| #!/usr/bin/python |
| # encoding: utf-8 |
| |
| # Copyright 2017 Google Inc. |
| # |
| # Use of this source code is governed by a BSD-style license that can be found |
| # in the LICENSE file. |
| # |
| # This is an A/B test utility script used by calmbench.py |
| # |
| # For each bench, we get a distribution of min_ms measurements from nanobench. |
| # From that, we try to recover the 1/3 and 2/3 quantiles of the distribution. |
| # If range (1/3 quantile, 2/3 quantile) is completely disjoint between A and B, |
| # we report that as a regression. |
| # |
| # The more measurements we have for a bench, the more accurate our quantiles |
| # are. However, taking more measurements is time consuming. Hence we'll prune |
| # out benches and only take more measurements for benches whose current quantile |
| # ranges are disjoint. |
| # |
| # P.S. The current script is brute forcely translated from a ruby script. So it |
| # may be ugly... |
| |
| import re |
| import os |
| import sys |
| import time |
| import json |
| import subprocess |
| import shlex |
| from argparse import ArgumentParser |
| from multiprocessing import Process |
| from threading import Thread |
| from threading import Lock |
| from pdb import set_trace |
| |
| |
| HELP = """ |
| \033[31mPlease call calmbench.py to drive this script if you're not doing so. |
| This script is not supposed to be used by itself. (At least, it's not easy to |
| use by itself.) |
| \033[0m |
| """ |
| |
| FACTOR = 3 # lower/upper quantile factor |
| DIFF_T = 0.99 # different enough threshold |
| TERM = 10 # terminate after this no. of iterations without suspect changes |
| MAXTRY = 30 # max number of nanobench tries to narrow down suspects |
| |
| UNITS = "ns µs ms s".split() |
| |
| |
| timesLock = Lock() |
| timesA = {} |
| timesB = {} |
| |
| |
| def parse_args(): |
| parser = ArgumentParser(description=HELP) |
| |
| parser.add_argument('skiadir', type=str, help="skia directory") |
| parser.add_argument('outdir', type=str, help="output directory") |
| parser.add_argument('a', type=str, help="name of A") |
| parser.add_argument('b', type=str, help="name of B") |
| parser.add_argument('nano_a', type=str, help="path to A's nanobench binary") |
| parser.add_argument('nano_b', type=str, help="path to B's nanobench binary") |
| parser.add_argument('arg_a', type=str, help="args for A's nanobench run") |
| parser.add_argument('arg_b', type=str, help="args for B's nanobench run") |
| parser.add_argument('repeat', type=int, help="number of initial runs") |
| parser.add_argument('skip_b', type=str, help=("whether to skip running B" |
| " ('true' or 'false')")) |
| parser.add_argument('config', type=str, help="nanobenh config") |
| parser.add_argument('threads', type=int, help="number of threads to run") |
| parser.add_argument('noinit', type=str, help=("whether to skip running B" |
| " ('true' or 'false')")) |
| |
| args = parser.parse_args() |
| args.skip_b = args.skip_b == "true" |
| args.noinit = args.noinit == "true" |
| |
| return args |
| |
| def append_dict_sorted_array(dict_array, key, value): |
| if key not in dict_array: |
| dict_array[key] = [] |
| dict_array[key].append(value) |
| dict_array[key].sort() |
| |
| |
| def add_time(args, name, bench, t, unit): |
| normalized_t = t * 1000 ** UNITS.index(unit); |
| if name.startswith(args.a): |
| append_dict_sorted_array(timesA, bench, normalized_t) |
| else: |
| append_dict_sorted_array(timesB, bench, normalized_t) |
| |
| |
| def append_times_from_file(args, name, filename): |
| with open(filename) as f: |
| lines = f.readlines() |
| for line in lines: |
| items = line.split() |
| if len(items) > 10: |
| bench = items[10] |
| matches = re.search("([+-]?\d*.?\d+)(s|ms|µs|ns)", items[3]) |
| if (not matches or items[9] != args.config): |
| continue |
| time_num = matches.group(1) |
| time_unit = matches.group(2) |
| add_time(args, name, bench, float(time_num), time_unit) |
| |
| |
| class ThreadRunner: |
| """Simplest and stupidiest threaded executer.""" |
| def __init__(self): |
| self.threads = [] |
| |
| def add(self, args, fn): |
| if len(self.threads) >= args.threads: |
| self.wait() |
| t = Thread(target = fn) |
| t.daemon = True |
| self.threads.append(t) |
| t.start() |
| |
| def wait(self): |
| def spin(): |
| i = 0 |
| spinners = [". ", ".. ", "..."] |
| while len(self.threads) > 0: |
| timesLock.acquire() |
| sys.stderr.write( |
| "\r" + spinners[i % len(spinners)] + |
| " (%d threads running)" % len(self.threads) + |
| " \r" # spaces for erasing characters |
| ) |
| timesLock.release() |
| time.sleep(0.5) |
| i += 1 |
| |
| ts = Thread(target = spin); |
| ts.start() |
| for t in self.threads: |
| t.join() |
| self.threads = [] |
| ts.join() |
| |
| |
| def split_arg(arg): |
| raw = shlex.split(arg) |
| result = [] |
| for r in raw: |
| if '~' in r: |
| result.append(os.path.expanduser(r)) |
| else: |
| result.append(r) |
| return result |
| |
| |
| def run(args, threadRunner, name, nano, arg, i): |
| def task(): |
| file_i = "%s/%s.out%d" % (args.outdir, name, i) |
| |
| should_run = not args.noinit and not (name == args.b and args.skip_b) |
| if i <= 0: |
| should_run = True # always run for suspects |
| |
| if should_run: |
| if i > 0: |
| timesLock.acquire() |
| print "Init run %d for %s..." % (i, name) |
| timesLock.release() |
| subprocess.check_call(["touch", file_i]) |
| with open(file_i, 'w') as f: |
| subprocess.check_call([nano] + split_arg(arg) + |
| ["--config", args.config], stderr=f, stdout=f) |
| |
| timesLock.acquire() |
| append_times_from_file(args, name, file_i) |
| timesLock.release() |
| |
| threadRunner.add(args, task) |
| |
| |
| def init_run(args): |
| threadRunner = ThreadRunner() |
| for i in range(1, max(args.repeat, args.threads / 2) + 1): |
| run(args, threadRunner, args.a, args.nano_a, args.arg_a, i) |
| run(args, threadRunner, args.b, args.nano_b, args.arg_b, i) |
| threadRunner.wait() |
| |
| |
| def get_lower_upper(values): |
| i = max(0, (len(values) - 1) / FACTOR) |
| return values[i], values[-i - 1] |
| |
| |
| def different_enough(lower1, upper2): |
| return upper2 < DIFF_T * lower1 |
| |
| |
| def get_suspects(): |
| suspects = [] |
| for bench in timesA.keys(): |
| if bench not in timesB: |
| continue |
| lowerA, upperA = get_lower_upper(timesA[bench]) |
| lowerB, upperB = get_lower_upper(timesB[bench]) |
| if different_enough(lowerA, upperB) or different_enough(lowerB, upperA): |
| suspects.append(bench) |
| return suspects |
| |
| |
| def process_bench_pattern(s): |
| if ".skp" in s: # skp bench won't match their exact names... |
| return "^\"" + s[0:(s.index(".skp") + 3)] + "\"" |
| else: |
| return "^\"" + s + "\"$" |
| |
| |
| def suspects_arg(suspects): |
| patterns = map(process_bench_pattern, suspects) |
| return " --match " + (" ".join(patterns)) |
| |
| |
| def median(array): |
| return array[len(array) / 2] |
| |
| |
| def regression(bench): |
| a = median(timesA[bench]) |
| b = median(timesB[bench]) |
| if (a == 0): # bad bench, just return no regression |
| return 1 |
| return b / a |
| |
| |
| def percentage(x): |
| return (x - 1) * 100 |
| |
| |
| def format_r(r): |
| return ('%6.2f' % percentage(r)) + "%" |
| |
| |
| def test(): |
| args = parse_args() |
| |
| init_run(args) |
| last_unchanged_iter = 0 |
| last_suspect_number = -1 |
| tryCnt = 0 |
| it = 0 |
| while tryCnt < MAXTRY: |
| it += 1 |
| suspects = get_suspects() |
| if len(suspects) != last_suspect_number: |
| last_suspect_number = len(suspects) |
| last_unchanged_iter = it |
| if (len(suspects) == 0 or it - last_unchanged_iter >= TERM): |
| break |
| |
| print "Number of suspects at iteration %d: %d" % (it, len(suspects)) |
| threadRunner = ThreadRunner() |
| for j in range(1, max(1, args.threads / 2) + 1): |
| run(args, threadRunner, args.a, args.nano_a, |
| args.arg_a + suspects_arg(suspects), -j) |
| run(args, threadRunner, args.b, args.nano_b, |
| args.arg_b + suspects_arg(suspects), -j) |
| tryCnt += 1 |
| threadRunner.wait() |
| |
| suspects = get_suspects() |
| if len(suspects) == 0: |
| print ("%s and %s does not seem to have significant " + \ |
| "performance differences.") % (args.a, args.b) |
| else: |
| suspects.sort(key = regression) |
| print "%s (compared to %s) is likely" % (args.a, args.b) |
| for suspect in suspects: |
| r = regression(suspect) |
| if r < 1: |
| print "\033[31m %s slower in %s\033[0m" % \ |
| (format_r(1/r), suspect) |
| else: |
| print "\033[32m %s faster in %s\033[0m" % \ |
| (format_r(r), suspect) |
| |
| with open("%s/bench_%s_%s.json" % (args.outdir, args.a, args.b), 'w') as f: |
| f.write(json.dumps(map( |
| lambda bench: {bench: regression(bench)}, |
| suspects |
| ))) |
| print ("\033[36mJSON results available in %s\033[0m" % f.name) |
| |
| with open("%s/bench_%s_%s.csv" % (args.outdir, args.a, args.b), 'w') as out: |
| out.write(("bench, significant?, raw regresion, " + |
| "%(A)s quantile (ns), %(B)s quantile (ns), " + |
| "%(A)s (ns), %(B)s (ns)\n") % {'A': args.a, 'B': args.b}) |
| for bench in suspects + timesA.keys(): |
| if (bench not in timesA or bench not in timesB): |
| continue |
| ta = timesA[bench] |
| tb = timesB[bench] |
| out.write( |
| "%s, %s, %f, " % (bench, bench in suspects, regression(bench)) + |
| ' '.join(map(str, get_lower_upper(ta))) + ", " + |
| ' '.join(map(str, get_lower_upper(tb))) + ", " + |
| ("%s, %s\n" % (' '.join(map(str, ta)), ' '.join(map(str, tb)))) |
| ) |
| print (("\033[36m" + |
| "Compared %d benches. " + |
| "%d of them seem to be significantly differrent." + |
| "\033[0m") % |
| (len([x for x in timesA if x in timesB]), len(suspects))) |
| print ("\033[36mPlease see detailed bench results in %s\033[0m" % |
| out.name) |
| |
| |
| if __name__ == "__main__": |
| try: |
| test() |
| except Exception as e: |
| print e |
| print HELP |
| raise |