| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| // http://metamerist.com/cbrt/CubeRoot.cpp |
| // |
| |
| #include <math.h> |
| #include "CubicUtilities.h" |
| |
| #define TEST_ALTERNATIVES 0 |
| #if TEST_ALTERNATIVES |
| typedef float (*cuberootfnf) (float); |
| typedef double (*cuberootfnd) (double); |
| |
| // estimate bits of precision (32-bit float case) |
| inline int bits_of_precision(float a, float b) |
| { |
| const double kd = 1.0 / log(2.0); |
| |
| if (a==b) |
| return 23; |
| |
| const double kdmin = pow(2.0, -23.0); |
| |
| double d = fabs(a-b); |
| if (d < kdmin) |
| return 23; |
| |
| return int(-log(d)*kd); |
| } |
| |
| // estiamte bits of precision (64-bit double case) |
| inline int bits_of_precision(double a, double b) |
| { |
| const double kd = 1.0 / log(2.0); |
| |
| if (a==b) |
| return 52; |
| |
| const double kdmin = pow(2.0, -52.0); |
| |
| double d = fabs(a-b); |
| if (d < kdmin) |
| return 52; |
| |
| return int(-log(d)*kd); |
| } |
| |
| // cube root via x^(1/3) |
| static float pow_cbrtf(float x) |
| { |
| return (float) pow(x, 1.0f/3.0f); |
| } |
| |
| // cube root via x^(1/3) |
| static double pow_cbrtd(double x) |
| { |
| return pow(x, 1.0/3.0); |
| } |
| |
| // cube root approximation using bit hack for 32-bit float |
| static float cbrt_5f(float f) |
| { |
| unsigned int* p = (unsigned int *) &f; |
| *p = *p/3 + 709921077; |
| return f; |
| } |
| #endif |
| |
| // cube root approximation using bit hack for 64-bit float |
| // adapted from Kahan's cbrt |
| static double cbrt_5d(double d) |
| { |
| const unsigned int B1 = 715094163; |
| double t = 0.0; |
| unsigned int* pt = (unsigned int*) &t; |
| unsigned int* px = (unsigned int*) &d; |
| pt[1]=px[1]/3+B1; |
| return t; |
| } |
| |
| #if TEST_ALTERNATIVES |
| // cube root approximation using bit hack for 64-bit float |
| // adapted from Kahan's cbrt |
| #if 0 |
| static double quint_5d(double d) |
| { |
| return sqrt(sqrt(d)); |
| |
| const unsigned int B1 = 71509416*5/3; |
| double t = 0.0; |
| unsigned int* pt = (unsigned int*) &t; |
| unsigned int* px = (unsigned int*) &d; |
| pt[1]=px[1]/5+B1; |
| return t; |
| } |
| #endif |
| |
| // iterative cube root approximation using Halley's method (float) |
| static float cbrta_halleyf(const float a, const float R) |
| { |
| const float a3 = a*a*a; |
| const float b= a * (a3 + R + R) / (a3 + a3 + R); |
| return b; |
| } |
| #endif |
| |
| // iterative cube root approximation using Halley's method (double) |
| static double cbrta_halleyd(const double a, const double R) |
| { |
| const double a3 = a*a*a; |
| const double b= a * (a3 + R + R) / (a3 + a3 + R); |
| return b; |
| } |
| |
| #if TEST_ALTERNATIVES |
| // iterative cube root approximation using Newton's method (float) |
| static float cbrta_newtonf(const float a, const float x) |
| { |
| // return (1.0 / 3.0) * ((a + a) + x / (a * a)); |
| return a - (1.0f / 3.0f) * (a - x / (a*a)); |
| } |
| |
| // iterative cube root approximation using Newton's method (double) |
| static double cbrta_newtond(const double a, const double x) |
| { |
| return (1.0/3.0) * (x / (a*a) + 2*a); |
| } |
| |
| // cube root approximation using 1 iteration of Halley's method (double) |
| static double halley_cbrt1d(double d) |
| { |
| double a = cbrt_5d(d); |
| return cbrta_halleyd(a, d); |
| } |
| |
| // cube root approximation using 1 iteration of Halley's method (float) |
| static float halley_cbrt1f(float d) |
| { |
| float a = cbrt_5f(d); |
| return cbrta_halleyf(a, d); |
| } |
| |
| // cube root approximation using 2 iterations of Halley's method (double) |
| static double halley_cbrt2d(double d) |
| { |
| double a = cbrt_5d(d); |
| a = cbrta_halleyd(a, d); |
| return cbrta_halleyd(a, d); |
| } |
| #endif |
| |
| // cube root approximation using 3 iterations of Halley's method (double) |
| static double halley_cbrt3d(double d) |
| { |
| double a = cbrt_5d(d); |
| a = cbrta_halleyd(a, d); |
| a = cbrta_halleyd(a, d); |
| return cbrta_halleyd(a, d); |
| } |
| |
| #if TEST_ALTERNATIVES |
| // cube root approximation using 2 iterations of Halley's method (float) |
| static float halley_cbrt2f(float d) |
| { |
| float a = cbrt_5f(d); |
| a = cbrta_halleyf(a, d); |
| return cbrta_halleyf(a, d); |
| } |
| |
| // cube root approximation using 1 iteration of Newton's method (double) |
| static double newton_cbrt1d(double d) |
| { |
| double a = cbrt_5d(d); |
| return cbrta_newtond(a, d); |
| } |
| |
| // cube root approximation using 2 iterations of Newton's method (double) |
| static double newton_cbrt2d(double d) |
| { |
| double a = cbrt_5d(d); |
| a = cbrta_newtond(a, d); |
| return cbrta_newtond(a, d); |
| } |
| |
| // cube root approximation using 3 iterations of Newton's method (double) |
| static double newton_cbrt3d(double d) |
| { |
| double a = cbrt_5d(d); |
| a = cbrta_newtond(a, d); |
| a = cbrta_newtond(a, d); |
| return cbrta_newtond(a, d); |
| } |
| |
| // cube root approximation using 4 iterations of Newton's method (double) |
| static double newton_cbrt4d(double d) |
| { |
| double a = cbrt_5d(d); |
| a = cbrta_newtond(a, d); |
| a = cbrta_newtond(a, d); |
| a = cbrta_newtond(a, d); |
| return cbrta_newtond(a, d); |
| } |
| |
| // cube root approximation using 2 iterations of Newton's method (float) |
| static float newton_cbrt1f(float d) |
| { |
| float a = cbrt_5f(d); |
| return cbrta_newtonf(a, d); |
| } |
| |
| // cube root approximation using 2 iterations of Newton's method (float) |
| static float newton_cbrt2f(float d) |
| { |
| float a = cbrt_5f(d); |
| a = cbrta_newtonf(a, d); |
| return cbrta_newtonf(a, d); |
| } |
| |
| // cube root approximation using 3 iterations of Newton's method (float) |
| static float newton_cbrt3f(float d) |
| { |
| float a = cbrt_5f(d); |
| a = cbrta_newtonf(a, d); |
| a = cbrta_newtonf(a, d); |
| return cbrta_newtonf(a, d); |
| } |
| |
| // cube root approximation using 4 iterations of Newton's method (float) |
| static float newton_cbrt4f(float d) |
| { |
| float a = cbrt_5f(d); |
| a = cbrta_newtonf(a, d); |
| a = cbrta_newtonf(a, d); |
| a = cbrta_newtonf(a, d); |
| return cbrta_newtonf(a, d); |
| } |
| |
| static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN) |
| { |
| const int N = rN; |
| |
| float dd = float((rB-rA) / N); |
| |
| // calculate 1M numbers |
| int i=0; |
| float d = (float) rA; |
| |
| double s = 0.0; |
| |
| for(d=(float) rA, i=0; i<N; i++, d += dd) |
| { |
| s += cbrt(d); |
| } |
| |
| double bits = 0.0; |
| double worstx=0.0; |
| double worsty=0.0; |
| int minbits=64; |
| |
| for(d=(float) rA, i=0; i<N; i++, d += dd) |
| { |
| float a = cbrt((float) d); |
| float b = (float) pow((double) d, 1.0/3.0); |
| |
| int bc = bits_of_precision(a, b); |
| bits += bc; |
| |
| if (b > 1.0e-6) |
| { |
| if (bc < minbits) |
| { |
| minbits = bc; |
| worstx = d; |
| worsty = a; |
| } |
| } |
| } |
| |
| bits /= N; |
| |
| printf(" %3d mbp %6.3f abp\n", minbits, bits); |
| |
| return s; |
| } |
| |
| |
| static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN) |
| { |
| const int N = rN; |
| |
| double dd = (rB-rA) / N; |
| |
| int i=0; |
| |
| double s = 0.0; |
| double d = 0.0; |
| |
| for(d=rA, i=0; i<N; i++, d += dd) |
| { |
| s += cbrt(d); |
| } |
| |
| |
| double bits = 0.0; |
| double worstx = 0.0; |
| double worsty = 0.0; |
| int minbits = 64; |
| for(d=rA, i=0; i<N; i++, d += dd) |
| { |
| double a = cbrt(d); |
| double b = pow(d, 1.0/3.0); |
| |
| int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12); |
| bits += bc; |
| |
| if (b > 1.0e-6) |
| { |
| if (bc < minbits) |
| { |
| bits_of_precision(a, b); |
| minbits = bc; |
| worstx = d; |
| worsty = a; |
| } |
| } |
| } |
| |
| bits /= N; |
| |
| printf(" %3d mbp %6.3f abp\n", minbits, bits); |
| |
| return s; |
| } |
| |
| static int _tmain() |
| { |
| // a million uniform steps through the range from 0.0 to 1.0 |
| // (doing uniform steps in the log scale would be better) |
| double a = 0.0; |
| double b = 1.0; |
| int n = 1000000; |
| |
| printf("32-bit float tests\n"); |
| printf("----------------------------------------\n"); |
| TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n); |
| TestCubeRootf("pow", pow_cbrtf, a, b, n); |
| TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n); |
| TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n); |
| TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n); |
| TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n); |
| TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n); |
| TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n); |
| printf("\n\n"); |
| |
| printf("64-bit double tests\n"); |
| printf("----------------------------------------\n"); |
| TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n); |
| TestCubeRootd("pow", pow_cbrtd, a, b, n); |
| TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n); |
| TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n); |
| TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n); |
| TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n); |
| TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n); |
| TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n); |
| TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n); |
| printf("\n\n"); |
| |
| return 0; |
| } |
| #endif |
| |
| double cube_root(double x) { |
| if (approximately_zero_cubed(x)) { |
| return 0; |
| } |
| double result = halley_cbrt3d(fabs(x)); |
| if (x < 0) { |
| result = -result; |
| } |
| return result; |
| } |
| |
| #if TEST_ALTERNATIVES |
| // http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c |
| /* cube root */ |
| int icbrt(int n) { |
| int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */ |
| for(; t!=x;) { |
| int x3=x*x*x; |
| t=x; |
| x*=(2*n + x3); |
| x/=(2*x3 + n); |
| } |
| return x ; /* always(?) equal to floor(n^(1/3)) */ |
| } |
| #endif |