blob: 8b32ab6bb75ed0c26211918146e1ece773297bf0 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointConicalGradient.h"
static int valid_divide(float numer, float denom, float* ratio) {
SkASSERT(ratio);
if (0 == denom) {
return 0;
}
*ratio = numer / denom;
return 1;
}
// Return the number of distinct real roots, and write them into roots[] in
// ascending order
static int find_quad_roots(float A, float B, float C, float roots[2]) {
SkASSERT(roots);
if (A == 0) {
return valid_divide(-C, B, roots);
}
float R = B*B - 4*A*C;
if (R < 0) {
return 0;
}
R = sk_float_sqrt(R);
#if 1
float Q = B;
if (Q < 0) {
Q -= R;
} else {
Q += R;
}
#else
// on 10.6 this was much slower than the above branch :(
float Q = B + copysignf(R, B);
#endif
Q *= -0.5f;
if (0 == Q) {
roots[0] = 0;
return 1;
}
float r0 = Q / A;
float r1 = C / Q;
roots[0] = r0 < r1 ? r0 : r1;
roots[1] = r0 > r1 ? r0 : r1;
return 2;
}
static float lerp(float x, float dx, float t) {
return x + t * dx;
}
static float sqr(float x) { return x * x; }
void TwoPtRadial::init(const SkPoint& center0, SkScalar rad0,
const SkPoint& center1, SkScalar rad1) {
fCenterX = SkScalarToFloat(center0.fX);
fCenterY = SkScalarToFloat(center0.fY);
fDCenterX = SkScalarToFloat(center1.fX) - fCenterX;
fDCenterY = SkScalarToFloat(center1.fY) - fCenterY;
fRadius = SkScalarToFloat(rad0);
fDRadius = SkScalarToFloat(rad1) - fRadius;
fA = sqr(fDCenterX) + sqr(fDCenterY) - sqr(fDRadius);
fRadius2 = sqr(fRadius);
fRDR = fRadius * fDRadius;
}
void TwoPtRadial::setup(SkScalar fx, SkScalar fy, SkScalar dfx, SkScalar dfy) {
fRelX = SkScalarToFloat(fx) - fCenterX;
fRelY = SkScalarToFloat(fy) - fCenterY;
fIncX = SkScalarToFloat(dfx);
fIncY = SkScalarToFloat(dfy);
fB = -2 * (fDCenterX * fRelX + fDCenterY * fRelY + fRDR);
fDB = -2 * (fDCenterX * fIncX + fDCenterY * fIncY);
}
SkFixed TwoPtRadial::nextT() {
float roots[2];
float C = sqr(fRelX) + sqr(fRelY) - fRadius2;
int countRoots = find_quad_roots(fA, fB, C, roots);
fRelX += fIncX;
fRelY += fIncY;
fB += fDB;
if (0 == countRoots) {
return kDontDrawT;
}
// Prefer the bigger t value if both give a radius(t) > 0
// find_quad_roots returns the values sorted, so we start with the last
float t = roots[countRoots - 1];
float r = lerp(fRadius, fDRadius, t);
if (r <= 0) {
t = roots[0]; // might be the same as roots[countRoots-1]
r = lerp(fRadius, fDRadius, t);
if (r <= 0) {
return kDontDrawT;
}
}
return SkFloatToFixed(t);
}
typedef void (*TwoPointRadialProc)(TwoPtRadial* rec, SkPMColor* dstC,
const SkPMColor* cache, int count);
static void twopoint_clamp(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache, int count) {
for (; count > 0; --count) {
SkFixed t = rec->nextT();
if (TwoPtRadial::DontDrawT(t)) {
*dstC++ = 0;
} else {
SkFixed index = SkClampMax(t, 0xFFFF);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
}
}
}
static void twopoint_repeat(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache, int count) {
for (; count > 0; --count) {
SkFixed t = rec->nextT();
if (TwoPtRadial::DontDrawT(t)) {
*dstC++ = 0;
} else {
SkFixed index = repeat_tileproc(t);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
}
}
}
static void twopoint_mirror(TwoPtRadial* rec, SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache, int count) {
for (; count > 0; --count) {
SkFixed t = rec->nextT();
if (TwoPtRadial::DontDrawT(t)) {
*dstC++ = 0;
} else {
SkFixed index = mirror_tileproc(t);
SkASSERT(index <= 0xFFFF);
*dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift];
}
}
}
void SkTwoPointConicalGradient::init() {
fRec.init(fCenter1, fRadius1, fCenter2, fRadius2);
fPtsToUnit.reset();
}
/////////////////////////////////////////////////////////////////////
SkTwoPointConicalGradient::SkTwoPointConicalGradient(
const SkPoint& start, SkScalar startRadius,
const SkPoint& end, SkScalar endRadius,
const SkColor colors[], const SkScalar pos[],
int colorCount, SkShader::TileMode mode,
SkUnitMapper* mapper)
: SkGradientShaderBase(colors, pos, colorCount, mode, mapper),
fCenter1(start),
fCenter2(end),
fRadius1(startRadius),
fRadius2(endRadius) {
// this is degenerate, and should be caught by our caller
SkASSERT(fCenter1 != fCenter2 || fRadius1 != fRadius2);
this->init();
}
void SkTwoPointConicalGradient::shadeSpan(int x, int y, SkPMColor* dstCParam,
int count) {
SkASSERT(count > 0);
SkPMColor* SK_RESTRICT dstC = dstCParam;
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const SkPMColor* SK_RESTRICT cache = this->getCache32();
TwoPointRadialProc shadeProc = twopoint_repeat;
if (SkShader::kClamp_TileMode == fTileMode) {
shadeProc = twopoint_clamp;
} else if (SkShader::kMirror_TileMode == fTileMode) {
shadeProc = twopoint_mirror;
} else {
SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
}
if (fDstToIndexClass != kPerspective_MatrixClass) {
SkPoint srcPt;
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
SkScalar dx, fx = srcPt.fX;
SkScalar dy, fy = srcPt.fY;
if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
SkFixed fixedX, fixedY;
(void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY);
dx = SkFixedToScalar(fixedX);
dy = SkFixedToScalar(fixedY);
} else {
SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
dx = fDstToIndex.getScaleX();
dy = fDstToIndex.getSkewY();
}
fRec.setup(fx, fy, dx, dy);
(*shadeProc)(&fRec, dstC, cache, count);
} else { // perspective case
SkScalar dstX = SkIntToScalar(x);
SkScalar dstY = SkIntToScalar(y);
for (; count > 0; --count) {
SkPoint srcPt;
dstProc(fDstToIndex, dstX, dstY, &srcPt);
dstX += SK_Scalar1;
fRec.setup(srcPt.fX, srcPt.fY, 0, 0);
(*shadeProc)(&fRec, dstC, cache, 1);
}
}
}
bool SkTwoPointConicalGradient::setContext(const SkBitmap& device,
const SkPaint& paint,
const SkMatrix& matrix) {
if (!this->INHERITED::setContext(device, paint, matrix)) {
return false;
}
// we don't have a span16 proc
fFlags &= ~kHasSpan16_Flag;
// in general, we might discard based on computed-radius, so clear
// this flag (todo: sometimes we can detect that we never discard...)
fFlags &= ~kOpaqueAlpha_Flag;
return true;
}
SkShader::BitmapType SkTwoPointConicalGradient::asABitmap(
SkBitmap* bitmap, SkMatrix* matrix, SkShader::TileMode* xy) const {
SkPoint diff = fCenter2 - fCenter1;
SkScalar diffRadius = fRadius2 - fRadius1;
SkScalar startRadius = fRadius1;
SkScalar diffLen = 0;
if (bitmap) {
this->getGradientTableBitmap(bitmap);
}
if (matrix) {
diffLen = diff.length();
}
if (matrix) {
if (diffLen) {
SkScalar invDiffLen = SkScalarInvert(diffLen);
// rotate to align circle centers with the x-axis
matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
SkScalarMul(invDiffLen, diff.fX));
} else {
matrix->reset();
}
matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
}
if (xy) {
xy[0] = fTileMode;
xy[1] = kClamp_TileMode;
}
return kTwoPointConical_BitmapType;
}
SkShader::GradientType SkTwoPointConicalGradient::asAGradient(
GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fCenter1;
info->fPoint[1] = fCenter2;
info->fRadius[0] = fRadius1;
info->fRadius[1] = fRadius2;
}
return kConical_GradientType;
}
SkTwoPointConicalGradient::SkTwoPointConicalGradient(
SkFlattenableReadBuffer& buffer)
: INHERITED(buffer),
fCenter1(buffer.readPoint()),
fCenter2(buffer.readPoint()),
fRadius1(buffer.readScalar()),
fRadius2(buffer.readScalar()) {
this->init();
};
void SkTwoPointConicalGradient::flatten(
SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fCenter1);
buffer.writePoint(fCenter2);
buffer.writeScalar(fRadius1);
buffer.writeScalar(fRadius2);
}
/////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
// For brevity
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
class GrGLConical2Gradient : public GrGLGradientStage {
public:
GrGLConical2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLConical2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* builder) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&,
const GrCustomStage&,
const GrRenderTarget*,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s, const GrGLCaps& caps);
protected:
UniformHandle fVSParamUni;
UniformHandle fFSParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
GrScalar fCachedDiffRadius;
// @}
private:
typedef GrGLGradientStage INHERITED;
};
/////////////////////////////////////////////////////////////////////
class GrConical2Gradient : public GrGradientEffect {
public:
GrConical2Gradient(GrContext* ctx, const SkTwoPointConicalGradient& shader,
GrSamplerState* sampler)
: INHERITED(ctx, shader, sampler)
, fCenterX1(shader.getCenterX1())
, fRadius0(shader.getStartRadius())
, fDiffRadius(shader.getDiffRadius()) { }
virtual ~GrConical2Gradient() { }
static const char* Name() { return "Two-Point Conical Gradient"; }
virtual const GrProgramStageFactory& getFactory() const SK_OVERRIDE {
return GrTProgramStageFactory<GrConical2Gradient>::getInstance();
}
virtual bool isEqual(const GrCustomStage& sBase) const SK_OVERRIDE {
const GrConical2Gradient& s = static_cast<const GrConical2Gradient&>(sBase);
return (INHERITED::isEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fDiffRadius == s.fDiffRadius);
}
// The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
GrScalar center() const { return fCenterX1; }
GrScalar diffRadius() const { return fDiffRadius; }
GrScalar radius() const { return fRadius0; }
typedef GrGLConical2Gradient GLProgramStage;
private:
GR_DECLARE_CUSTOM_STAGE_TEST;
// @{
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
GrScalar fCenterX1;
GrScalar fRadius0;
GrScalar fDiffRadius;
// @}
typedef GrGradientEffect INHERITED;
};
GR_DEFINE_CUSTOM_STAGE_TEST(GrConical2Gradient);
GrCustomStage* GrConical2Gradient::TestCreate(SkRandom* random,
GrContext* context,
GrTexture**) {
SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
SkScalar radius1 = random->nextUScalar1();
SkPoint center2;
SkScalar radius2;
do {
center1.set(random->nextUScalar1(), random->nextUScalar1());
radius2 = random->nextUScalar1 ();
// If the circles are identical the factory will give us an empty shader.
} while (radius1 == radius2 && center1 == center2);
SkColor colors[kMaxRandomGradientColors];
SkScalar stopsArray[kMaxRandomGradientColors];
SkScalar* stops = stopsArray;
SkShader::TileMode tm;
int colorCount = RandomGradientParams(random, colors, &stops, &tm);
SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
center2, radius2,
colors, stops, colorCount,
tm));
GrSamplerState sampler;
GrCustomStage* stage = shader->asNewCustomStage(context, &sampler);
GrAssert(NULL != stage);
return stage;
}
/////////////////////////////////////////////////////////////////////
GrGLConical2Gradient::GrGLConical2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamUni(kInvalidUniformHandle)
, fFSParamUni(kInvalidUniformHandle)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedDiffRadius(-GR_ScalarMax) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* builder) {
INHERITED::setupVariables(builder);
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamUni = builder->addUniformArray(GrGLShaderBuilder::kVertex_ShaderType,
kFloat_GrSLType, "Conical2VSParams", 6);
fFSParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Conical2FSParams", 6);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (!builder->defaultTextureMatrixIsPerspective()) {
builder->addVarying(kFloat_GrSLType, "Conical2BCoeff",
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* builder,
const char* vertexCoords) {
SkString* code = &builder->fVSCode;
SkString p2; // distance between centers
SkString p3; // start radius
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (!builder->defaultTextureMatrixIsPerspective()) {
// r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str(), p5.c_str());
}
}
void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* builder,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
SkString* code = &builder->fFSCode;
SkString cName("c");
SkString ac4Name("ac4");
SkString dName("d");
SkString qName("q");
SkString r0Name("r0");
SkString r1Name("r1");
SkString tName("t");
SkString p0; // 4a
SkString p1; // 1/a
SkString p2; // distance between centers
SkString p3; // start radius
SkString p4; // start radius squared
SkString p5; // difference in radii (r1 - r0)
builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4);
builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
SkString bVar;
if (!builder->defaultTextureMatrixIsPerspective()) {
bVar = fFSVaryingName;
} else {
bVar = "b";
code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
bVar.c_str(), p2.c_str(), builder->defaultTexCoordsName(),
p3.c_str(), p5.c_str());
}
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
builder->defaultTexCoordsName(), builder->defaultTexCoordsName(),
p4.c_str());
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
// ac4 = params[0] * c
code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// d = b^2 - ac4
code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// only proceed if discriminant is >= 0
code->appendf("\tif (%s >= 0.0) {\n", dName.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
// compute both roots
// r0 = q * params[1]
code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
qName.c_str(), p1.c_str());
// r1 = c / q
code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
cName.c_str(), qName.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// so we'll look at the larger one first:
code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0, then we're done; t will be our x coordinate
code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
// otherwise, if r(t) for the larger root was <= 0, try the other root
code->appendf("\t\t} else {\n");
code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) > 0 for the smaller root, then t will be our x coordinate
code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
tName.c_str(), p5.c_str(), p3.c_str());
code->appendf("\t\t\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
// end if (r(t) > 0) for smaller root
code->appendf("\t\t\t}\n");
// end if (r(t) > 0), else, for larger root
code->appendf("\t\t}\n");
// end if (discriminant >= 0)
code->appendf("\t}\n");
} else {
// linear case: t = -c/b
code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t");
this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName);
code->appendf("\t}\n");
}
}
void GrGLConical2Gradient::setData(const GrGLUniformManager& uman,
const GrCustomStage& baseData,
const GrRenderTarget* target,
int stageNum) {
INHERITED::setData(uman, baseData, target, stageNum);
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
GrScalar diffRadius = data.diffRadius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedDiffRadius != diffRadius) {
GrScalar a = GrMul(centerX1, centerX1) - diffRadius * diffRadius;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a * 4),
1.f / (GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(SkScalarMul(radius0, radius0)),
GrScalarToFloat(diffRadius)
};
uman.set1fv(fVSParamUni, 0, 6, values);
uman.set1fv(fFSParamUni, 0, 6, values);
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;
}
}
GrCustomStage::StageKey GrGLConical2Gradient::GenKey(const GrCustomStage& s, const GrGLCaps& caps) {
return (static_cast<const GrConical2Gradient&>(s).isDegenerate());
}
/////////////////////////////////////////////////////////////////////
GrCustomStage* SkTwoPointConicalGradient::asNewCustomStage(
GrContext* context, GrSamplerState* sampler) const {
SkASSERT(NULL != context && NULL != sampler);
SkPoint diff = fCenter2 - fCenter1;
SkScalar diffLen = diff.length();
if (0 != diffLen) {
SkScalar invDiffLen = SkScalarInvert(diffLen);
sampler->matrix()->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
SkScalarMul(invDiffLen, diff.fX));
} else {
sampler->matrix()->reset();
}
sampler->matrix()->preTranslate(-fCenter1.fX, -fCenter1.fY);
sampler->textureParams()->setTileModeX(fTileMode);
sampler->textureParams()->setTileModeY(kClamp_TileMode);
sampler->textureParams()->setBilerp(true);
return SkNEW_ARGS(GrConical2Gradient, (context, *this, sampler));
}
#else
GrCustomStage* SkTwoPointConicalGradient::asNewCustomStage(
GrContext* context, GrSamplerState* sampler) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return NULL;
}
#endif