| /* |
| * Copyright 2010 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkPDFImage.h" |
| |
| #include "SkBitmap.h" |
| #include "SkColor.h" |
| #include "SkColorPriv.h" |
| #include "SkData.h" |
| #include "SkFlate.h" |
| #include "SkPDFCatalog.h" |
| #include "SkRect.h" |
| #include "SkStream.h" |
| #include "SkString.h" |
| #include "SkUnPreMultiply.h" |
| |
| static const int kNoColorTransform = 0; |
| |
| static bool skip_compression(SkPDFCatalog* catalog) { |
| return SkToBool(catalog->getDocumentFlags() & |
| SkPDFDocument::kFavorSpeedOverSize_Flags); |
| } |
| |
| static size_t get_uncompressed_size(const SkBitmap& bitmap, |
| const SkIRect& srcRect) { |
| switch (bitmap.config()) { |
| case SkBitmap::kIndex8_Config: |
| return srcRect.width() * srcRect.height(); |
| case SkBitmap::kARGB_4444_Config: |
| return ((srcRect.width() * 3 + 1) / 2) * srcRect.height(); |
| case SkBitmap::kRGB_565_Config: |
| return srcRect.width() * 3 * srcRect.height(); |
| case SkBitmap::kARGB_8888_Config: |
| return srcRect.width() * 3 * srcRect.height(); |
| case SkBitmap::kA1_Config: |
| case SkBitmap::kA8_Config: |
| return 1; |
| default: |
| SkASSERT(false); |
| return 0; |
| } |
| } |
| |
| static SkStream* extract_index8_image(const SkBitmap& bitmap, |
| const SkIRect& srcRect) { |
| const int rowBytes = srcRect.width(); |
| SkStream* stream = SkNEW_ARGS(SkMemoryStream, |
| (get_uncompressed_size(bitmap, srcRect))); |
| uint8_t* dst = (uint8_t*)stream->getMemoryBase(); |
| |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes); |
| dst += rowBytes; |
| } |
| return stream; |
| } |
| |
| static SkStream* extract_argb4444_data(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| bool extractAlpha, |
| bool* isOpaque, |
| bool* isTransparent) { |
| SkStream* stream; |
| uint8_t* dst = NULL; |
| if (extractAlpha) { |
| const int alphaRowBytes = (srcRect.width() + 1) / 2; |
| stream = SkNEW_ARGS(SkMemoryStream, |
| (alphaRowBytes * srcRect.height())); |
| } else { |
| stream = SkNEW_ARGS(SkMemoryStream, |
| (get_uncompressed_size(bitmap, srcRect))); |
| } |
| dst = (uint8_t*)stream->getMemoryBase(); |
| |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint16_t* src = bitmap.getAddr16(0, y); |
| int x; |
| for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) { |
| if (extractAlpha) { |
| dst[0] = (SkGetPackedA4444(src[x]) << 4) | |
| SkGetPackedA4444(src[x + 1]); |
| *isOpaque &= dst[0] == SK_AlphaOPAQUE; |
| *isTransparent &= dst[0] == SK_AlphaTRANSPARENT; |
| dst++; |
| } else { |
| dst[0] = (SkGetPackedR4444(src[x]) << 4) | |
| SkGetPackedG4444(src[x]); |
| dst[1] = (SkGetPackedB4444(src[x]) << 4) | |
| SkGetPackedR4444(src[x + 1]); |
| dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) | |
| SkGetPackedB4444(src[x + 1]); |
| dst += 3; |
| } |
| } |
| if (srcRect.width() & 1) { |
| if (extractAlpha) { |
| dst[0] = (SkGetPackedA4444(src[x]) << 4); |
| *isOpaque &= dst[0] == (SK_AlphaOPAQUE & 0xF0); |
| *isTransparent &= dst[0] == (SK_AlphaTRANSPARENT & 0xF0); |
| dst++; |
| |
| } else { |
| dst[0] = (SkGetPackedR4444(src[x]) << 4) | |
| SkGetPackedG4444(src[x]); |
| dst[1] = (SkGetPackedB4444(src[x]) << 4); |
| dst += 2; |
| } |
| } |
| } |
| return stream; |
| } |
| |
| static SkStream* extract_rgb565_image(const SkBitmap& bitmap, |
| const SkIRect& srcRect) { |
| SkStream* stream = SkNEW_ARGS(SkMemoryStream, |
| (get_uncompressed_size(bitmap, |
| srcRect))); |
| uint8_t* dst = (uint8_t*)stream->getMemoryBase(); |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint16_t* src = bitmap.getAddr16(0, y); |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { |
| dst[0] = SkGetPackedR16(src[x]); |
| dst[1] = SkGetPackedG16(src[x]); |
| dst[2] = SkGetPackedB16(src[x]); |
| dst += 3; |
| } |
| } |
| return stream; |
| } |
| |
| static SkStream* extract_argb8888_data(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| bool extractAlpha, |
| bool* isOpaque, |
| bool* isTransparent) { |
| SkStream* stream; |
| if (extractAlpha) { |
| stream = SkNEW_ARGS(SkMemoryStream, |
| (srcRect.width() * srcRect.height())); |
| } else { |
| stream = SkNEW_ARGS(SkMemoryStream, |
| (get_uncompressed_size(bitmap, srcRect))); |
| } |
| uint8_t* dst = (uint8_t*)stream->getMemoryBase(); |
| |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint32_t* src = bitmap.getAddr32(0, y); |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { |
| if (extractAlpha) { |
| dst[0] = SkGetPackedA32(src[x]); |
| *isOpaque &= dst[0] == SK_AlphaOPAQUE; |
| *isTransparent &= dst[0] == SK_AlphaTRANSPARENT; |
| dst++; |
| } else { |
| dst[0] = SkGetPackedR32(src[x]); |
| dst[1] = SkGetPackedG32(src[x]); |
| dst[2] = SkGetPackedB32(src[x]); |
| dst += 3; |
| } |
| } |
| } |
| return stream; |
| } |
| |
| static SkStream* extract_a1_alpha(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| bool* isOpaque, |
| bool* isTransparent) { |
| const int alphaRowBytes = (srcRect.width() + 7) / 8; |
| SkStream* stream = SkNEW_ARGS(SkMemoryStream, |
| (alphaRowBytes * srcRect.height())); |
| uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase(); |
| |
| int offset1 = srcRect.fLeft % 8; |
| int offset2 = 8 - offset1; |
| |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint8_t* src = bitmap.getAddr1(0, y); |
| // This may read up to one byte after src, but the |
| // potentially invalid bits are never used for computation. |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x += 8) { |
| if (offset1) { |
| alphaDst[0] = src[x / 8] << offset1 | |
| src[x / 8 + 1] >> offset2; |
| } else { |
| alphaDst[0] = src[x / 8]; |
| } |
| if (x + 7 < srcRect.fRight) { |
| *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE; |
| *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT; |
| } |
| alphaDst++; |
| } |
| // Calculate the mask of bits we're interested in within the |
| // last byte of alphaDst. |
| // width mod 8 == 1 -> 0x80 ... width mod 8 == 7 -> 0xFE |
| uint8_t mask = ~((1 << (8 - (srcRect.width() % 8))) - 1); |
| if (srcRect.width() % 8) { |
| *isOpaque &= (alphaDst[-1] & mask) == (SK_AlphaOPAQUE & mask); |
| *isTransparent &= |
| (alphaDst[-1] & mask) == (SK_AlphaTRANSPARENT & mask); |
| } |
| } |
| return stream; |
| } |
| |
| static SkStream* extract_a8_alpha(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| bool* isOpaque, |
| bool* isTransparent) { |
| const int alphaRowBytes = srcRect.width(); |
| SkStream* stream = SkNEW_ARGS(SkMemoryStream, |
| (alphaRowBytes * srcRect.height())); |
| uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase(); |
| |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint8_t* src = bitmap.getAddr8(0, y); |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { |
| alphaDst[0] = src[x]; |
| *isOpaque &= alphaDst[0] == SK_AlphaOPAQUE; |
| *isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT; |
| alphaDst++; |
| } |
| } |
| return stream; |
| } |
| |
| static SkStream* create_black_image() { |
| SkStream* stream = SkNEW_ARGS(SkMemoryStream, (1)); |
| ((uint8_t*)stream->getMemoryBase())[0] = 0; |
| return stream; |
| } |
| |
| /** |
| * Extract either the color or image data from a SkBitmap into a SkStream. |
| * @param bitmap Bitmap to extract data from. |
| * @param srcRect Region in the bitmap to extract. |
| * @param extractAlpha Set to true to extract the alpha data or false to |
| * extract the color data. |
| * @param isTransparent Pointer to a bool to output whether the alpha is |
| * completely transparent. May be NULL. Only valid when |
| * extractAlpha == true. |
| * @return Unencoded image data, or NULL if either data was not |
| * available or alpha data was requested but the image was |
| * entirely transparent or opaque. |
| */ |
| static SkStream* extract_image_data(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| bool extractAlpha, bool* isTransparent) { |
| SkBitmap::Config config = bitmap.config(); |
| if (extractAlpha && (config == SkBitmap::kIndex8_Config || |
| config == SkBitmap::kRGB_565_Config)) { |
| if (isTransparent != NULL) { |
| *isTransparent = false; |
| } |
| return NULL; |
| } |
| bool isOpaque = true; |
| bool transparent = extractAlpha; |
| SkStream* stream = NULL; |
| |
| bitmap.lockPixels(); |
| switch (config) { |
| case SkBitmap::kIndex8_Config: |
| if (!extractAlpha) { |
| stream = extract_index8_image(bitmap, srcRect); |
| } |
| break; |
| case SkBitmap::kARGB_4444_Config: |
| stream = extract_argb4444_data(bitmap, srcRect, extractAlpha, |
| &isOpaque, &transparent); |
| break; |
| case SkBitmap::kRGB_565_Config: |
| if (!extractAlpha) { |
| stream = extract_rgb565_image(bitmap, srcRect); |
| } |
| break; |
| case SkBitmap::kARGB_8888_Config: |
| stream = extract_argb8888_data(bitmap, srcRect, extractAlpha, |
| &isOpaque, &transparent); |
| break; |
| case SkBitmap::kA1_Config: |
| if (!extractAlpha) { |
| stream = create_black_image(); |
| } else { |
| stream = extract_a1_alpha(bitmap, srcRect, |
| &isOpaque, &transparent); |
| } |
| break; |
| case SkBitmap::kA8_Config: |
| if (!extractAlpha) { |
| stream = create_black_image(); |
| } else { |
| stream = extract_a8_alpha(bitmap, srcRect, |
| &isOpaque, &transparent); |
| } |
| break; |
| default: |
| SkASSERT(false); |
| } |
| bitmap.unlockPixels(); |
| |
| if (isTransparent != NULL) { |
| *isTransparent = transparent; |
| } |
| if (extractAlpha && (transparent || isOpaque)) { |
| SkSafeUnref(stream); |
| return NULL; |
| } |
| return stream; |
| } |
| |
| static SkPDFArray* make_indexed_color_space(SkColorTable* table) { |
| SkPDFArray* result = new SkPDFArray(); |
| result->reserve(4); |
| result->appendName("Indexed"); |
| result->appendName("DeviceRGB"); |
| result->appendInt(table->count() - 1); |
| |
| // Potentially, this could be represented in fewer bytes with a stream. |
| // Max size as a string is 1.5k. |
| SkString index; |
| for (int i = 0; i < table->count(); i++) { |
| char buf[3]; |
| SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]); |
| buf[0] = SkGetPackedR32(color); |
| buf[1] = SkGetPackedG32(color); |
| buf[2] = SkGetPackedB32(color); |
| index.append(buf, 3); |
| } |
| result->append(new SkPDFString(index))->unref(); |
| return result; |
| } |
| |
| /** |
| * Removes the alpha component of an ARGB color (including unpremultiply) while |
| * keeping the output in the same format as the input. |
| */ |
| static uint32_t remove_alpha_argb8888(uint32_t pmColor) { |
| SkColor color = SkUnPreMultiply::PMColorToColor(pmColor); |
| return SkPackARGB32NoCheck(SK_AlphaOPAQUE, |
| SkColorGetR(color), |
| SkColorGetG(color), |
| SkColorGetB(color)); |
| } |
| |
| static uint16_t remove_alpha_argb4444(uint16_t pmColor) { |
| return SkPixel32ToPixel4444( |
| remove_alpha_argb8888(SkPixel4444ToPixel32(pmColor))); |
| } |
| |
| static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap, |
| int xOrig, int yOrig) { |
| uint8_t count = 0; |
| uint16_t r = 0; |
| uint16_t g = 0; |
| uint16_t b = 0; |
| |
| for (int y = yOrig - 1; y <= yOrig + 1; y++) { |
| if (y < 0 || y >= bitmap.height()) { |
| continue; |
| } |
| uint32_t* src = bitmap.getAddr32(0, y); |
| for (int x = xOrig - 1; x <= xOrig + 1; x++) { |
| if (x < 0 || x >= bitmap.width()) { |
| continue; |
| } |
| if (SkGetPackedA32(src[x]) != SK_AlphaTRANSPARENT) { |
| uint32_t color = remove_alpha_argb8888(src[x]); |
| r += SkGetPackedR32(color); |
| g += SkGetPackedG32(color); |
| b += SkGetPackedB32(color); |
| count++; |
| } |
| } |
| } |
| |
| if (count == 0) { |
| return SkPackARGB32NoCheck(SK_AlphaOPAQUE, 0, 0, 0); |
| } else { |
| return SkPackARGB32NoCheck(SK_AlphaOPAQUE, |
| r / count, g / count, b / count); |
| } |
| } |
| |
| static uint16_t get_argb4444_neighbor_avg_color(const SkBitmap& bitmap, |
| int xOrig, int yOrig) { |
| uint8_t count = 0; |
| uint8_t r = 0; |
| uint8_t g = 0; |
| uint8_t b = 0; |
| |
| for (int y = yOrig - 1; y <= yOrig + 1; y++) { |
| if (y < 0 || y >= bitmap.height()) { |
| continue; |
| } |
| uint16_t* src = bitmap.getAddr16(0, y); |
| for (int x = xOrig - 1; x <= xOrig + 1; x++) { |
| if (x < 0 || x >= bitmap.width()) { |
| continue; |
| } |
| if ((SkGetPackedA4444(src[x]) & 0x0F) != SK_AlphaTRANSPARENT) { |
| uint16_t color = remove_alpha_argb4444(src[x]); |
| r += SkGetPackedR4444(color); |
| g += SkGetPackedG4444(color); |
| b += SkGetPackedB4444(color); |
| count++; |
| } |
| } |
| } |
| |
| if (count == 0) { |
| return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F, 0, 0, 0); |
| } else { |
| return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F, |
| r / count, g / count, b / count); |
| } |
| } |
| |
| static SkBitmap unpremultiply_bitmap(const SkBitmap& bitmap, |
| const SkIRect& srcRect) { |
| SkBitmap outBitmap; |
| outBitmap.setConfig(bitmap.config(), srcRect.width(), srcRect.height()); |
| outBitmap.allocPixels(); |
| int dstRow = 0; |
| |
| outBitmap.lockPixels(); |
| bitmap.lockPixels(); |
| switch (bitmap.config()) { |
| case SkBitmap::kARGB_4444_Config: { |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint16_t* dst = outBitmap.getAddr16(0, dstRow); |
| uint16_t* src = bitmap.getAddr16(0, y); |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { |
| uint8_t a = SkGetPackedA4444(src[x]); |
| // It is necessary to average the color component of |
| // transparent pixels with their surrounding neighbors |
| // since the PDF renderer may separately re-sample the |
| // alpha and color channels when the image is not |
| // displayed at its native resolution. Since an alpha of |
| // zero gives no information about the color component, |
| // the pathological case is a white image with sharp |
| // transparency bounds - the color channel goes to black, |
| // and the should-be-transparent pixels are rendered |
| // as grey because of the separate soft mask and color |
| // resizing. |
| if (a == (SK_AlphaTRANSPARENT & 0x0F)) { |
| *dst = get_argb4444_neighbor_avg_color(bitmap, x, y); |
| } else { |
| *dst = remove_alpha_argb4444(src[x]); |
| } |
| dst++; |
| } |
| dstRow++; |
| } |
| break; |
| } |
| case SkBitmap::kARGB_8888_Config: { |
| for (int y = srcRect.fTop; y < srcRect.fBottom; y++) { |
| uint32_t* dst = outBitmap.getAddr32(0, dstRow); |
| uint32_t* src = bitmap.getAddr32(0, y); |
| for (int x = srcRect.fLeft; x < srcRect.fRight; x++) { |
| uint8_t a = SkGetPackedA32(src[x]); |
| if (a == SK_AlphaTRANSPARENT) { |
| *dst = get_argb8888_neighbor_avg_color(bitmap, x, y); |
| } else { |
| *dst = remove_alpha_argb8888(src[x]); |
| } |
| dst++; |
| } |
| dstRow++; |
| } |
| break; |
| } |
| default: |
| SkASSERT(false); |
| } |
| bitmap.unlockPixels(); |
| outBitmap.unlockPixels(); |
| |
| outBitmap.setImmutable(); |
| |
| return outBitmap; |
| } |
| |
| // static |
| SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| SkPicture::EncodeBitmap encoder) { |
| if (bitmap.config() == SkBitmap::kNo_Config) { |
| return NULL; |
| } |
| |
| bool isTransparent = false; |
| SkAutoTUnref<SkStream> alphaData; |
| if (!bitmap.isOpaque()) { |
| // Note that isOpaque is not guaranteed to return false for bitmaps |
| // with alpha support but a completely opaque alpha channel, |
| // so alphaData may still be NULL if we have a completely opaque |
| // (or transparent) bitmap. |
| alphaData.reset( |
| extract_image_data(bitmap, srcRect, true, &isTransparent)); |
| } |
| if (isTransparent) { |
| return NULL; |
| } |
| |
| SkPDFImage* image; |
| SkBitmap::Config config = bitmap.config(); |
| if (alphaData.get() != NULL && (config == SkBitmap::kARGB_8888_Config || |
| config == SkBitmap::kARGB_4444_Config)) { |
| SkBitmap unpremulBitmap = unpremultiply_bitmap(bitmap, srcRect); |
| image = SkNEW_ARGS(SkPDFImage, (NULL, unpremulBitmap, false, |
| SkIRect::MakeWH(srcRect.width(), srcRect.height()), |
| encoder)); |
| } else { |
| image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false, srcRect, encoder)); |
| } |
| if (alphaData.get() != NULL) { |
| SkAutoTUnref<SkPDFImage> mask( |
| SkNEW_ARGS(SkPDFImage, (alphaData.get(), bitmap, |
| true, srcRect, NULL))); |
| image->addSMask(mask); |
| } |
| |
| return image; |
| } |
| |
| SkPDFImage::~SkPDFImage() { |
| fResources.unrefAll(); |
| } |
| |
| SkPDFImage* SkPDFImage::addSMask(SkPDFImage* mask) { |
| fResources.push(mask); |
| mask->ref(); |
| insert("SMask", new SkPDFObjRef(mask))->unref(); |
| return mask; |
| } |
| |
| void SkPDFImage::getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, |
| SkTSet<SkPDFObject*>* newResourceObjects) { |
| GetResourcesHelper(&fResources, knownResourceObjects, newResourceObjects); |
| } |
| |
| SkPDFImage::SkPDFImage(SkStream* stream, |
| const SkBitmap& bitmap, |
| bool isAlpha, |
| const SkIRect& srcRect, |
| SkPicture::EncodeBitmap encoder) |
| : fIsAlpha(isAlpha), |
| fSrcRect(srcRect), |
| fEncoder(encoder) { |
| |
| if (bitmap.isImmutable()) { |
| fBitmap = bitmap; |
| } else { |
| bitmap.deepCopyTo(&fBitmap, bitmap.config()); |
| fBitmap.setImmutable(); |
| } |
| |
| if (stream != NULL) { |
| setData(stream); |
| fStreamValid = true; |
| } else { |
| fStreamValid = false; |
| } |
| |
| SkBitmap::Config config = fBitmap.config(); |
| |
| insertName("Type", "XObject"); |
| insertName("Subtype", "Image"); |
| |
| bool alphaOnly = (config == SkBitmap::kA1_Config || |
| config == SkBitmap::kA8_Config); |
| |
| if (!isAlpha && alphaOnly) { |
| // For alpha only images, we stretch a single pixel of black for |
| // the color/shape part. |
| SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1)); |
| insert("Width", one.get()); |
| insert("Height", one.get()); |
| } else { |
| insertInt("Width", fSrcRect.width()); |
| insertInt("Height", fSrcRect.height()); |
| } |
| |
| if (isAlpha || alphaOnly) { |
| insertName("ColorSpace", "DeviceGray"); |
| } else if (config == SkBitmap::kIndex8_Config) { |
| SkAutoLockPixels alp(fBitmap); |
| insert("ColorSpace", |
| make_indexed_color_space(fBitmap.getColorTable()))->unref(); |
| } else { |
| insertName("ColorSpace", "DeviceRGB"); |
| } |
| |
| int bitsPerComp = 8; |
| if (config == SkBitmap::kARGB_4444_Config) { |
| bitsPerComp = 4; |
| } else if (isAlpha && config == SkBitmap::kA1_Config) { |
| bitsPerComp = 1; |
| } |
| insertInt("BitsPerComponent", bitsPerComp); |
| |
| if (config == SkBitmap::kRGB_565_Config) { |
| SkASSERT(!isAlpha); |
| SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0)); |
| SkAutoTUnref<SkPDFScalar> scale5Val( |
| new SkPDFScalar(SkFloatToScalar(8.2258f))); // 255/2^5-1 |
| SkAutoTUnref<SkPDFScalar> scale6Val( |
| new SkPDFScalar(SkFloatToScalar(4.0476f))); // 255/2^6-1 |
| SkAutoTUnref<SkPDFArray> decodeValue(new SkPDFArray()); |
| decodeValue->reserve(6); |
| decodeValue->append(zeroVal.get()); |
| decodeValue->append(scale5Val.get()); |
| decodeValue->append(zeroVal.get()); |
| decodeValue->append(scale6Val.get()); |
| decodeValue->append(zeroVal.get()); |
| decodeValue->append(scale5Val.get()); |
| insert("Decode", decodeValue.get()); |
| } |
| } |
| |
| SkPDFImage::SkPDFImage(SkPDFImage& pdfImage) |
| : SkPDFStream(pdfImage), |
| fBitmap(pdfImage.fBitmap), |
| fIsAlpha(pdfImage.fIsAlpha), |
| fSrcRect(pdfImage.fSrcRect), |
| fEncoder(pdfImage.fEncoder), |
| fStreamValid(pdfImage.fStreamValid) { |
| // Nothing to do here - the image params are already copied in SkPDFStream's |
| // constructor, and the bitmap will be regenerated and encoded in |
| // populate. |
| } |
| |
| bool SkPDFImage::populate(SkPDFCatalog* catalog) { |
| if (getState() == kUnused_State) { |
| // Initializing image data for the first time. |
| SkDynamicMemoryWStream dctCompressedWStream; |
| if (!skip_compression(catalog) && fEncoder && |
| get_uncompressed_size(fBitmap, fSrcRect) > 1) { |
| SkBitmap subset; |
| // Extract subset |
| if (!fBitmap.extractSubset(&subset, fSrcRect)) { |
| // TODO(edisonn) It fails only for kA1_Config, if that is a |
| // major concern we will fix it later, so far it is NYI. |
| return false; |
| } |
| size_t pixelRefOffset = 0; |
| SkAutoTUnref<SkData> data(fEncoder(&pixelRefOffset, subset)); |
| if (data.get() && data->size() < get_uncompressed_size(fBitmap, |
| fSrcRect)) { |
| SkAutoTUnref<SkStream> stream(SkNEW_ARGS(SkMemoryStream, |
| (data))); |
| setData(stream.get()); |
| |
| insertName("Filter", "DCTDecode"); |
| insertInt("ColorTransform", kNoColorTransform); |
| insertInt("Length", getData()->getLength()); |
| setState(kCompressed_State); |
| return true; |
| } |
| } |
| // Fallback method |
| if (!fStreamValid) { |
| SkAutoTUnref<SkStream> stream( |
| extract_image_data(fBitmap, fSrcRect, fIsAlpha, NULL)); |
| setData(stream); |
| fStreamValid = true; |
| } |
| return INHERITED::populate(catalog); |
| } else if (getState() == kNoCompression_State && |
| !skip_compression(catalog) && |
| (SkFlate::HaveFlate() || fEncoder)) { |
| // Compression has not been requested when the stream was first created, |
| // but the new catalog wants it compressed. |
| if (!getSubstitute()) { |
| SkPDFStream* substitute = SkNEW_ARGS(SkPDFImage, (*this)); |
| setSubstitute(substitute); |
| catalog->setSubstitute(this, substitute); |
| } |
| return false; |
| } |
| return true; |
| } |