blob: c282a124e0dd8144d16feeb77788fec428c9c36f [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkError.h"
#include "SkErrorInternals.h"
#include "SkLightingShader.h"
#include "SkMatrix.h"
#include "SkNormalSource.h"
#include "SkPM4f.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
// Genretating vtable
SkNormalSource::~SkNormalSource() {}
///////////////////////////////////////////////////////////////////////////////
class NormalMapSourceImpl : public SkNormalSource {
public:
NormalMapSourceImpl(sk_sp<SkShader> mapShader, const SkMatrix& invCTM)
: fMapShader(std::move(mapShader))
, fInvCTM(invCTM) {}
#if SK_SUPPORT_GPU
sk_sp<GrFragmentProcessor> asFragmentProcessor(const SkShader::AsFPArgs&) const override;
#endif
SkNormalSource::Provider* asProvider(const SkShader::ContextRec& rec,
void* storage) const override;
size_t providerSize(const SkShader::ContextRec& rec) const override;
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(NormalMapSourceImpl)
protected:
void flatten(SkWriteBuffer& buf) const override;
bool computeNormTotalInverse(const SkShader::ContextRec& rec, SkMatrix* normTotalInverse) const;
private:
class Provider : public SkNormalSource::Provider {
public:
Provider(const NormalMapSourceImpl& source, SkShader::Context* mapContext,
SkPaint* overridePaint);
virtual ~Provider() override;
void fillScanLine(int x, int y, SkPoint3 output[], int count) const override;
private:
const NormalMapSourceImpl& fSource;
SkShader::Context* fMapContext;
SkPaint* fOverridePaint;
typedef SkNormalSource::Provider INHERITED;
};
sk_sp<SkShader> fMapShader;
SkMatrix fInvCTM; // Inverse of the canvas total matrix, used for rotating normals.
friend class SkNormalSource;
typedef SkNormalSource INHERITED;
};
////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "GrInvariantOutput.h"
#include "GrTextureParams.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "SkGr.h"
class NormalMapFP : public GrFragmentProcessor {
public:
NormalMapFP(sk_sp<GrFragmentProcessor> mapFP, const SkMatrix& invCTM)
: fInvCTM(invCTM) {
this->registerChildProcessor(mapFP);
this->initClassID<NormalMapFP>();
}
class GLSLNormalMapFP : public GrGLSLFragmentProcessor {
public:
GLSLNormalMapFP()
: fColumnMajorInvCTM22{0.0f} {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// add uniform
const char* xformUniName = nullptr;
fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kMat22f_GrSLType,
kDefault_GrSLPrecision, "Xform", &xformUniName);
SkString dstNormalColorName("dstNormalColor");
this->emitChild(0, nullptr, &dstNormalColorName, args);
fragBuilder->codeAppendf("vec3 normal = normalize(%s.rgb - vec3(0.5));",
dstNormalColorName.c_str());
// If there's no x & y components, return (0, 0, +/- 1) instead to avoid division by 0
fragBuilder->codeAppend( "if (abs(normal.z) > 0.999) {");
fragBuilder->codeAppendf(" %s = normalize(vec4(0.0, 0.0, normal.z, 0.0));",
args.fOutputColor);
// Else, Normalizing the transformed X and Y, while keeping constant both Z and the
// vector's angle in the XY plane. This maintains the "slope" for the surface while
// appropriately rotating the normal regardless of any anisotropic scaling that occurs.
// Here, we call 'scaling factor' the number that must divide the transformed X and Y so
// that the normal's length remains equal to 1.
fragBuilder->codeAppend( "} else {");
fragBuilder->codeAppendf(" vec2 transformed = %s * normal.xy;",
xformUniName);
fragBuilder->codeAppend( " float scalingFactorSquared = "
"( (transformed.x * transformed.x) "
"+ (transformed.y * transformed.y) )"
"/(1.0 - (normal.z * normal.z));");
fragBuilder->codeAppendf(" %s = vec4(transformed*inversesqrt(scalingFactorSquared),"
"normal.z, 0.0);",
args.fOutputColor);
fragBuilder->codeAppend( "}");
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
b->add32(0x0);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) override {
const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
const SkMatrix& invCTM = normalMapFP.invCTM();
fColumnMajorInvCTM22[0] = invCTM.get(SkMatrix::kMScaleX);
fColumnMajorInvCTM22[1] = invCTM.get(SkMatrix::kMSkewY);
fColumnMajorInvCTM22[2] = invCTM.get(SkMatrix::kMSkewX);
fColumnMajorInvCTM22[3] = invCTM.get(SkMatrix::kMScaleY);
pdman.setMatrix2f(fXformUni, fColumnMajorInvCTM22);
}
private:
float fColumnMajorInvCTM22[4];
GrGLSLProgramDataManager::UniformHandle fXformUni;
};
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLNormalMapFP::GenKey(*this, caps, b);
}
const char* name() const override { return "NormalMapFP"; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToUnknown(GrInvariantOutput::ReadInput::kWillNot_ReadInput);
}
const SkMatrix& invCTM() const { return fInvCTM; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalMapFP; }
bool onIsEqual(const GrFragmentProcessor& proc) const override {
const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
return fInvCTM == normalMapFP.fInvCTM;
}
SkMatrix fInvCTM;
};
sk_sp<GrFragmentProcessor> NormalMapSourceImpl::asFragmentProcessor(
const SkShader::AsFPArgs& args) const {
sk_sp<GrFragmentProcessor> mapFP = fMapShader->asFragmentProcessor(args);
if (!mapFP) {
return nullptr;
}
return sk_make_sp<NormalMapFP>(std::move(mapFP), fInvCTM);
}
#endif // SK_SUPPORT_GPU
////////////////////////////////////////////////////////////////////////////
NormalMapSourceImpl::Provider::Provider(const NormalMapSourceImpl& source,
SkShader::Context* mapContext,
SkPaint* overridePaint)
: fSource(source)
, fMapContext(mapContext)
, fOverridePaint(overridePaint) {}
NormalMapSourceImpl::Provider::~Provider() {
fMapContext->~Context();
fOverridePaint->~SkPaint();
}
SkNormalSource::Provider* NormalMapSourceImpl::asProvider(
const SkShader::ContextRec &rec, void *storage) const {
SkMatrix normTotalInv;
if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
return nullptr;
}
// Overriding paint's alpha because we need the normal map's RGB channels to be unpremul'd
void* paintStorage = (char*)storage + sizeof(Provider);
SkPaint* overridePaint = new (paintStorage) SkPaint(*(rec.fPaint));
overridePaint->setAlpha(0xFF);
SkShader::ContextRec overrideRec(*overridePaint, *(rec.fMatrix), rec.fLocalMatrix,
rec.fPreferredDstType);
void* mapContextStorage = (char*) paintStorage + sizeof(SkPaint);
SkShader::Context* context = fMapShader->createContext(overrideRec, mapContextStorage);
if (!context) {
return nullptr;
}
return new (storage) Provider(*this, context, overridePaint);
}
size_t NormalMapSourceImpl::providerSize(const SkShader::ContextRec& rec) const {
return sizeof(Provider) + sizeof(SkPaint) + fMapShader->contextSize(rec);
}
bool NormalMapSourceImpl::computeNormTotalInverse(const SkShader::ContextRec& rec,
SkMatrix* normTotalInverse) const {
SkMatrix total;
total.setConcat(*rec.fMatrix, fMapShader->getLocalMatrix());
const SkMatrix* m = &total;
if (rec.fLocalMatrix) {
total.setConcat(*m, *rec.fLocalMatrix);
m = &total;
}
return m->invert(normTotalInverse);
}
#define BUFFER_MAX 16
void NormalMapSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
int count) const {
SkPMColor tmpNormalColors[BUFFER_MAX];
do {
int n = SkTMin(count, BUFFER_MAX);
fMapContext->shadeSpan(x, y, tmpNormalColors, n);
for (int i = 0; i < n; i++) {
SkPoint3 tempNorm;
tempNorm.set(SkIntToScalar(SkGetPackedR32(tmpNormalColors[i])) - 127.0f,
SkIntToScalar(SkGetPackedG32(tmpNormalColors[i])) - 127.0f,
SkIntToScalar(SkGetPackedB32(tmpNormalColors[i])) - 127.0f);
tempNorm.normalize();
if (!SkScalarNearlyEqual(SkScalarAbs(tempNorm.fZ), 1.0f)) {
SkVector transformed = fSource.fInvCTM.mapVector(tempNorm.fX, tempNorm.fY);
// Normalizing the transformed X and Y, while keeping constant both Z and the
// vector's angle in the XY plane. This maintains the "slope" for the surface while
// appropriately rotating the normal for any anisotropic scaling that occurs.
// Here, we call scaling factor the number that must divide the transformed X and Y
// so that the normal's length remains equal to 1.
SkScalar scalingFactorSquared =
(SkScalarSquare(transformed.fX) + SkScalarSquare(transformed.fY))
/ (1.0f - SkScalarSquare(tempNorm.fZ));
SkScalar invScalingFactor = SkScalarInvert(SkScalarSqrt(scalingFactorSquared));
output[i].fX = transformed.fX * invScalingFactor;
output[i].fY = transformed.fY * invScalingFactor;
output[i].fZ = tempNorm.fZ;
} else {
output[i] = {0.0f, 0.0f, tempNorm.fZ};
output[i].normalize();
}
SkASSERT(SkScalarNearlyEqual(output[i].length(), 1.0f))
}
output += n;
x += n;
count -= n;
} while (count > 0);
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<SkFlattenable> NormalMapSourceImpl::CreateProc(SkReadBuffer& buf) {
sk_sp<SkShader> mapShader = buf.readFlattenable<SkShader>();
SkMatrix invCTM;
buf.readMatrix(&invCTM);
return sk_make_sp<NormalMapSourceImpl>(std::move(mapShader), invCTM);
}
void NormalMapSourceImpl::flatten(SkWriteBuffer& buf) const {
this->INHERITED::flatten(buf);
buf.writeFlattenable(fMapShader.get());
buf.writeMatrix(fInvCTM);
}
////////////////////////////////////////////////////////////////////////////
sk_sp<SkNormalSource> SkNormalSource::MakeFromNormalMap(sk_sp<SkShader> map, const SkMatrix& ctm) {
SkMatrix invCTM;
if (!ctm.invert(&invCTM) || !map) {
return nullptr;
}
return sk_make_sp<NormalMapSourceImpl>(std::move(map), invCTM);
}
///////////////////////////////////////////////////////////////////////////////
class SK_API NormalFlatSourceImpl : public SkNormalSource {
public:
NormalFlatSourceImpl(){}
#if SK_SUPPORT_GPU
sk_sp<GrFragmentProcessor> asFragmentProcessor(const SkShader::AsFPArgs&) const override;
#endif
SkNormalSource::Provider* asProvider(const SkShader::ContextRec& rec,
void* storage) const override;
size_t providerSize(const SkShader::ContextRec& rec) const override;
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(NormalFlatSourceImpl)
protected:
void flatten(SkWriteBuffer& buf) const override;
private:
class Provider : public SkNormalSource::Provider {
public:
Provider();
virtual ~Provider();
void fillScanLine(int x, int y, SkPoint3 output[], int count) const override;
private:
typedef SkNormalSource::Provider INHERITED;
};
friend class SkNormalSource;
typedef SkNormalSource INHERITED;
};
////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class NormalFlatFP : public GrFragmentProcessor {
public:
NormalFlatFP() {
this->initClassID<NormalFlatFP>();
}
class GLSLNormalFlatFP : public GrGLSLFragmentProcessor {
public:
GLSLNormalFlatFP() {}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = vec4(0, 0, 1, 0);", args.fOutputColor);
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
b->add32(0x0);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) override {}
};
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLNormalFlatFP::GenKey(*this, caps, b);
}
const char* name() const override { return "NormalFlatFP"; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToUnknown(GrInvariantOutput::ReadInput::kWillNot_ReadInput);
}
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalFlatFP; }
bool onIsEqual(const GrFragmentProcessor& proc) const override {
return true;
}
};
sk_sp<GrFragmentProcessor> NormalFlatSourceImpl::asFragmentProcessor(
const SkShader::AsFPArgs&) const {
return sk_make_sp<NormalFlatFP>();
}
#endif // SK_SUPPORT_GPU
////////////////////////////////////////////////////////////////////////////
NormalFlatSourceImpl::Provider::Provider() {}
NormalFlatSourceImpl::Provider::~Provider() {}
SkNormalSource::Provider* NormalFlatSourceImpl::asProvider(const SkShader::ContextRec &rec,
void *storage) const {
return new (storage) Provider();
}
size_t NormalFlatSourceImpl::providerSize(const SkShader::ContextRec&) const {
return sizeof(Provider);
}
void NormalFlatSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
int count) const {
for (int i = 0; i < count; i++) {
output[i] = {0.0f, 0.0f, 1.0f};
}
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<SkFlattenable> NormalFlatSourceImpl::CreateProc(SkReadBuffer& buf) {
return sk_make_sp<NormalFlatSourceImpl>();
}
void NormalFlatSourceImpl::flatten(SkWriteBuffer& buf) const {
this->INHERITED::flatten(buf);
}
////////////////////////////////////////////////////////////////////////////
sk_sp<SkNormalSource> SkNormalSource::MakeFlat() {
return sk_make_sp<NormalFlatSourceImpl>();
}
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkNormalSource)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(NormalMapSourceImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(NormalFlatSourceImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
////////////////////////////////////////////////////////////////////////////