| /* |
| http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi |
| */ |
| |
| /* |
| Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. |
| Then for degree elevation, the equations are: |
| |
| Q0 = P0 |
| Q1 = 1/3 P0 + 2/3 P1 |
| Q2 = 2/3 P1 + 1/3 P2 |
| Q3 = P2 |
| In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from |
| the equations above: |
| |
| P1 = 3/2 Q1 - 1/2 Q0 |
| P1 = 3/2 Q2 - 1/2 Q3 |
| If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since |
| it's likely not, your best bet is to average them. So, |
| |
| P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 |
| |
| |
| Cubic defined by: P1/2 - anchor points, C1/C2 control points |
| |x| is the euclidean norm of x |
| mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the |
| control point at C = (3·C2 - P2 + 3·C1 - P1)/4 |
| |
| Algorithm |
| |
| pick an absolute precision (prec) |
| Compute the Tdiv as the root of (cubic) equation |
| sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec |
| if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a |
| quadratic, with a defect less than prec, by the mid-point approximation. |
| Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) |
| 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point |
| approximation |
| Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation |
| |
| confirmed by (maybe stolen from) |
| http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html |
| // maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf |
| // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf |
| |
| */ |
| |
| #include "CubicUtilities.h" |
| #include "CurveIntersection.h" |
| #include "LineIntersection.h" |
| #include "TSearch.h" |
| |
| const bool AVERAGE_END_POINTS = true; // results in better fitting curves |
| |
| #define USE_CUBIC_END_POINTS 1 |
| |
| static double calcTDiv(const Cubic& cubic, double precision, double start) { |
| const double adjust = sqrt(3) / 36; |
| Cubic sub; |
| const Cubic* cPtr; |
| if (start == 0) { |
| cPtr = &cubic; |
| } else { |
| // OPTIMIZE: special-case half-split ? |
| sub_divide(cubic, start, 1, sub); |
| cPtr = ⊂ |
| } |
| const Cubic& c = *cPtr; |
| double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x; |
| double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y; |
| double dist = sqrt(dx * dx + dy * dy); |
| double tDiv3 = precision / (adjust * dist); |
| double t = cube_root(tDiv3); |
| if (start > 0) { |
| t = start + (1 - start) * t; |
| } |
| return t; |
| } |
| |
| void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) { |
| quad[0] = cubic[0]; |
| if (AVERAGE_END_POINTS) { |
| const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 }; |
| const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 }; |
| quad[1].x = (fromC1.x + fromC2.x) / 2; |
| quad[1].y = (fromC1.y + fromC2.y) / 2; |
| } else { |
| lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]); |
| } |
| quad[2] = cubic[3]; |
| } |
| |
| int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) { |
| SkTDArray<double> ts; |
| cubic_to_quadratics(cubic, precision, ts); |
| int tsCount = ts.count(); |
| double t1Start = 0; |
| int order = 0; |
| for (int idx = 0; idx <= tsCount; ++idx) { |
| double t1 = idx < tsCount ? ts[idx] : 1; |
| Cubic part; |
| sub_divide(cubic, t1Start, t1, part); |
| Quadratic q1; |
| demote_cubic_to_quad(part, q1); |
| Quadratic s1; |
| int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill); |
| if (order < o1) { |
| order = o1; |
| } |
| memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic)); |
| t1Start = t1; |
| } |
| return order; |
| } |
| |
| static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) { |
| double tDiv = calcTDiv(cubic, precision, 0); |
| if (tDiv >= 1) { |
| return true; |
| } |
| if (tDiv >= 0.5) { |
| *ts.append() = 0.5; |
| return true; |
| } |
| return false; |
| } |
| |
| static void addTs(const Cubic& cubic, double precision, double start, double end, |
| SkTDArray<double>& ts) { |
| double tDiv = calcTDiv(cubic, precision, 0); |
| double parts = ceil(1.0 / tDiv); |
| for (double index = 0; index < parts; ++index) { |
| double newT = start + (index / parts) * (end - start); |
| if (newT > 0 && newT < 1) { |
| *ts.append() = newT; |
| } |
| } |
| } |
| |
| // flavor that returns T values only, deferring computing the quads until they are needed |
| // FIXME: when called from recursive intersect 2, this could take the original cubic |
| // and do a more precise job when calling chop at and sub divide by computing the fractional ts. |
| // it would still take the prechopped cubic for reduce order and find cubic inflections |
| void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) { |
| Cubic reduced; |
| int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed, |
| kReduceOrder_TreatAsFill); |
| if (order < 3) { |
| return; |
| } |
| double inflectT[5]; |
| int inflections = find_cubic_inflections(cubic, inflectT); |
| SkASSERT(inflections <= 2); |
| if (!ends_are_extrema_in_x_or_y(cubic)) { |
| inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]); |
| SkASSERT(inflections <= 5); |
| } |
| QSort<double>(inflectT, &inflectT[inflections - 1]); |
| // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
| // own subroutine? |
| while (inflections && approximately_less_than_zero(inflectT[0])) { |
| memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
| } |
| int start = 0; |
| do { |
| int next = start + 1; |
| if (next >= inflections) { |
| break; |
| } |
| if (!approximately_equal(inflectT[start], inflectT[next])) { |
| ++start; |
| continue; |
| } |
| memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
| } while (true); |
| while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
| --inflections; |
| } |
| CubicPair pair; |
| if (inflections == 1) { |
| chop_at(cubic, pair, inflectT[0]); |
| int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed, |
| kReduceOrder_TreatAsFill); |
| if (orderP1 < 2) { |
| --inflections; |
| } else { |
| int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed, |
| kReduceOrder_TreatAsFill); |
| if (orderP2 < 2) { |
| --inflections; |
| } |
| } |
| } |
| if (inflections == 0 && addSimpleTs(cubic, precision, ts)) { |
| return; |
| } |
| if (inflections == 1) { |
| chop_at(cubic, pair, inflectT[0]); |
| addTs(pair.first(), precision, 0, inflectT[0], ts); |
| addTs(pair.second(), precision, inflectT[0], 1, ts); |
| return; |
| } |
| if (inflections > 1) { |
| Cubic part; |
| sub_divide(cubic, 0, inflectT[0], part); |
| addTs(part, precision, 0, inflectT[0], ts); |
| int last = inflections - 1; |
| for (int idx = 0; idx < last; ++idx) { |
| sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part); |
| addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
| } |
| sub_divide(cubic, inflectT[last], 1, part); |
| addTs(part, precision, inflectT[last], 1, ts); |
| return; |
| } |
| addTs(cubic, precision, 0, 1, ts); |
| } |