blob: 7c008bea177f86a16ecdc4bb8afe2b5d398af743 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGr.h"
#include "SkGrPriv.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrGpuResourcePriv.h"
#include "GrImageIDTextureAdjuster.h"
#include "GrTextureParamsAdjuster.h"
#include "GrTexturePriv.h"
#include "GrTypes.h"
#include "GrXferProcessor.h"
#include "GrYUVProvider.h"
#include "SkBlendModePriv.h"
#include "SkColorFilter.h"
#include "SkConfig8888.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkMaskFilter.h"
#include "SkMessageBus.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkPM4fPriv.h"
#include "SkResourceCache.h"
#include "SkTemplates.h"
#include "SkYUVPlanesCache.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrConstColorProcessor.h"
#include "effects/GrDitherEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
#include "effects/GrYUVEffect.h"
#ifndef SK_IGNORE_ETC1_SUPPORT
# include "ktx.h"
# include "etc1.h"
#endif
GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info, const GrCaps& caps) {
GrSurfaceDesc desc;
desc.fFlags = kNone_GrSurfaceFlags;
desc.fWidth = info.width();
desc.fHeight = info.height();
desc.fConfig = SkImageInfo2GrPixelConfig(info, caps);
desc.fSampleCnt = 0;
return desc;
}
void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) {
SkASSERT(key);
SkASSERT(imageID);
SkASSERT(!imageBounds.isEmpty());
static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kImageIDDomain, 5);
builder[0] = imageID;
builder[1] = imageBounds.fLeft;
builder[2] = imageBounds.fTop;
builder[3] = imageBounds.fRight;
builder[4] = imageBounds.fBottom;
}
GrPixelConfig GrIsCompressedTextureDataSupported(GrContext* ctx, SkData* data,
int expectedW, int expectedH,
const void** outStartOfDataToUpload) {
*outStartOfDataToUpload = nullptr;
#ifndef SK_IGNORE_ETC1_SUPPORT
if (!ctx->caps()->isConfigTexturable(kETC1_GrPixelConfig)) {
return kUnknown_GrPixelConfig;
}
const uint8_t* bytes = data->bytes();
if (data->size() > ETC_PKM_HEADER_SIZE && etc1_pkm_is_valid(bytes)) {
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (etc1_pkm_get_width(bytes) != (unsigned)expectedW ||
etc1_pkm_get_height(bytes) != (unsigned)expectedH)
{
return kUnknown_GrPixelConfig;
}
*outStartOfDataToUpload = bytes + ETC_PKM_HEADER_SIZE;
return kETC1_GrPixelConfig;
} else if (SkKTXFile::is_ktx(bytes, data->size())) {
SkKTXFile ktx(data);
// Is it actually an ETC1 texture?
if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) {
return kUnknown_GrPixelConfig;
}
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (ktx.width() != expectedW || ktx.height() != expectedH) {
return kUnknown_GrPixelConfig;
}
*outStartOfDataToUpload = ktx.pixelData();
return kETC1_GrPixelConfig;
}
#endif
return kUnknown_GrPixelConfig;
}
//////////////////////////////////////////////////////////////////////////////
/**
* Fill out buffer with the compressed format Ganesh expects from a colortable
* based bitmap. [palette (colortable) + indices].
*
* At the moment Ganesh only supports 8bit version. If Ganesh allowed we others
* we could detect that the colortable.count is <= 16, and then repack the
* indices as nibbles to save RAM, but it would take more time (i.e. a lot
* slower than memcpy), so skipping that for now.
*
* Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big
* as the colortable.count says it is.
*/
static void build_index8_data(void* buffer, const SkPixmap& pixmap) {
SkASSERT(kIndex_8_SkColorType == pixmap.colorType());
const SkColorTable* ctable = pixmap.ctable();
char* dst = (char*)buffer;
const int count = ctable->count();
SkDstPixelInfo dstPI;
dstPI.fColorType = kRGBA_8888_SkColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = count * sizeof(SkPMColor);
SkSrcPixelInfo srcPI;
srcPI.fColorType = kN32_SkColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = ctable->readColors();
srcPI.fRowBytes = count * sizeof(SkPMColor);
srcPI.convertPixelsTo(&dstPI, count, 1);
// always skip a full 256 number of entries, even if we memcpy'd fewer
dst += 256 * sizeof(GrColor);
if ((unsigned)pixmap.width() == pixmap.rowBytes()) {
memcpy(dst, pixmap.addr(), pixmap.getSafeSize());
} else {
// need to trim off the extra bytes per row
size_t width = pixmap.width();
size_t rowBytes = pixmap.rowBytes();
const uint8_t* src = pixmap.addr8();
for (int y = 0; y < pixmap.height(); y++) {
memcpy(dst, src, width);
src += rowBytes;
dst += width;
}
}
}
/**
* Once we have made SkImages handle all lazy/deferred/generated content, the YUV apis will
* be gone from SkPixelRef, and we can remove this subclass entirely.
*/
class PixelRef_GrYUVProvider : public GrYUVProvider {
SkPixelRef* fPR;
public:
PixelRef_GrYUVProvider(SkPixelRef* pr) : fPR(pr) {}
uint32_t onGetID() override { return fPR->getGenerationID(); }
bool onQueryYUV8(SkYUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const override {
return fPR->queryYUV8(sizeInfo, colorSpace);
}
bool onGetYUV8Planes(const SkYUVSizeInfo& sizeInfo, void* planes[3]) override {
return fPR->getYUV8Planes(sizeInfo, planes);
}
};
static sk_sp<GrTexture> create_texture_from_yuv(GrContext* ctx, const SkBitmap& bm,
const GrSurfaceDesc& desc) {
// Subsets are not supported, the whole pixelRef is loaded when using YUV decoding
SkPixelRef* pixelRef = bm.pixelRef();
if ((nullptr == pixelRef) ||
(pixelRef->info().width() != bm.info().width()) ||
(pixelRef->info().height() != bm.info().height())) {
return nullptr;
}
PixelRef_GrYUVProvider provider(pixelRef);
return provider.refAsTexture(ctx, desc, !bm.isVolatile());
}
static GrTexture* load_etc1_texture(GrContext* ctx, const SkBitmap &bm, GrSurfaceDesc desc) {
sk_sp<SkData> data(bm.pixelRef()->refEncodedData());
if (!data) {
return nullptr;
}
const void* startOfTexData;
desc.fConfig = GrIsCompressedTextureDataSupported(ctx, data.get(), bm.width(), bm.height(),
&startOfTexData);
if (kUnknown_GrPixelConfig == desc.fConfig) {
return nullptr;
}
return ctx->textureProvider()->createTexture(desc, SkBudgeted::kYes, startOfTexData, 0);
}
GrTexture* GrUploadBitmapToTexture(GrContext* ctx, const SkBitmap& bitmap) {
GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap.info(), *ctx->caps());
if (GrTexture *texture = load_etc1_texture(ctx, bitmap, desc)) {
return texture;
}
sk_sp<GrTexture> texture(create_texture_from_yuv(ctx, bitmap, desc));
if (texture) {
return texture.release();
}
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
return nullptr;
}
SkPixmap pixmap;
if (!bitmap.peekPixels(&pixmap)) {
return nullptr;
}
return GrUploadPixmapToTexture(ctx, pixmap, SkBudgeted::kYes);
}
GrTexture* GrUploadPixmapToTexture(GrContext* ctx, const SkPixmap& pixmap, SkBudgeted budgeted) {
const SkPixmap* pmap = &pixmap;
SkPixmap tmpPixmap;
SkBitmap tmpBitmap;
const GrCaps* caps = ctx->caps();
GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(pixmap.info(), *caps);
if (caps->srgbSupport() &&
pixmap.info().colorSpace() && pixmap.info().colorSpace()->gammaCloseToSRGB() &&
!(GrPixelConfigIsSRGB(desc.fConfig) ||
kRGBA_half_GrPixelConfig == desc.fConfig ||
kRGBA_float_GrPixelConfig == desc.fConfig)) {
// We were supplied an sRGB-like color space, but we don't have a suitable pixel config.
// Convert to 8888 sRGB so we can handle the data correctly. The raster backend doesn't
// handle sRGB Index8 -> sRGB 8888 correctly (yet), so lie about both the source and
// destination (claim they're linear):
SkImageInfo linSrcInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(),
pixmap.colorType(), pixmap.alphaType());
SkPixmap linSrcPixmap(linSrcInfo, pixmap.addr(), pixmap.rowBytes(), pixmap.ctable());
SkImageInfo dstInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(),
kN32_SkColorType, kPremul_SkAlphaType,
sk_ref_sp(pixmap.info().colorSpace()));
tmpBitmap.allocPixels(dstInfo);
SkImageInfo linDstInfo = SkImageInfo::MakeN32Premul(pixmap.width(), pixmap.height());
if (!linSrcPixmap.readPixels(linDstInfo, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) {
return nullptr;
}
if (!tmpBitmap.peekPixels(&tmpPixmap)) {
return nullptr;
}
pmap = &tmpPixmap;
// must rebuild desc, since we've forced the info to be N32
desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps);
} else if (kGray_8_SkColorType == pixmap.colorType()) {
// We don't have Gray8 support as a pixel config, so expand to 8888
// We should have converted sRGB Gray8 above (if we have sRGB support):
SkASSERT(!caps->srgbSupport() || !pixmap.info().colorSpace() ||
!pixmap.info().colorSpace()->gammaCloseToSRGB());
SkImageInfo info = SkImageInfo::MakeN32(pixmap.width(), pixmap.height(),
kOpaque_SkAlphaType);
tmpBitmap.allocPixels(info);
if (!pixmap.readPixels(info, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) {
return nullptr;
}
if (!tmpBitmap.peekPixels(&tmpPixmap)) {
return nullptr;
}
pmap = &tmpPixmap;
// must rebuild desc, since we've forced the info to be N32
desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps);
} else if (kIndex_8_SkColorType == pixmap.colorType()) {
if (caps->isConfigTexturable(kIndex_8_GrPixelConfig)) {
size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig,
pixmap.width(), pixmap.height());
SkAutoMalloc storage(imageSize);
build_index8_data(storage.get(), pixmap);
// our compressed data will be trimmed, so pass width() for its
// "rowBytes", since they are the same now.
return ctx->textureProvider()->createTexture(desc, budgeted, storage.get(),
pixmap.width());
} else {
SkImageInfo info = SkImageInfo::MakeN32Premul(pixmap.width(), pixmap.height());
tmpBitmap.allocPixels(info);
if (!pixmap.readPixels(info, tmpBitmap.getPixels(), tmpBitmap.rowBytes())) {
return nullptr;
}
if (!tmpBitmap.peekPixels(&tmpPixmap)) {
return nullptr;
}
pmap = &tmpPixmap;
// must rebuild desc, since we've forced the info to be N32
desc = GrImageInfoToSurfaceDesc(pmap->info(), *caps);
}
}
return ctx->textureProvider()->createTexture(desc, budgeted, pmap->addr(),
pmap->rowBytes());
}
////////////////////////////////////////////////////////////////////////////////
void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) {
class Invalidator : public SkPixelRef::GenIDChangeListener {
public:
explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {}
private:
GrUniqueKeyInvalidatedMessage fMsg;
void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); }
};
pixelRef->addGenIDChangeListener(new Invalidator(key));
}
GrTexture* GrGenerateMipMapsAndUploadToTexture(GrContext* ctx, const SkBitmap& bitmap,
SkSourceGammaTreatment gammaTreatment)
{
GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap.info(), *ctx->caps());
if (kIndex_8_SkColorType != bitmap.colorType() && !bitmap.readyToDraw()) {
GrTexture* texture = load_etc1_texture(ctx, bitmap, desc);
if (texture) {
return texture;
}
}
sk_sp<GrTexture> texture(create_texture_from_yuv(ctx, bitmap, desc));
if (texture) {
return texture.release();
}
// We don't support Gray8 directly in the GL backend, so fail-over to GrUploadBitmapToTexture.
// That will transform the Gray8 to 8888, then use the driver/GPU to build mipmaps. If we build
// the mips on the CPU here, they'll all be Gray8, which isn't useful. (They get treated as A8).
// TODO: A better option might be to transform the initial bitmap here to 8888, then run the
// CPU mip-mapper on that data before uploading. This is much less code for a rare case though:
if (kGray_8_SkColorType == bitmap.colorType()) {
return nullptr;
}
SkASSERT(sizeof(int) <= sizeof(uint32_t));
if (bitmap.width() < 0 || bitmap.height() < 0) {
return nullptr;
}
SkAutoPixmapUnlock srcUnlocker;
if (!bitmap.requestLock(&srcUnlocker)) {
return nullptr;
}
const SkPixmap& pixmap = srcUnlocker.pixmap();
// Try to catch where we might have returned nullptr for src crbug.com/492818
if (nullptr == pixmap.addr()) {
sk_throw();
}
SkAutoTDelete<SkMipMap> mipmaps(SkMipMap::Build(pixmap, gammaTreatment, nullptr));
if (!mipmaps) {
return nullptr;
}
const int mipLevelCount = mipmaps->countLevels() + 1;
if (mipLevelCount < 1) {
return nullptr;
}
const bool isMipMapped = mipLevelCount > 1;
desc.fIsMipMapped = isMipMapped;
SkAutoTDeleteArray<GrMipLevel> texels(new GrMipLevel[mipLevelCount]);
texels[0].fPixels = pixmap.addr();
texels[0].fRowBytes = pixmap.rowBytes();
for (int i = 1; i < mipLevelCount; ++i) {
SkMipMap::Level generatedMipLevel;
mipmaps->getLevel(i - 1, &generatedMipLevel);
texels[i].fPixels = generatedMipLevel.fPixmap.addr();
texels[i].fRowBytes = generatedMipLevel.fPixmap.rowBytes();
}
{
GrTexture* texture = ctx->textureProvider()->createMipMappedTexture(desc,
SkBudgeted::kYes,
texels.get(),
mipLevelCount);
if (texture) {
texture->texturePriv().setGammaTreatment(gammaTreatment);
}
return texture;
}
}
GrTexture* GrUploadMipMapToTexture(GrContext* ctx, const SkImageInfo& info,
const GrMipLevel* texels, int mipLevelCount) {
const GrCaps* caps = ctx->caps();
return ctx->textureProvider()->createMipMappedTexture(GrImageInfoToSurfaceDesc(info, *caps),
SkBudgeted::kYes, texels,
mipLevelCount);
}
GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap,
const GrTextureParams& params,
SkSourceGammaTreatment gammaTreatment) {
return GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params, gammaTreatment);
}
sk_sp<GrTexture> GrMakeCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap,
const GrTextureParams& params,
SkSourceGammaTreatment gammaTreatment) {
GrTexture* tex = GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params, gammaTreatment);
return sk_sp<GrTexture>(tex);
}
///////////////////////////////////////////////////////////////////////////////
GrColor4f SkColorToPremulGrColor4f(SkColor c, bool gammaCorrect, GrColorSpaceXform* gamutXform) {
// We want to premultiply after linearizing, so this is easy:
return SkColorToUnpremulGrColor4f(c, gammaCorrect, gamutXform).premul();
}
GrColor4f SkColorToUnpremulGrColor4f(SkColor c, bool gammaCorrect, GrColorSpaceXform* gamutXform) {
// You can't be color-space aware in legacy mode
SkASSERT(gammaCorrect || !gamutXform);
GrColor4f color;
if (gammaCorrect) {
// SkColor4f::FromColor does sRGB -> Linear
color = GrColor4f::FromSkColor4f(SkColor4f::FromColor(c));
} else {
// GrColor4f::FromGrColor just multiplies by 1/255
color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c));
}
if (gamutXform) {
color = gamutXform->apply(color);
}
return color;
}
///////////////////////////////////////////////////////////////////////////////
// alphatype is ignore for now, but if GrPixelConfig is expanded to encompass
// alpha info, that will be considered.
GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, const SkColorSpace* cs,
const GrCaps& caps) {
// We intentionally ignore profile type for non-8888 formats. Anything we can't support
// in hardware will be expanded to sRGB 8888 in GrUploadPixmapToTexture.
switch (ct) {
case kUnknown_SkColorType:
return kUnknown_GrPixelConfig;
case kAlpha_8_SkColorType:
return kAlpha_8_GrPixelConfig;
case kRGB_565_SkColorType:
return kRGB_565_GrPixelConfig;
case kARGB_4444_SkColorType:
return kRGBA_4444_GrPixelConfig;
case kRGBA_8888_SkColorType:
return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB())
? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig;
case kBGRA_8888_SkColorType:
return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB())
? kSBGRA_8888_GrPixelConfig : kBGRA_8888_GrPixelConfig;
case kIndex_8_SkColorType:
return kIndex_8_GrPixelConfig;
case kGray_8_SkColorType:
return kAlpha_8_GrPixelConfig; // TODO: gray8 support on gpu
case kRGBA_F16_SkColorType:
return kRGBA_half_GrPixelConfig;
}
SkASSERT(0); // shouldn't get here
return kUnknown_GrPixelConfig;
}
bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) {
SkColorType ct;
switch (config) {
case kAlpha_8_GrPixelConfig:
ct = kAlpha_8_SkColorType;
break;
case kIndex_8_GrPixelConfig:
ct = kIndex_8_SkColorType;
break;
case kRGB_565_GrPixelConfig:
ct = kRGB_565_SkColorType;
break;
case kRGBA_4444_GrPixelConfig:
ct = kARGB_4444_SkColorType;
break;
case kRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kSRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kSBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kRGBA_half_GrPixelConfig:
ct = kRGBA_F16_SkColorType;
break;
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
return true;
}
GrPixelConfig GrRenderableConfigForColorSpace(const SkColorSpace* colorSpace) {
if (!colorSpace) {
return kRGBA_8888_GrPixelConfig;
} else if (colorSpace->gammaIsLinear()) {
return kRGBA_half_GrPixelConfig;
} else if (colorSpace->gammaCloseToSRGB()) {
return kSRGBA_8888_GrPixelConfig;
} else {
SkDEBUGFAIL("No renderable config exists for color space with strange gamma");
return kUnknown_GrPixelConfig;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
static inline bool blend_requires_shader(const SkXfermode::Mode mode, bool primitiveIsSrc) {
if (primitiveIsSrc) {
return SkXfermode::kSrc_Mode != mode;
} else {
return SkXfermode::kDst_Mode != mode;
}
}
static inline bool skpaint_to_grpaint_impl(GrContext* context,
GrDrawContext* dc,
const SkPaint& skPaint,
const SkMatrix& viewM,
sk_sp<GrFragmentProcessor>* shaderProcessor,
SkXfermode::Mode* primColorMode,
bool primitiveIsSrc,
GrPaint* grPaint) {
grPaint->setAntiAlias(skPaint.isAntiAlias());
grPaint->setAllowSRGBInputs(dc->isGammaCorrect());
// Convert SkPaint color to 4f format, including optional linearizing and gamut conversion.
GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), dc->isGammaCorrect(),
dc->getColorXformFromSRGB());
// Setup the initial color considering the shader, the SkPaint color, and the presence or not
// of per-vertex colors.
sk_sp<GrFragmentProcessor> shaderFP;
if (!primColorMode || blend_requires_shader(*primColorMode, primitiveIsSrc)) {
if (shaderProcessor) {
shaderFP = *shaderProcessor;
} else if (const SkShader* shader = skPaint.getShader()) {
shaderFP = shader->asFragmentProcessor(SkShader::AsFPArgs(context, &viewM, nullptr,
skPaint.getFilterQuality(),
dc->getColorSpace(),
dc->sourceGammaTreatment()));
if (!shaderFP) {
return false;
}
}
}
// Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is
// a known constant value. In that case we can simply apply a color filter during this
// conversion without converting the color filter to a GrFragmentProcessor.
bool applyColorFilterToPaintColor = false;
if (shaderFP) {
if (primColorMode) {
// There is a blend between the primitive color and the shader color. The shader sees
// the opaque paint color. The shader's output is blended using the provided mode by
// the primitive color. The blended color is then modulated by the paint's alpha.
// The geometry processor will insert the primitive color to start the color chain, so
// the GrPaint color will be ignored.
GrColor4f shaderInput = origColor.opaque();
shaderFP = GrFragmentProcessor::OverrideInput(shaderFP, shaderInput);
if (primitiveIsSrc) {
shaderFP = GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(shaderFP),
*primColorMode);
} else {
shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP),
*primColorMode);
}
// The above may return null if compose results in a pass through of the prim color.
if (shaderFP) {
grPaint->addColorFragmentProcessor(shaderFP);
}
// We can ignore origColor here - alpha is unchanged by gamma
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make(
paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode));
}
} else {
// The shader's FP sees the paint unpremul color
grPaint->setColor4f(origColor);
grPaint->addColorFragmentProcessor(std::move(shaderFP));
}
} else {
if (primColorMode) {
// There is a blend between the primitive color and the paint color. The blend considers
// the opaque paint color. The paint's alpha is applied to the post-blended color.
// SRGBTODO: Preserve 4f on this code path
sk_sp<GrFragmentProcessor> processor(
GrConstColorProcessor::Make(origColor.opaque().toGrColor(),
GrConstColorProcessor::kIgnore_InputMode));
if (primitiveIsSrc) {
processor = GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(processor),
*primColorMode);
} else {
processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor),
*primColorMode);
}
if (processor) {
grPaint->addColorFragmentProcessor(std::move(processor));
}
grPaint->setColor4f(origColor.opaque());
// We can ignore origColor here - alpha is unchanged by gamma
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make(
paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode));
}
} else {
// No shader, no primitive color.
grPaint->setColor4f(origColor.premul());
applyColorFilterToPaintColor = true;
}
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
if (applyColorFilterToPaintColor) {
// If we're in legacy mode, we *must* avoid using the 4f version of the color filter,
// because that will combine with the linearized version of the stored color.
if (dc->isGammaCorrect()) {
grPaint->setColor4f(GrColor4f::FromSkColor4f(
colorFilter->filterColor4f(origColor.toSkColor4f())).premul());
} else {
grPaint->setColor4f(SkColorToPremulGrColor4f(
colorFilter->filterColor(skPaint.getColor()), false, nullptr));
}
} else {
sk_sp<GrFragmentProcessor> cfFP(colorFilter->asFragmentProcessor(context));
if (cfFP) {
grPaint->addColorFragmentProcessor(std::move(cfFP));
} else {
return false;
}
}
}
SkMaskFilter* maskFilter = skPaint.getMaskFilter();
if (maskFilter) {
GrFragmentProcessor* mfFP;
if (maskFilter->asFragmentProcessor(&mfFP, nullptr, viewM)) {
grPaint->addCoverageFragmentProcessor(sk_sp<GrFragmentProcessor>(mfFP));
}
}
// When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on
// the GrPaint to also be null (also kSrcOver).
SkASSERT(!grPaint->getXPFactory());
if (!skPaint.isSrcOver()) {
grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode()));
}
#ifndef SK_IGNORE_GPU_DITHER
if (skPaint.isDither() && grPaint->numColorFragmentProcessors() > 0 && !dc->isGammaCorrect()) {
grPaint->addColorFragmentProcessor(GrDitherEffect::Make());
}
#endif
return true;
}
bool SkPaintToGrPaint(GrContext* context, GrDrawContext* dc, const SkPaint& skPaint,
const SkMatrix& viewM, GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, dc, skPaint, viewM, nullptr, nullptr, false, grPaint);
}
/** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */
bool SkPaintToGrPaintReplaceShader(GrContext* context,
GrDrawContext* dc,
const SkPaint& skPaint,
sk_sp<GrFragmentProcessor> shaderFP,
GrPaint* grPaint) {
if (!shaderFP) {
return false;
}
return skpaint_to_grpaint_impl(context, dc, skPaint, SkMatrix::I(), &shaderFP, nullptr, false,
grPaint);
}
/** Ignores the SkShader (if any) on skPaint. */
bool SkPaintToGrPaintNoShader(GrContext* context,
GrDrawContext* dc,
const SkPaint& skPaint,
GrPaint* grPaint) {
// Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced.
static sk_sp<GrFragmentProcessor> kNullShaderFP(nullptr);
static sk_sp<GrFragmentProcessor>* kIgnoreShader = &kNullShaderFP;
return skpaint_to_grpaint_impl(context, dc, skPaint, SkMatrix::I(), kIgnoreShader, nullptr,
false, grPaint);
}
/** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must
be setup as a vertex attribute using the specified SkXfermode::Mode. */
bool SkPaintToGrPaintWithXfermode(GrContext* context,
GrDrawContext* dc,
const SkPaint& skPaint,
const SkMatrix& viewM,
SkXfermode::Mode primColorMode,
bool primitiveIsSrc,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, dc, skPaint, viewM, nullptr, &primColorMode,
primitiveIsSrc, grPaint);
}
bool SkPaintToGrPaintWithTexture(GrContext* context,
GrDrawContext* dc,
const SkPaint& paint,
const SkMatrix& viewM,
sk_sp<GrFragmentProcessor> fp,
bool textureIsAlphaOnly,
GrPaint* grPaint) {
sk_sp<GrFragmentProcessor> shaderFP;
if (textureIsAlphaOnly) {
if (const SkShader* shader = paint.getShader()) {
shaderFP = shader->asFragmentProcessor(SkShader::AsFPArgs(context,
&viewM,
nullptr,
paint.getFilterQuality(),
dc->getColorSpace(),
dc->sourceGammaTreatment()));
if (!shaderFP) {
return false;
}
sk_sp<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) };
shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2);
} else {
shaderFP = GrFragmentProcessor::MulOutputByInputUnpremulColor(fp);
}
} else {
shaderFP = GrFragmentProcessor::MulOutputByInputAlpha(fp);
}
return SkPaintToGrPaintReplaceShader(context, dc, paint, std::move(shaderFP), grPaint);
}
////////////////////////////////////////////////////////////////////////////////////////////////
GrTextureParams::FilterMode GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality,
const SkMatrix& viewM,
const SkMatrix& localM,
bool* doBicubic) {
*doBicubic = false;
GrTextureParams::FilterMode textureFilterMode;
switch (paintFilterQuality) {
case kNone_SkFilterQuality:
textureFilterMode = GrTextureParams::kNone_FilterMode;
break;
case kLow_SkFilterQuality:
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
break;
case kMedium_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
}
break;
}
case kHigh_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
*doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
break;
}
default:
// Should be unreachable. If not, fall back to mipmaps.
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
break;
}
return textureFilterMode;
}