| DashCap capType = isRoundCap ? kRound_DashCap : kNonRound_DashCap; |
| if (this->fullDash()) { |
| gp.reset(create_dash_gp(this->color(), this->aaMode(), capType, invert)); |
| } else { |
| // Set up the vertex data for the line and start/end dashes |
| gp.reset(GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType, |
| this->color(), |
| SkMatrix::I(), |
| invert)); |
| } |
| |
| batchTarget->initDraw(gp, pipeline); |
| |
| // TODO remove this when batch is everywhere |
| GrPipelineInfo init; |
| init.fColorIgnored = fBatch.fColorIgnored; |
| init.fOverrideColor = GrColor_ILLEGAL; |
| init.fCoverageIgnored = fBatch.fCoverageIgnored; |
| init.fUsesLocalCoords = this->usesLocalCoords(); |
| gp->initBatchTracker(batchTarget->currentBatchTracker(), init); |
| |
| // useAA here means Edge AA or MSAA |
| bool useAA = this->aaMode() != kBW_DashAAMode; |
| bool fullDash = this->fullDash(); |
| |
| // We do two passes over all of the dashes. First we setup the start, end, and bounds, |
| // rectangles. We preserve all of this work in the rects / draws arrays below. Then we |
| // iterate again over these decomposed dashes to generate vertices |
| SkSTArray<128, SkRect, true> rects; |
| SkSTArray<128, DashDraw, true> draws; |
| |
| int totalRectCount = 0; |
| int rectOffset = 0; |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& args = fGeoData[i]; |
| |
| bool hasCap = SkPaint::kButt_Cap != cap && 0 != args.fSrcStrokeWidth; |
| |
| // We always want to at least stroke out half a pixel on each side in device space |
| // so 0.5f / perpScale gives us this min in src space |
| SkScalar halfSrcStroke = |
| SkMaxScalar(args.fSrcStrokeWidth * 0.5f, 0.5f / args.fPerpendicularScale); |
| |
| SkScalar strokeAdj; |
| if (!hasCap) { |
| strokeAdj = 0.f; |
| } else { |
| strokeAdj = halfSrcStroke; |
| } |
| |
| SkScalar startAdj = 0; |
| |
| bool lineDone = false; |
| |
| // Too simplify the algorithm, we always push back rects for start and end rect. |
| // Otherwise we'd have to track start / end rects for each individual geometry |
| rects.push_back(); |
| rects.push_back(); |
| rects.push_back(); |
| SkRect& bounds = rects[rectOffset++]; |
| SkRect& startRect = rects[rectOffset++]; |
| SkRect& endRect = rects[rectOffset++]; |
| |
| bool hasStartRect = false; |
| // If we are using AA, check to see if we are drawing a partial dash at the start. If so |
| // draw it separately here and adjust our start point accordingly |
| if (useAA) { |
| if (args.fPhase > 0 && args.fPhase < args.fIntervals[0]) { |
| SkPoint startPts[2]; |
| startPts[0] = args.fPtsRot[0]; |
| startPts[1].fY = startPts[0].fY; |
| startPts[1].fX = SkMinScalar(startPts[0].fX + args.fIntervals[0] - args.fPhase, |
| args.fPtsRot[1].fX); |
| startRect.set(startPts, 2); |
| startRect.outset(strokeAdj, halfSrcStroke); |
| |
| hasStartRect = true; |
| startAdj = args.fIntervals[0] + args.fIntervals[1] - args.fPhase; |
| } |
| } |
| |
| // adjustments for start and end of bounding rect so we only draw dash intervals |
| // contained in the original line segment. |
| startAdj += calc_start_adjustment(args.fIntervals, args.fPhase); |
| if (startAdj != 0) { |
| args.fPtsRot[0].fX += startAdj; |
| args.fPhase = 0; |
| } |
| SkScalar endingInterval = 0; |
| SkScalar endAdj = calc_end_adjustment(args.fIntervals, args.fPtsRot, args.fPhase, |
| &endingInterval); |
| args.fPtsRot[1].fX -= endAdj; |
| if (args.fPtsRot[0].fX >= args.fPtsRot[1].fX) { |
| lineDone = true; |
| } |
| |
| bool hasEndRect = false; |
| // If we are using AA, check to see if we are drawing a partial dash at then end. If so |
| // draw it separately here and adjust our end point accordingly |
| if (useAA && !lineDone) { |
| // If we adjusted the end then we will not be drawing a partial dash at the end. |
| // If we didn't adjust the end point then we just need to make sure the ending |
| // dash isn't a full dash |
| if (0 == endAdj && endingInterval != args.fIntervals[0]) { |
| SkPoint endPts[2]; |
| endPts[1] = args.fPtsRot[1]; |
| endPts[0].fY = endPts[1].fY; |
| endPts[0].fX = endPts[1].fX - endingInterval; |
| |
| endRect.set(endPts, 2); |
| endRect.outset(strokeAdj, halfSrcStroke); |
| |
| hasEndRect = true; |
| endAdj = endingInterval + args.fIntervals[1]; |
| |
| args.fPtsRot[1].fX -= endAdj; |
| if (args.fPtsRot[0].fX >= args.fPtsRot[1].fX) { |
| lineDone = true; |
| } |
| } |
| } |
| |
| if (startAdj != 0) { |
| args.fPhase = 0; |
| } |
| |
| // Change the dashing info from src space into device space |
| SkScalar* devIntervals = args.fIntervals; |
| devIntervals[0] = args.fIntervals[0] * args.fParallelScale; |
| devIntervals[1] = args.fIntervals[1] * args.fParallelScale; |
| SkScalar devPhase = args.fPhase * args.fParallelScale; |
| SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale; |
| |
| if ((strokeWidth < 1.f && useAA) || 0.f == strokeWidth) { |
| strokeWidth = 1.f; |
| } |
| |
| SkScalar halfDevStroke = strokeWidth * 0.5f; |
| |
| if (SkPaint::kSquare_Cap == cap && 0 != args.fSrcStrokeWidth) { |
| // add cap to on interval and remove from off interval |
| devIntervals[0] += strokeWidth; |
| devIntervals[1] -= strokeWidth; |
| } |
| SkScalar startOffset = devIntervals[1] * 0.5f + devPhase; |
| |
| // For EdgeAA, we bloat in X & Y for both square and round caps. |
| // For MSAA, we don't bloat at all for square caps, and bloat in Y only for round caps. |
| SkScalar devBloatX = this->aaMode() == kEdgeAA_DashAAMode ? 0.5f : 0.0f; |
| SkScalar devBloatY = (SkPaint::kRound_Cap == cap && this->aaMode() == kMSAA_DashAAMode) |
| ? 0.5f : devBloatX; |
| |
| SkScalar bloatX = devBloatX / args.fParallelScale; |
| SkScalar bloatY = devBloatY / args.fPerpendicularScale; |
| |
| if (devIntervals[1] <= 0.f && useAA) { |
| // Case when we end up drawing a solid AA rect |
| // Reset the start rect to draw this single solid rect |
| // but it requires to upload a new intervals uniform so we can mimic |
| // one giant dash |
| args.fPtsRot[0].fX -= hasStartRect ? startAdj : 0; |
| args.fPtsRot[1].fX += hasEndRect ? endAdj : 0; |
| startRect.set(args.fPtsRot, 2); |
| startRect.outset(strokeAdj, halfSrcStroke); |
| hasStartRect = true; |
| hasEndRect = false; |
| lineDone = true; |
| |
| SkPoint devicePts[2]; |
| args.fViewMatrix.mapPoints(devicePts, args.fPtsRot, 2); |
| SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]); |
| if (hasCap) { |
| lineLength += 2.f * halfDevStroke; |
| } |
| devIntervals[0] = lineLength; |
| } |
| |
| totalRectCount += !lineDone ? 1 : 0; |
| totalRectCount += hasStartRect ? 1 : 0; |
| totalRectCount += hasEndRect ? 1 : 0; |
| |
| if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) { |
| // need to adjust this for round caps to correctly set the dashPos attrib on |
| // vertices |
| startOffset -= halfDevStroke; |
| } |
| |
| DashDraw& draw = draws.push_back(); |
| if (!lineDone) { |
| SkPoint devicePts[2]; |
| args.fViewMatrix.mapPoints(devicePts, args.fPtsRot, 2); |
| draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]); |
| if (hasCap) { |
| draw.fLineLength += 2.f * halfDevStroke; |
| } |
| |
| bounds.set(args.fPtsRot[0].fX, args.fPtsRot[0].fY, |
| args.fPtsRot[1].fX, args.fPtsRot[1].fY); |
| bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke); |
| } |
| |
| if (hasStartRect) { |
| SkASSERT(useAA); // so that we know bloatX and bloatY have been set |
| startRect.outset(bloatX, bloatY); |
| } |
| |
| if (hasEndRect) { |
| SkASSERT(useAA); // so that we know bloatX and bloatY have been set |
| endRect.outset(bloatX, bloatY); |
| } |
| |
| draw.fStartOffset = startOffset; |
| draw.fDevBloatX = devBloatX; |
| draw.fDevBloatY = devBloatY; |
| draw.fHalfDevStroke = halfDevStroke; |
| draw.fStrokeWidth = strokeWidth; |
| draw.fHasStartRect = hasStartRect; |
| draw.fLineDone = lineDone; |
| draw.fHasEndRect = hasEndRect; |
| } |
| |
| SkAutoTUnref<const GrIndexBuffer> indexBuffer( |
| batchTarget->resourceProvider()->refQuadIndexBuffer()); |
| |
| const GrVertexBuffer* vertexBuffer; |
| int firstVertex; |
| size_t vertexStride = gp->getVertexStride(); |
| void* vertices = batchTarget->vertexPool()->makeSpace(vertexStride, |
| totalRectCount * kVertsPerDash, |
| &vertexBuffer, |
| &firstVertex); |
| if (!vertices || !indexBuffer) { |
| SkDebugf("Could not allocate buffers\n"); |
| return; |
| } |
| |
| int curVIdx = 0; |
| int rectIndex = 0; |
| for (int i = 0; i < instanceCount; i++) { |
| Geometry& args = fGeoData[i]; |
| |
| if (!draws[i].fLineDone) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, curVIdx, args.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fDevBloatY, draws[i].fLineLength, |
| draws[i].fHalfDevStroke, args.fIntervals[0], |
| args.fIntervals[1], draws[i].fStrokeWidth, |
| capType, gp->getVertexStride()); |
| } else { |
| SkPoint* verts = reinterpret_cast<SkPoint*>(vertices); |
| SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); |
| setup_dashed_rect_pos(rects[rectIndex], curVIdx, args.fSrcRotInv, verts); |
| } |
| curVIdx += 4; |
| } |
| rectIndex++; |
| |
| if (draws[i].fHasStartRect) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, curVIdx, args.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fDevBloatY, args.fIntervals[0], |
| draws[i].fHalfDevStroke, args.fIntervals[0], |
| args.fIntervals[1], draws[i].fStrokeWidth, capType, |
| gp->getVertexStride()); |
| } else { |
| SkPoint* verts = reinterpret_cast<SkPoint*>(vertices); |
| SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); |
| setup_dashed_rect_pos(rects[rectIndex], curVIdx, args.fSrcRotInv, verts); |
| } |
| |
| curVIdx += 4; |
| } |
| rectIndex++; |
| |
| if (draws[i].fHasEndRect) { |
| if (fullDash) { |
| setup_dashed_rect(rects[rectIndex], vertices, curVIdx, args.fSrcRotInv, |
| draws[i].fStartOffset, draws[i].fDevBloatX, |
| draws[i].fDevBloatY, args.fIntervals[0], |
| draws[i].fHalfDevStroke, args.fIntervals[0], |
| args.fIntervals[1], draws[i].fStrokeWidth, capType, |
| gp->getVertexStride()); |
| } else { |
| SkPoint* verts = reinterpret_cast<SkPoint*>(vertices); |
| SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); |
| setup_dashed_rect_pos(rects[rectIndex], curVIdx, args.fSrcRotInv, verts); |
| } |
| curVIdx += 4; |
| } |
| rectIndex++; |
| } |
| |
| GrDrawTarget::DrawInfo drawInfo; |
| drawInfo.setPrimitiveType(kTriangles_GrPrimitiveType); |
| drawInfo.setStartVertex(0); |
| drawInfo.setStartIndex(0); |
| drawInfo.setVerticesPerInstance(kVertsPerDash); |
| drawInfo.setIndicesPerInstance(kIndicesPerDash); |
| drawInfo.adjustStartVertex(firstVertex); |
| drawInfo.setVertexBuffer(vertexBuffer); |
| drawInfo.setIndexBuffer(indexBuffer); |
| |
| int maxInstancesPerDraw = indexBuffer->maxQuads(); |
| while (totalRectCount) { |
| drawInfo.setInstanceCount(SkTMin(totalRectCount, maxInstancesPerDraw)); |
| drawInfo.setVertexCount(drawInfo.instanceCount() * drawInfo.verticesPerInstance()); |
| drawInfo.setIndexCount(drawInfo.instanceCount() * drawInfo.indicesPerInstance()); |
| |
| batchTarget->draw(drawInfo); |
| |
| drawInfo.setStartVertex(drawInfo.startVertex() + drawInfo.vertexCount()); |
| totalRectCount -= drawInfo.instanceCount(); |
| } |
| } |
| |
| SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
| |
| private: |
| DashBatch(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode, bool fullDash) { |
| this->initClassID<DashBatch>(); |
| fGeoData.push_back(geometry); |
| |
| fBatch.fAAMode = aaMode; |
| fBatch.fCap = cap; |
| fBatch.fFullDash = fullDash; |
| |
| // compute bounds |
| SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth; |
| SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth; |
| fBounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]); |
| fBounds.outset(xBloat, halfStrokeWidth); |
| |
| // Note, we actually create the combined matrix here, and save the work |
| SkMatrix& combinedMatrix = fGeoData[0].fSrcRotInv; |
| combinedMatrix.postConcat(geometry.fViewMatrix); |
| combinedMatrix.mapRect(&fBounds); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t) override { |
| DashBatch* that = t->cast<DashBatch>(); |
| |
| if (this->aaMode() != that->aaMode()) { |
| return false; |
| } |
| |
| if (this->fullDash() != that->fullDash()) { |
| return false; |
| } |
| |
| if (this->cap() != that->cap()) { |
| return false; |
| } |
| |
| // TODO vertex color |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
| this->joinBounds(that->bounds()); |
| return true; |
| } |
| |
| GrColor color() const { return fBatch.fColor; } |
| bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| DashAAMode aaMode() const { return fBatch.fAAMode; } |
| bool fullDash() const { return fBatch.fFullDash; } |
| SkPaint::Cap cap() const { return fBatch.fCap; } |
| |
| struct BatchTracker { |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| bool fColorIgnored; |
| bool fCoverageIgnored; |
| SkPaint::Cap fCap; |
| DashAAMode fAAMode; |
| bool fFullDash; |
| }; |
| |
| static const int kVertsPerDash = 4; |
| static const int kIndicesPerDash = 6; |
| |
| BatchTracker fBatch; |
| SkSTArray<1, Geometry, true> fGeoData; |
| }; |
| |
| static GrBatch* create_batch(GrColor color, const SkMatrix& viewMatrix, const SkPoint pts[2], |
| bool useAA, const GrStrokeInfo& strokeInfo, bool msaaRT) { |
| const SkPathEffect::DashInfo& info = strokeInfo.getDashInfo(); |
| |
| SkPaint::Cap cap = strokeInfo.getStrokeRec().getCap(); |
| |
| DashBatch::Geometry geometry; |
| geometry.fSrcStrokeWidth = strokeInfo.getStrokeRec().getWidth(); |
| |
| // the phase should be normalized to be [0, sum of all intervals) |
| SkASSERT(info.fPhase >= 0 && info.fPhase < info.fIntervals[0] + info.fIntervals[1]); |
| |
| // Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX |
| if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) { |
| SkMatrix rotMatrix; |
| align_to_x_axis(pts, &rotMatrix, geometry.fPtsRot); |
| if(!rotMatrix.invert(&geometry.fSrcRotInv)) { |
| SkDebugf("Failed to create invertible rotation matrix!\n"); |
| return NULL; |
| } |
| } else { |
| geometry.fSrcRotInv.reset(); |
| memcpy(geometry.fPtsRot, pts, 2 * sizeof(SkPoint)); |
| } |
| |
| // Scale corrections of intervals and stroke from view matrix |
| calc_dash_scaling(&geometry.fParallelScale, &geometry.fPerpendicularScale, viewMatrix, |
| geometry.fPtsRot); |
| |
| SkScalar offInterval = info.fIntervals[1] * geometry.fParallelScale; |
| SkScalar strokeWidth = geometry.fSrcStrokeWidth * geometry.fPerpendicularScale; |
| |
| if (SkPaint::kSquare_Cap == cap && 0 != geometry.fSrcStrokeWidth) { |
| // add cap to on interveal and remove from off interval |
| offInterval -= strokeWidth; |
| } |
| |
| DashAAMode aaMode = msaaRT ? kMSAA_DashAAMode : |
| useAA ? kEdgeAA_DashAAMode : kBW_DashAAMode; |
| |
| // TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA) |
| bool fullDash = offInterval > 0.f || aaMode != kBW_DashAAMode; |
| |
| geometry.fColor = color; |
| geometry.fViewMatrix = viewMatrix; |
| geometry.fPhase = info.fPhase; |
| geometry.fIntervals[0] = info.fIntervals[0]; |
| geometry.fIntervals[1] = info.fIntervals[1]; |
| |
| return DashBatch::Create(geometry, cap, aaMode, fullDash); |
| } |
| |
| bool GrDashingEffect::DrawDashLine(GrDrawTarget* target, |
| GrPipelineBuilder* pipelineBuilder, GrColor color, |
| const SkMatrix& viewMatrix, const SkPoint pts[2], |
| bool useAA, const GrStrokeInfo& strokeInfo) { |
| SkAutoTUnref<GrBatch> batch(create_batch(color, viewMatrix, pts, useAA, strokeInfo, |
| pipelineBuilder->getRenderTarget()->isMultisampled())); |
| if (!batch) { |
| return false; |
| } |
| |
| target->drawBatch(pipelineBuilder, batch); |
| return true; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLDashingCircleEffect; |
| |
| struct DashingCircleBatchTracker { |
| GrGPInput fInputColorType; |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| }; |
| |
| /* |
| * This effect will draw a dotted line (defined as a dashed lined with round caps and no on |
| * interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo. |
| * Both of the previous two parameters are in device space. This effect also requires the setting of |
| * a vec2 vertex attribute for the the four corners of the bounding rect. This attribute is the |
| * "dash position" of each vertex. In other words it is the vertex coords (in device space) if we |
| * transform the line to be horizontal, with the start of line at the origin then shifted to the |
| * right by half the off interval. The line then goes in the positive x direction. |
| */ |
| class DashingCircleEffect : public GrGeometryProcessor { |
| public: |
| typedef SkPathEffect::DashInfo DashInfo; |
| |
| static GrGeometryProcessor* Create(GrColor, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix); |
| |
| virtual ~DashingCircleEffect(); |
| |
| const char* name() const override { return "DashingCircleEffect"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| |
| const Attribute* inDashParams() const { return fInDashParams; } |
| |
| const Attribute* inCircleParams() const { return fInCircleParams; } |
| |
| DashAAMode aaMode() const { return fAAMode; } |
| |
| virtual void getGLProcessorKey(const GrBatchTracker&, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) const override; |
| |
| virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker&, |
| const GrGLSLCaps&) const override; |
| |
| void initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const override; |
| |
| bool onCanMakeEqual(const GrBatchTracker&, |
| const GrGeometryProcessor&, |
| const GrBatchTracker&) const override; |
| |
| private: |
| DashingCircleEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix); |
| |
| bool onIsEqual(const GrGeometryProcessor& other) const override; |
| |
| void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const override; |
| |
| DashAAMode fAAMode; |
| const Attribute* fInPosition; |
| const Attribute* fInDashParams; |
| const Attribute* fInCircleParams; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLDashingCircleEffect : public GrGLGeometryProcessor { |
| public: |
| GLDashingCircleEffect(const GrGeometryProcessor&, const GrBatchTracker&); |
| |
| void onEmitCode(EmitArgs&, GrGPArgs*) override; |
| |
| static inline void GenKey(const GrGeometryProcessor&, |
| const GrBatchTracker&, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder*); |
| |
| virtual void setData(const GrGLProgramDataManager&, |
| const GrPrimitiveProcessor&, |
| const GrBatchTracker&) override; |
| |
| private: |
| UniformHandle fParamUniform; |
| UniformHandle fColorUniform; |
| GrColor fColor; |
| SkScalar fPrevRadius; |
| SkScalar fPrevCenterX; |
| SkScalar fPrevIntervalLength; |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| GLDashingCircleEffect::GLDashingCircleEffect(const GrGeometryProcessor&, |
| const GrBatchTracker&) { |
| fColor = GrColor_ILLEGAL; |
| fPrevRadius = SK_ScalarMin; |
| fPrevCenterX = SK_ScalarMin; |
| fPrevIntervalLength = SK_ScalarMax; |
| } |
| |
| void GLDashingCircleEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| const DashingCircleEffect& dce = args.fGP.cast<DashingCircleEffect>(); |
| const DashingCircleBatchTracker local = args.fBT.cast<DashingCircleBatchTracker>(); |
| GrGLGPBuilder* pb = args.fPB; |
| GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); |
| |
| // emit attributes |
| vsBuilder->emitAttributes(dce); |
| |
| // XY are dashPos, Z is dashInterval |
| GrGLVertToFrag dashParams(kVec3f_GrSLType); |
| args.fPB->addVarying("DashParam", &dashParams); |
| vsBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.inDashParams()->fName); |
| |
| // x refers to circle radius - 0.5, y refers to cicle's center x coord |
| GrGLVertToFrag circleParams(kVec2f_GrSLType); |
| args.fPB->addVarying("CircleParams", &circleParams); |
| vsBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.inCircleParams()->fName); |
| |
| // Setup pass through color |
| this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(pb, gpArgs, dce.inPosition()->fName, dce.viewMatrix()); |
| |
| // emit transforms |
| this->emitTransforms(args.fPB, gpArgs->fPositionVar, dce.inPosition()->fName, dce.localMatrix(), |
| args.fTransformsIn, args.fTransformsOut); |
| |
| // transforms all points so that we can compare them to our test circle |
| GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;", |
| dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(), |
| dashParams.fsIn()); |
| fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", dashParams.fsIn()); |
| fsBuilder->codeAppendf("vec2 center = vec2(%s.y, 0.0);", circleParams.fsIn()); |
| fsBuilder->codeAppend("float dist = length(center - fragPosShifted);"); |
| if (dce.aaMode() != kBW_DashAAMode) { |
| fsBuilder->codeAppendf("float diff = dist - %s.x;", circleParams.fsIn()); |
| fsBuilder->codeAppend("diff = 1.0 - diff;"); |
| fsBuilder->codeAppend("float alpha = clamp(diff, 0.0, 1.0);"); |
| } else { |
| fsBuilder->codeAppendf("float alpha = 1.0;"); |
| fsBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn()); |
| } |
| fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage); |
| } |
| |
| void GLDashingCircleEffect::setData(const GrGLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& processor, |
| const GrBatchTracker& bt) { |
| this->setUniformViewMatrix(pdman, processor.viewMatrix()); |
| |
| const DashingCircleBatchTracker& local = bt.cast<DashingCircleBatchTracker>(); |
| if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(local.fColor, c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = local.fColor; |
| } |
| } |
| |
| void GLDashingCircleEffect::GenKey(const GrGeometryProcessor& gp, |
| const GrBatchTracker& bt, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DashingCircleBatchTracker& local = bt.cast<DashingCircleBatchTracker>(); |
| const DashingCircleEffect& dce = gp.cast<DashingCircleEffect>(); |
| uint32_t key = 0; |
| key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x1 : 0x0; |
| key |= ComputePosKey(gp.viewMatrix()) << 1; |
| key |= dce.aaMode() << 8; |
| b->add32(key << 16 | local.fInputColorType); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrGeometryProcessor* DashingCircleEffect::Create(GrColor color, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix) { |
| return SkNEW_ARGS(DashingCircleEffect, (color, aaMode, localMatrix)); |
| } |
| |
| DashingCircleEffect::~DashingCircleEffect() {} |
| |
| void DashingCircleEffect::onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void DashingCircleEffect::getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLDashingCircleEffect::GenKey(*this, bt, caps, b); |
| } |
| |
| GrGLPrimitiveProcessor* DashingCircleEffect::createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const { |
| return SkNEW_ARGS(GLDashingCircleEffect, (*this, bt)); |
| } |
| |
| DashingCircleEffect::DashingCircleEffect(GrColor color, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix) |
| : INHERITED(color, SkMatrix::I(), localMatrix), fAAMode(aaMode) { |
| this->initClassID<DashingCircleEffect>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType)); |
| fInCircleParams = &this->addVertexAttrib(Attribute("inCircleParams", |
| kVec2f_GrVertexAttribType)); |
| } |
| |
| bool DashingCircleEffect::onIsEqual(const GrGeometryProcessor& other) const { |
| const DashingCircleEffect& dce = other.cast<DashingCircleEffect>(); |
| return fAAMode == dce.fAAMode; |
| } |
| |
| void DashingCircleEffect::initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const { |
| DashingCircleBatchTracker* local = bt->cast<DashingCircleBatchTracker>(); |
| local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); |
| local->fUsesLocalCoords = init.fUsesLocalCoords; |
| } |
| |
| bool DashingCircleEffect::onCanMakeEqual(const GrBatchTracker& m, |
| const GrGeometryProcessor& that, |
| const GrBatchTracker& t) const { |
| const DashingCircleBatchTracker& mine = m.cast<DashingCircleBatchTracker>(); |
| const DashingCircleBatchTracker& theirs = t.cast<DashingCircleBatchTracker>(); |
| return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, |
| that, theirs.fUsesLocalCoords) && |
| CanCombineOutput(mine.fInputColorType, mine.fColor, |
| theirs.fInputColorType, theirs.fColor); |
| } |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect); |
| |
| GrGeometryProcessor* DashingCircleEffect::TestCreate(SkRandom* random, |
| GrContext*, |
| const GrDrawTargetCaps& caps, |
| GrTexture*[]) { |
| DashAAMode aaMode = static_cast<DashAAMode>(random->nextULessThan(kDashAAModeCount)); |
| return DashingCircleEffect::Create(GrRandomColor(random), |
| aaMode, GrTest::TestMatrix(random)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLDashingLineEffect; |
| |
| struct DashingLineBatchTracker { |
| GrGPInput fInputColorType; |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| }; |
| |
| /* |
| * This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the |
| * length and spacing by the DashInfo. Both of the previous two parameters are in device space. |
| * This effect also requires the setting of a vec2 vertex attribute for the the four corners of the |
| * bounding rect. This attribute is the "dash position" of each vertex. In other words it is the |
| * vertex coords (in device space) if we transform the line to be horizontal, with the start of |
| * line at the origin then shifted to the right by half the off interval. The line then goes in the |
| * positive x direction. |
| */ |
| class DashingLineEffect : public GrGeometryProcessor { |
| public: |
| typedef SkPathEffect::DashInfo DashInfo; |
| |
| static GrGeometryProcessor* Create(GrColor, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix); |
| |
| virtual ~DashingLineEffect(); |
| |
| const char* name() const override { return "DashingEffect"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| |
| const Attribute* inDashParams() const { return fInDashParams; } |
| |
| const Attribute* inRectParams() const { return fInRectParams; } |
| |
| DashAAMode aaMode() const { return fAAMode; } |
| |
| virtual void getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override; |
| |
| virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const override; |
| |
| void initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const override; |
| |
| bool onCanMakeEqual(const GrBatchTracker&, |
| const GrGeometryProcessor&, |
| const GrBatchTracker&) const override; |
| |
| private: |
| DashingLineEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix); |
| |
| bool onIsEqual(const GrGeometryProcessor& other) const override; |
| |
| void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const override; |
| |
| DashAAMode fAAMode; |
| const Attribute* fInPosition; |
| const Attribute* fInDashParams; |
| const Attribute* fInRectParams; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLDashingLineEffect : public GrGLGeometryProcessor { |
| public: |
| GLDashingLineEffect(const GrGeometryProcessor&, const GrBatchTracker&); |
| |
| void onEmitCode(EmitArgs&, GrGPArgs*) override; |
| |
| static inline void GenKey(const GrGeometryProcessor&, |
| const GrBatchTracker&, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder*); |
| |
| virtual void setData(const GrGLProgramDataManager&, |
| const GrPrimitiveProcessor&, |
| const GrBatchTracker&) override; |
| |
| private: |
| GrColor fColor; |
| UniformHandle fColorUniform; |
| typedef GrGLGeometryProcessor INHERITED; |
| }; |
| |
| GLDashingLineEffect::GLDashingLineEffect(const GrGeometryProcessor&, |
| const GrBatchTracker&) { |
| fColor = GrColor_ILLEGAL; |
| } |
| |
| void GLDashingLineEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| const DashingLineEffect& de = args.fGP.cast<DashingLineEffect>(); |
| const DashingLineBatchTracker& local = args.fBT.cast<DashingLineBatchTracker>(); |
| GrGLGPBuilder* pb = args.fPB; |
| |
| GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder(); |
| |
| // emit attributes |
| vsBuilder->emitAttributes(de); |
| |
| // XY refers to dashPos, Z is the dash interval length |
| GrGLVertToFrag inDashParams(kVec3f_GrSLType); |
| args.fPB->addVarying("DashParams", &inDashParams); |
| vsBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.inDashParams()->fName); |
| |
| // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5), |
| // respectively. |
| GrGLVertToFrag inRectParams(kVec4f_GrSLType); |
| args.fPB->addVarying("RectParams", &inRectParams); |
| vsBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.inRectParams()->fName); |
| |
| // Setup pass through color |
| this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL, &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(pb, gpArgs, de.inPosition()->fName, de.viewMatrix()); |
| |
| // emit transforms |
| this->emitTransforms(args.fPB, gpArgs->fPositionVar, de.inPosition()->fName, de.localMatrix(), |
| args.fTransformsIn, args.fTransformsOut); |
| |
| // transforms all points so that we can compare them to our test rect |
| GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
| fsBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;", |
| inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(), |
| inDashParams.fsIn()); |
| fsBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", inDashParams.fsIn()); |
| if (de.aaMode() == kEdgeAA_DashAAMode) { |
| // The amount of coverage removed in x and y by the edges is computed as a pair of negative |
| // numbers, xSub and ySub. |
| fsBuilder->codeAppend("float xSub, ySub;"); |
| fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn()); |
| fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn()); |
| fsBuilder->codeAppendf("ySub = min(fragPosShifted.y - %s.y, 0.0);", inRectParams.fsIn()); |
| fsBuilder->codeAppendf("ySub += min(%s.w - fragPosShifted.y, 0.0);", inRectParams.fsIn()); |
| // Now compute coverage in x and y and multiply them to get the fraction of the pixel |
| // covered. |
| fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));"); |
| } else if (de.aaMode() == kMSAA_DashAAMode) { |
| // For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle |
| // AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha. |
| fsBuilder->codeAppend("float xSub;"); |
| fsBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn()); |
| fsBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn()); |
| // Now compute coverage in x to get the fraction of the pixel covered. |
| fsBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0));"); |
| } else { |
| // Assuming the bounding geometry is tight so no need to check y values |
| fsBuilder->codeAppendf("float alpha = 1.0;"); |
| fsBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;", |
| inRectParams.fsIn()); |
| fsBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;", |
| inRectParams.fsIn()); |
| } |
| fsBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage); |
| } |
| |
| void GLDashingLineEffect::setData(const GrGLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& processor, |
| const GrBatchTracker& bt) { |
| this->setUniformViewMatrix(pdman, processor.viewMatrix()); |
| |
| const DashingLineBatchTracker& local = bt.cast<DashingLineBatchTracker>(); |
| if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(local.fColor, c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = local.fColor; |
| } |
| } |
| |
| void GLDashingLineEffect::GenKey(const GrGeometryProcessor& gp, |
| const GrBatchTracker& bt, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DashingLineBatchTracker& local = bt.cast<DashingLineBatchTracker>(); |
| const DashingLineEffect& de = gp.cast<DashingLineEffect>(); |
| uint32_t key = 0; |
| key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x1 : 0x0; |
| key |= ComputePosKey(gp.viewMatrix()) << 1; |
| key |= de.aaMode() << 8; |
| b->add32(key << 16 | local.fInputColorType); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrGeometryProcessor* DashingLineEffect::Create(GrColor color, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix) { |
| return SkNEW_ARGS(DashingLineEffect, (color, aaMode, localMatrix)); |
| } |
| |
| DashingLineEffect::~DashingLineEffect() {} |
| |
| void DashingLineEffect::onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const { |
| out->setUnknownSingleComponent(); |
| } |
| |
| void DashingLineEffect::getGLProcessorKey(const GrBatchTracker& bt, |
| const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLDashingLineEffect::GenKey(*this, bt, caps, b); |
| } |
| |
| GrGLPrimitiveProcessor* DashingLineEffect::createGLInstance(const GrBatchTracker& bt, |
| const GrGLSLCaps&) const { |
| return SkNEW_ARGS(GLDashingLineEffect, (*this, bt)); |
| } |
| |
| DashingLineEffect::DashingLineEffect(GrColor color, |
| DashAAMode aaMode, |
| const SkMatrix& localMatrix) |
| : INHERITED(color, SkMatrix::I(), localMatrix), fAAMode(aaMode) { |
| this->initClassID<DashingLineEffect>(); |
| fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
| fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType)); |
| fInRectParams = &this->addVertexAttrib(Attribute("inRect", kVec4f_GrVertexAttribType)); |
| } |
| |
| bool DashingLineEffect::onIsEqual(const GrGeometryProcessor& other) const { |
| const DashingLineEffect& de = other.cast<DashingLineEffect>(); |
| return fAAMode == de.fAAMode; |
| } |
| |
| void DashingLineEffect::initBatchTracker(GrBatchTracker* bt, const GrPipelineInfo& init) const { |
| DashingLineBatchTracker* local = bt->cast<DashingLineBatchTracker>(); |
| local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false); |
| local->fUsesLocalCoords = init.fUsesLocalCoords; |
| } |
| |
| bool DashingLineEffect::onCanMakeEqual(const GrBatchTracker& m, |
| const GrGeometryProcessor& that, |
| const GrBatchTracker& t) const { |
| const DashingLineBatchTracker& mine = m.cast<DashingLineBatchTracker>(); |
| const DashingLineBatchTracker& theirs = t.cast<DashingLineBatchTracker>(); |
| return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords, |
| that, theirs.fUsesLocalCoords) && |
| CanCombineOutput(mine.fInputColorType, mine.fColor, |
| theirs.fInputColorType, theirs.fColor); |
| } |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect); |
| |
| GrGeometryProcessor* DashingLineEffect::TestCreate(SkRandom* random, |
| GrContext*, |
| const GrDrawTargetCaps& caps, |
| GrTexture*[]) { |
| DashAAMode aaMode = static_cast<DashAAMode>(random->nextULessThan(kDashAAModeCount)); |
| return DashingLineEffect::Create(GrRandomColor(random), |
| aaMode, GrTest::TestMatrix(random)); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static GrGeometryProcessor* create_dash_gp(GrColor color, |
| DashAAMode dashAAMode, |
| DashCap cap, |
| const SkMatrix& localMatrix) { |
| switch (cap) { |
| case kRound_DashCap: |
| return DashingCircleEffect::Create(color, dashAAMode, localMatrix); |
| case kNonRound_DashCap: |
| return DashingLineEffect::Create(color, dashAAMode, localMatrix); |
| default: |
| SkFAIL("Unexpected dashed cap."); |
| } |
| return NULL; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef GR_TEST_UTILS |
| |
| BATCH_TEST_DEFINE(DashBatch) { |
| GrColor color = GrRandomColor(random); |
| SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); |
| bool useAA = random->nextBool(); |
| bool msaaRT = random->nextBool(); |
| |
| // We can only dash either horizontal or vertical lines |
| SkPoint pts[2]; |
| if (random->nextBool()) { |
| // vertical |
| pts[0].fX = 1.f; |
| pts[0].fY = random->nextF() * 10.f; |
| pts[1].fX = 1.f; |
| pts[1].fY = random->nextF() * 10.f; |
| } else { |
| // horizontal |
| pts[0].fX = random->nextF() * 10.f; |
| pts[0].fY = 1.f; |
| pts[1].fX = random->nextF() * 10.f; |
| pts[1].fY = 1.f; |
| } |
| |
| // pick random cap |
| SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::Cap::kCapCount)); |
| |
| SkScalar intervals[2]; |
| |
| // We can only dash with the following intervals |
| enum Intervals { |
| kOpenOpen_Intervals , |
| kOpenClose_Intervals, |
| kCloseOpen_Intervals, |
| }; |
| |
| Intervals intervalType = SkPaint::kRound_Cap ? |
| kOpenClose_Intervals : |
| Intervals(random->nextULessThan(kCloseOpen_Intervals + 1)); |
| static const SkScalar kIntervalMin = 0.1f; |
| static const SkScalar kIntervalMax = 10.f; |
| switch (intervalType) { |
| case kOpenOpen_Intervals: |
| intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| break; |
| case kOpenClose_Intervals: |
| intervals[0] = 0.f; |
| intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| break; |
| case kCloseOpen_Intervals: |
| intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); |
| intervals[1] = 0.f; |
| break; |
| |
| } |
| |
| // phase is 0 < sum (i0, i1) |
| SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]); |
| |
| SkPaint p; |
| p.setStyle(SkPaint::kStroke_Style); |
| p.setStrokeWidth(SkIntToScalar(1)); |
| p.setStrokeCap(cap); |
| |
| GrStrokeInfo strokeInfo(p); |
| |
| SkPathEffect::DashInfo info; |
| info.fIntervals = intervals; |
| info.fCount = 2; |
| info.fPhase = phase; |
| SkDEBUGCODE(bool success = ) strokeInfo.setDashInfo(info); |
| SkASSERT(success); |
| |
| return create_batch(color, viewMatrix, pts, useAA, strokeInfo, msaaRT); |
| } |
| |
| #endif |