| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "InstanceProcessor.h" |
| |
| #include "GrContext.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrResourceCache.h" |
| #include "GrResourceProvider.h" |
| #include "GrShaderCaps.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramBuilder.h" |
| #include "glsl/GrGLSLVarying.h" |
| |
| namespace gr_instanced { |
| |
| GrCaps::InstancedSupport InstanceProcessor::CheckSupport(const GrShaderCaps& shaderCaps, |
| const GrCaps& caps) { |
| if (!shaderCaps.canUseAnyFunctionInShader() || |
| !shaderCaps.flatInterpolationSupport() || |
| !shaderCaps.integerSupport() || |
| 0 == shaderCaps.maxVertexSamplers() || |
| !caps.shaderCaps()->texelBufferSupport() || |
| caps.maxVertexAttributes() < kNumAttribs) { |
| return GrCaps::InstancedSupport::kNone; |
| } |
| if (!caps.sampleLocationsSupport() || |
| !shaderCaps.sampleVariablesSupport() || |
| !shaderCaps.shaderDerivativeSupport()) { |
| return GrCaps::InstancedSupport::kBasic; |
| } |
| if (0 == caps.maxRasterSamples() || |
| !shaderCaps.sampleMaskOverrideCoverageSupport()) { |
| return GrCaps::InstancedSupport::kMultisampled; |
| } |
| return GrCaps::InstancedSupport::kMixedSampled; |
| } |
| |
| InstanceProcessor::InstanceProcessor(OpInfo opInfo, GrBuffer* paramsBuffer) : fOpInfo(opInfo) { |
| this->initClassID<InstanceProcessor>(); |
| |
| this->addVertexAttrib("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); |
| this->addVertexAttrib("vertexAttrs", kInt_GrVertexAttribType); |
| this->addVertexAttrib("instanceInfo", kUint_GrVertexAttribType); |
| this->addVertexAttrib("shapeMatrixX", kVec3f_GrVertexAttribType, kHigh_GrSLPrecision); |
| this->addVertexAttrib("shapeMatrixY", kVec3f_GrVertexAttribType, kHigh_GrSLPrecision); |
| this->addVertexAttrib("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision); |
| this->addVertexAttrib("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision); |
| |
| GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords); |
| GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs); |
| GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo); |
| GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX); |
| GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY); |
| GR_STATIC_ASSERT(5 == (int)Attrib::kColor); |
| GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect); |
| GR_STATIC_ASSERT(7 == kNumAttribs); |
| |
| if (fOpInfo.fHasParams) { |
| SkASSERT(paramsBuffer); |
| fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag); |
| this->addBufferAccess(&fParamsAccess); |
| } |
| |
| if (GrAATypeIsHW(fOpInfo.aaType())) { |
| if (!fOpInfo.isSimpleRects() || GrAAType::kMixedSamples == fOpInfo.aaType()) { |
| this->setWillUseSampleLocations(); |
| } |
| } |
| } |
| |
| class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { |
| public: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
| |
| private: |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&, |
| FPCoordTransformIter&& transformIter) override { |
| this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); |
| } |
| |
| class VertexInputs; |
| class Backend; |
| class BackendNonAA; |
| class BackendCoverage; |
| class BackendMultisample; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrShaderCaps&) const { |
| return new GLSLInstanceProcessor(); |
| } |
| |
| class GLSLInstanceProcessor::VertexInputs { |
| public: |
| VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder) |
| : fInstProc(instProc), |
| fVertexBuilder(vertexBuilder) { |
| } |
| |
| void initParams(const SamplerHandle paramsBuffer) { |
| fParamsBuffer = paramsBuffer; |
| fVertexBuilder->codeAppendf("highp int paramsIdx = int(%s & 0x%x);", |
| this->attr(Attrib::kInstanceInfo), |
| kParamsIdx_InfoMask); |
| } |
| |
| const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; } |
| |
| void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { |
| SkASSERT(fParamsBuffer.isValid()); |
| switch (type) { |
| case kVec2f_GrSLType: // fall through |
| case kVec3f_GrSLType: // fall through |
| case kVec4f_GrSLType: |
| break; |
| default: |
| fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); |
| } |
| fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); |
| switch (type) { |
| case kVec2f_GrSLType: |
| fVertexBuilder->codeAppend(".xy"); |
| break; |
| case kVec3f_GrSLType: |
| fVertexBuilder->codeAppend(".xyz"); |
| break; |
| case kVec4f_GrSLType: |
| break; |
| default: |
| fVertexBuilder->codeAppend(")"); |
| } |
| } |
| |
| void skipParams(unsigned n) const { |
| SkASSERT(fParamsBuffer.isValid()); |
| fVertexBuilder->codeAppendf("paramsIdx += %u;", n); |
| } |
| |
| private: |
| const InstanceProcessor& fInstProc; |
| GrGLSLVertexBuilder* fVertexBuilder; |
| SamplerHandle fParamsBuffer; |
| }; |
| |
| class GLSLInstanceProcessor::Backend { |
| public: |
| static Backend* SK_WARN_UNUSED_RESULT Create(const GrPipeline&, OpInfo, const VertexInputs&); |
| virtual ~Backend() {} |
| |
| void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| virtual void setupRect(GrGLSLVertexBuilder*) = 0; |
| virtual void setupOval(GrGLSLVertexBuilder*) = 0; |
| void setupRRect(GrGLSLVertexBuilder*, int* usedShapeDefinitions); |
| |
| void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; |
| virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; |
| void setupInnerSimpleRRect(GrGLSLVertexBuilder*); |
| |
| const char* outShapeCoords() { |
| return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords); |
| } |
| |
| void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
| const char* outColor); |
| |
| protected: |
| Backend(OpInfo opInfo, const VertexInputs& inputs) |
| : fOpInfo(opInfo) |
| , fInputs(inputs) |
| , fModifiesCoverage(false) |
| , fModifiesColor(false) |
| , fNeedsNeighborRadii(false) |
| , fColor(kVec4f_GrSLType) |
| , fTriangleIsArc(kInt_GrSLType) |
| , fArcCoords(kVec2f_GrSLType) |
| , fInnerShapeCoords(kVec2f_GrSLType) |
| , fInnerRRect(kVec4f_GrSLType) |
| , fModifiedShapeCoords(nullptr) { |
| if (fOpInfo.fShapeTypes & kRRect_ShapesMask) { |
| fModifiedShapeCoords = "adjustedShapeCoords"; |
| } |
| } |
| |
| virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
| virtual void adjustRRectVertices(GrGLSLVertexBuilder*); |
| virtual void onSetupRRect(GrGLSLVertexBuilder*) {} |
| |
| virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
| virtual void onSetupInnerSimpleRRect(GrGLSLVertexBuilder*) = 0; |
| |
| virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, |
| const char* outCoverage, const char* outColor) = 0; |
| |
| void setupSimpleRadii(GrGLSLVertexBuilder*); |
| void setupNinePatchRadii(GrGLSLVertexBuilder*); |
| void setupComplexRadii(GrGLSLVertexBuilder*); |
| |
| const OpInfo fOpInfo; |
| const VertexInputs& fInputs; |
| bool fModifiesCoverage; |
| bool fModifiesColor; |
| bool fNeedsNeighborRadii; |
| GrGLSLVertToFrag fColor; |
| GrGLSLVertToFrag fTriangleIsArc; |
| GrGLSLVertToFrag fArcCoords; |
| GrGLSLVertToFrag fInnerShapeCoords; |
| GrGLSLVertToFrag fInnerRRect; |
| const char* fModifiedShapeCoords; |
| }; |
| |
| void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| const GrPipeline& pipeline = args.fVertBuilder->getProgramBuilder()->pipeline(); |
| const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); |
| GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLVertexBuilder* v = args.fVertBuilder; |
| GrGLSLPPFragmentBuilder* f = args.fFragBuilder; |
| |
| varyingHandler->emitAttributes(ip); |
| |
| VertexInputs inputs(ip, v); |
| if (ip.opInfo().fHasParams) { |
| SkASSERT(1 == ip.numBuffers()); |
| inputs.initParams(args.fBufferSamplers[0]); |
| } |
| |
| if (!ip.opInfo().fHasPerspective) { |
| v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", |
| inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
| } else { |
| v->defineConstantf("int", "PERSPECTIVE_FLAG", "0x%x", kPerspective_InfoFlag); |
| v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", |
| inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); |
| v->codeAppendf("if (0 != (%s & PERSPECTIVE_FLAG)) {", |
| inputs.attr(Attrib::kInstanceInfo)); |
| v->codeAppend ( "shapeMatrix[2] = "); |
| inputs.fetchNextParam(kVec3f_GrSLType); |
| v->codeAppend ( ";"); |
| v->codeAppend ("}"); |
| } |
| |
| bool hasSingleShapeType = SkIsPow2(ip.opInfo().fShapeTypes); |
| if (!hasSingleShapeType) { |
| v->defineConstant("SHAPE_TYPE_BIT", kShapeType_InfoBit); |
| v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", |
| inputs.attr(Attrib::kInstanceInfo)); |
| } |
| |
| std::unique_ptr<Backend> backend(Backend::Create(pipeline, ip.opInfo(), inputs)); |
| backend->init(varyingHandler, v); |
| |
| int usedShapeDefinitions = 0; |
| |
| if (hasSingleShapeType || !(ip.opInfo().fShapeTypes & ~kRRect_ShapesMask)) { |
| if (kRect_ShapeFlag == ip.opInfo().fShapeTypes) { |
| backend->setupRect(v); |
| } else if (kOval_ShapeFlag == ip.opInfo().fShapeTypes) { |
| backend->setupOval(v); |
| } else { |
| backend->setupRRect(v, &usedShapeDefinitions); |
| } |
| } else { |
| if (ip.opInfo().fShapeTypes & kRRect_ShapesMask) { |
| v->codeAppend ("if (shapeType >= SIMPLE_R_RECT_SHAPE_TYPE) {"); |
| backend->setupRRect(v, &usedShapeDefinitions); |
| v->codeAppend ("}"); |
| usedShapeDefinitions |= kSimpleRRect_ShapeFlag; |
| } |
| if (ip.opInfo().fShapeTypes & kOval_ShapeFlag) { |
| if (ip.opInfo().fShapeTypes & kRect_ShapeFlag) { |
| if (ip.opInfo().fShapeTypes & kRRect_ShapesMask) { |
| v->codeAppend ("else "); |
| } |
| v->codeAppend ("if (OVAL_SHAPE_TYPE == shapeType) {"); |
| usedShapeDefinitions |= kOval_ShapeFlag; |
| } else { |
| v->codeAppend ("else {"); |
| } |
| backend->setupOval(v); |
| v->codeAppend ("}"); |
| } |
| if (ip.opInfo().fShapeTypes & kRect_ShapeFlag) { |
| v->codeAppend ("else {"); |
| backend->setupRect(v); |
| v->codeAppend ("}"); |
| } |
| } |
| |
| if (ip.opInfo().fInnerShapeTypes) { |
| bool hasSingleInnerShapeType = SkIsPow2(ip.opInfo().fInnerShapeTypes); |
| if (!hasSingleInnerShapeType) { |
| v->defineConstantf("int", "INNER_SHAPE_TYPE_MASK", "0x%x", kInnerShapeType_InfoMask); |
| v->defineConstant("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); |
| v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> " |
| "INNER_SHAPE_TYPE_BIT);", |
| inputs.attr(Attrib::kInstanceInfo)); |
| } |
| // Here we take advantage of the fact that outerRect == localRect in recordDRRect. |
| v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect)); |
| v->codeAppend ("vec4 inner = "); |
| inputs.fetchNextParam(); |
| v->codeAppend (";"); |
| // outer2Inner is a transform from shape coords to inner shape coords: |
| // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw |
| v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, " |
| "outer.xy + outer.zw - inner.xy - inner.zw) / " |
| "(inner.zw - inner.xy).xyxy;"); |
| v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;", |
| backend->outShapeCoords()); |
| |
| backend->initInnerShape(varyingHandler, v); |
| |
| SkASSERT(0 == (ip.opInfo().fInnerShapeTypes & kRRect_ShapesMask) || |
| kSimpleRRect_ShapeFlag == (ip.opInfo().fInnerShapeTypes & kRRect_ShapesMask)); |
| |
| if (hasSingleInnerShapeType) { |
| if (kRect_ShapeFlag == ip.opInfo().fInnerShapeTypes) { |
| backend->setupInnerRect(v); |
| } else if (kOval_ShapeFlag == ip.opInfo().fInnerShapeTypes) { |
| backend->setupInnerOval(v); |
| } else { |
| backend->setupInnerSimpleRRect(v); |
| } |
| } else { |
| if (ip.opInfo().fInnerShapeTypes & kSimpleRRect_ShapeFlag) { |
| v->codeAppend ("if (SIMPLE_R_RECT_SHAPE_TYPE == innerShapeType) {"); |
| backend->setupInnerSimpleRRect(v); |
| v->codeAppend("}"); |
| usedShapeDefinitions |= kSimpleRRect_ShapeFlag; |
| } |
| if (ip.opInfo().fInnerShapeTypes & kOval_ShapeFlag) { |
| if (ip.opInfo().fInnerShapeTypes & kRect_ShapeFlag) { |
| if (ip.opInfo().fInnerShapeTypes & kSimpleRRect_ShapeFlag) { |
| v->codeAppend ("else "); |
| } |
| v->codeAppend ("if (OVAL_SHAPE_TYPE == innerShapeType) {"); |
| usedShapeDefinitions |= kOval_ShapeFlag; |
| } else { |
| v->codeAppend ("else {"); |
| } |
| backend->setupInnerOval(v); |
| v->codeAppend("}"); |
| } |
| if (ip.opInfo().fInnerShapeTypes & kRect_ShapeFlag) { |
| v->codeAppend("else {"); |
| backend->setupInnerRect(v); |
| v->codeAppend("}"); |
| } |
| } |
| } |
| |
| if (usedShapeDefinitions & kOval_ShapeFlag) { |
| v->defineConstant("OVAL_SHAPE_TYPE", (int)ShapeType::kOval); |
| } |
| if (usedShapeDefinitions & kSimpleRRect_ShapeFlag) { |
| v->defineConstant("SIMPLE_R_RECT_SHAPE_TYPE", (int)ShapeType::kSimpleRRect); |
| } |
| if (usedShapeDefinitions & kNinePatch_ShapeFlag) { |
| v->defineConstant("NINE_PATCH_SHAPE_TYPE", (int)ShapeType::kNinePatch); |
| } |
| SkASSERT(!(usedShapeDefinitions & (kRect_ShapeFlag | kComplexRRect_ShapeFlag))); |
| |
| backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor); |
| |
| const char* localCoords = nullptr; |
| if (ip.opInfo().fUsesLocalCoords) { |
| localCoords = "localCoords"; |
| v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords()); |
| v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", |
| inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect)); |
| } |
| if (ip.opInfo().fHasLocalMatrix && ip.opInfo().fHasParams) { |
| v->defineConstantf("int", "LOCAL_MATRIX_FLAG", "0x%x", kLocalMatrix_InfoFlag); |
| v->codeAppendf("if (0 != (%s & LOCAL_MATRIX_FLAG)) {", |
| inputs.attr(Attrib::kInstanceInfo)); |
| if (!ip.opInfo().fUsesLocalCoords) { |
| inputs.skipParams(2); |
| } else { |
| v->codeAppendf( "mat2x3 localMatrix;"); |
| v->codeAppend ( "localMatrix[0] = "); |
| inputs.fetchNextParam(kVec3f_GrSLType); |
| v->codeAppend ( ";"); |
| v->codeAppend ( "localMatrix[1] = "); |
| inputs.fetchNextParam(kVec3f_GrSLType); |
| v->codeAppend ( ";"); |
| v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;"); |
| } |
| v->codeAppend("}"); |
| } |
| |
| GrSLType positionType = ip.opInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType; |
| v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", |
| GrGLSLTypeString(positionType), backend->outShapeCoords()); |
| gpArgs->fPositionVar.set(positionType, "deviceCoords"); |
| |
| this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords, |
| args.fFPCoordTransformHandler); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| if (fModifiedShapeCoords) { |
| v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords)); |
| } |
| |
| this->onInit(varyingHandler, v); |
| |
| if (!fColor.vsOut()) { |
| varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); |
| v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor)); |
| } |
| } |
| |
| void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v, int* usedShapeDefinitions) { |
| v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", |
| fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs)); |
| v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); |
| v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""); |
| v->codeAppend ("mat2 p = "); |
| fInputs.fetchNextParam(kMat22f_GrSLType); |
| v->codeAppend (";"); |
| uint8_t types = fOpInfo.fShapeTypes & kRRect_ShapesMask; |
| if (0 == (types & (types - 1))) { |
| if (kSimpleRRect_ShapeFlag == types) { |
| this->setupSimpleRadii(v); |
| } else if (kNinePatch_ShapeFlag == types) { |
| this->setupNinePatchRadii(v); |
| } else if (kComplexRRect_ShapeFlag == types) { |
| this->setupComplexRadii(v); |
| } |
| } else { |
| if (types & kSimpleRRect_ShapeFlag) { |
| v->codeAppend ("if (SIMPLE_R_RECT_SHAPE_TYPE == shapeType) {"); |
| this->setupSimpleRadii(v); |
| v->codeAppend ("}"); |
| *usedShapeDefinitions |= kSimpleRRect_ShapeFlag; |
| } |
| if (types & kNinePatch_ShapeFlag) { |
| if (types & kComplexRRect_ShapeFlag) { |
| if (types & kSimpleRRect_ShapeFlag) { |
| v->codeAppend ("else "); |
| } |
| v->codeAppend ("if (NINE_PATCH_SHAPE_TYPE == shapeType) {"); |
| *usedShapeDefinitions |= kNinePatch_ShapeFlag; |
| } else { |
| v->codeAppend ("else {"); |
| } |
| this->setupNinePatchRadii(v); |
| v->codeAppend ("}"); |
| } |
| if (types & kComplexRRect_ShapeFlag) { |
| v->codeAppend ("else {"); |
| this->setupComplexRadii(v); |
| v->codeAppend ("}"); |
| } |
| } |
| |
| this->adjustRRectVertices(v); |
| |
| if (fArcCoords.vsOut()) { |
| v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", |
| fArcCoords.vsOut(), fModifiedShapeCoords); |
| } |
| if (fTriangleIsArc.vsOut()) { |
| v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", |
| fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
| } |
| |
| this->onSetupRRect(v); |
| } |
| |
| void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { |
| if (fNeedsNeighborRadii) { |
| v->codeAppend ("neighborRadii = "); |
| } |
| v->codeAppend("radii = p[0] * 2.0 / p[1];"); |
| } |
| |
| void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) { |
| v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); |
| if (fNeedsNeighborRadii) { |
| v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { |
| /** |
| * The x and y radii of each arc are stored in separate vectors, |
| * in the following order: |
| * |
| * __x1 _ _ _ x3__ |
| * |
| * y1 | | y2 |
| * |
| * | | |
| * |
| * y3 |__ _ _ _ __| y4 |
| * x2 x4 |
| * |
| */ |
| v->codeAppend("mat2 p2 = "); |
| fInputs.fetchNextParam(kMat22f_GrSLType); |
| v->codeAppend(";"); |
| v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"); |
| if (fNeedsNeighborRadii) { |
| v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " |
| "p2[1u - corner.y][corner.x]);"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii. |
| // 0.5 is a special value that indicates the edge of an arc triangle. |
| v->codeAppendf("if (abs(%s.x) == 0.5)" |
| "%s.x = cornerSign.x * (1.0 - radii.x);", |
| fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| v->codeAppendf("if (abs(%s.y) == 0.5) " |
| "%s.y = cornerSign.y * (1.0 - radii.y);", |
| fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| } |
| |
| void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| SkASSERT(!(fOpInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag))); |
| |
| this->onInitInnerShape(varyingHandler, v); |
| |
| if (fInnerShapeCoords.vsOut()) { |
| v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::Backend::setupInnerSimpleRRect(GrGLSLVertexBuilder* v) { |
| v->codeAppend("mat2 innerP = "); |
| fInputs.fetchNextParam(kMat22f_GrSLType); |
| v->codeAppend(";"); |
| v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); |
| this->onSetupInnerSimpleRRect(v); |
| } |
| |
| void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage, const char* outColor) { |
| SkASSERT(!fModifiesCoverage || outCoverage); |
| this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, |
| fModifiesColor ? outColor : nullptr); |
| if (outCoverage && !fModifiesCoverage) { |
| // Even though the subclass doesn't use coverage, we are expected to assign some value. |
| f->codeAppendf("%s = vec4(1);", outCoverage); |
| } |
| if (!fModifiesColor) { |
| // The subclass didn't assign a value to the output color. |
| f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class GLSLInstanceProcessor::BackendNonAA : public Backend { |
| public: |
| BackendNonAA(OpInfo opInfo, const VertexInputs& inputs) : INHERITED(opInfo, inputs) { |
| if (fOpInfo.fCannotDiscard && !fOpInfo.isSimpleRects()) { |
| fModifiesColor = !fOpInfo.fCannotTweakAlphaForCoverage; |
| fModifiesCoverage = !fModifiesColor; |
| } |
| } |
| |
| private: |
| void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupRect(GrGLSLVertexBuilder*) override; |
| void setupOval(GrGLSLVertexBuilder*) override; |
| |
| void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupInnerRect(GrGLSLVertexBuilder*) override; |
| void setupInnerOval(GrGLSLVertexBuilder*) override; |
| void onSetupInnerSimpleRRect(GrGLSLVertexBuilder*) override; |
| |
| void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| const char*) override; |
| |
| typedef Backend INHERITED; |
| }; |
| |
| void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder*) { |
| if (kRect_ShapeFlag != fOpInfo.fShapeTypes) { |
| varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kLow_GrSLPrecision); |
| varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { |
| if (fTriangleIsArc.vsOut()) { |
| v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { |
| SkASSERT(fArcCoords.vsOut()); |
| SkASSERT(fTriangleIsArc.vsOut()); |
| v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); |
| v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder*) { |
| varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision); |
| if (kRect_ShapeFlag != fOpInfo.fInnerShapeTypes && |
| kOval_ShapeFlag != fOpInfo.fInnerShapeTypes) { |
| varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) { |
| if (fInnerRRect.vsOut()) { |
| v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) { |
| if (fInnerRRect.vsOut()) { |
| v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::onSetupInnerSimpleRRect(GrGLSLVertexBuilder* v) { |
| v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
| } |
| |
| void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, |
| GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage, |
| const char* outColor) { |
| const char* dropFragment = nullptr; |
| if (!fOpInfo.fCannotDiscard) { |
| dropFragment = "discard"; |
| } else if (fModifiesCoverage) { |
| f->codeAppend ("lowp float covered = 1.0;"); |
| dropFragment = "covered = 0.0"; |
| } else if (fModifiesColor) { |
| f->codeAppendf("lowp vec4 color = %s;", fColor.fsIn()); |
| dropFragment = "color = vec4(0)"; |
| } |
| if (fTriangleIsArc.fsIn()) { |
| SkASSERT(dropFragment); |
| f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", |
| fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment); |
| } |
| if (fOpInfo.fInnerShapeTypes) { |
| SkASSERT(dropFragment); |
| f->codeAppendf("// Inner shape.\n"); |
| if (kRect_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", |
| fInnerShapeCoords.fsIn(), dropFragment); |
| } else if (kOval_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", |
| fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment); |
| } else { |
| f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn()); |
| f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
| f->codeAppendf( "%s;", dropFragment); |
| f->codeAppend ( "} else {"); |
| f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;", |
| fInnerRRect.fsIn()); |
| f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"); |
| f->codeAppendf( "%s;", dropFragment); |
| f->codeAppend ( "}"); |
| f->codeAppend ( "}"); |
| f->codeAppend ("}"); |
| } |
| } |
| if (fModifiesCoverage) { |
| f->codeAppendf("%s = vec4(covered);", outCoverage); |
| } else if (fModifiesColor) { |
| f->codeAppendf("%s = color;", outColor); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class GLSLInstanceProcessor::BackendCoverage : public Backend { |
| public: |
| BackendCoverage(OpInfo opInfo, const VertexInputs& inputs) |
| : INHERITED(opInfo, inputs) |
| , fColorTimesRectCoverage(kVec4f_GrSLType) |
| , fRectCoverage(kFloat_GrSLType) |
| , fEllipseCoords(kVec2f_GrSLType) |
| , fEllipseName(kVec2f_GrSLType) |
| , fBloatedRadius(kFloat_GrSLType) |
| , fDistanceToInnerEdge(kVec2f_GrSLType) |
| , fInnerShapeBloatedHalfSize(kVec2f_GrSLType) |
| , fInnerEllipseCoords(kVec2f_GrSLType) |
| , fInnerEllipseName(kVec2f_GrSLType) { |
| fShapeIsCircle = !fOpInfo.fNonSquare && !(fOpInfo.fShapeTypes & kRRect_ShapesMask); |
| fTweakAlphaForCoverage = !fOpInfo.fCannotTweakAlphaForCoverage && !fOpInfo.fInnerShapeTypes; |
| fModifiesCoverage = !fTweakAlphaForCoverage; |
| fModifiesColor = fTweakAlphaForCoverage; |
| fModifiedShapeCoords = "bloatedShapeCoords"; |
| } |
| |
| private: |
| void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupRect(GrGLSLVertexBuilder*) override; |
| void setupOval(GrGLSLVertexBuilder*) override; |
| void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| void onSetupRRect(GrGLSLVertexBuilder*) override; |
| |
| void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupInnerRect(GrGLSLVertexBuilder*) override; |
| void setupInnerOval(GrGLSLVertexBuilder*) override; |
| void onSetupInnerSimpleRRect(GrGLSLVertexBuilder*) override; |
| |
| void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, |
| const char* outColor) override; |
| |
| void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor); |
| void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName, |
| bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, |
| const char* outCoverage); |
| void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| |
| GrGLSLVertToFrag fColorTimesRectCoverage; |
| GrGLSLVertToFrag fRectCoverage; |
| GrGLSLVertToFrag fEllipseCoords; |
| GrGLSLVertToFrag fEllipseName; |
| GrGLSLVertToFrag fBloatedRadius; |
| GrGLSLVertToFrag fDistanceToInnerEdge; |
| GrGLSLVertToFrag fInnerShapeBloatedHalfSize; |
| GrGLSLVertToFrag fInnerEllipseCoords; |
| GrGLSLVertToFrag fInnerEllipseName; |
| bool fShapeIsCircle; |
| bool fTweakAlphaForCoverage; |
| |
| typedef Backend INHERITED; |
| }; |
| |
| void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); |
| v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " |
| "length(shapeTransposeMatrix[1]));"); |
| v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); |
| v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords)); |
| |
| if (kOval_ShapeFlag != fOpInfo.fShapeTypes) { |
| if (fTweakAlphaForCoverage) { |
| varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage, |
| kLow_GrSLPrecision); |
| if (kRect_ShapeFlag == fOpInfo.fShapeTypes) { |
| fColor = fColorTimesRectCoverage; |
| } |
| } else { |
| varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision); |
| } |
| v->codeAppend("float rectCoverage = 0.0;"); |
| } |
| if (kRect_ShapeFlag != fOpInfo.fShapeTypes) { |
| varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kLow_GrSLPrecision); |
| if (!fShapeIsCircle) { |
| varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kMedium_GrSLPrecision); |
| varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision); |
| } else { |
| varyingHandler->addVarying("circleCoords", &fEllipseCoords, kHigh_GrSLPrecision); |
| varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kHigh_GrSLPrecision); |
| } |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { |
| // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs. |
| v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", |
| fInputs.attr(Attrib::kVertexAttrs)); |
| // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it |
| // mark the spot where pixel center is within half a pixel of the *opposite* edge. This, |
| // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for |
| // subpixel rectangles. |
| v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));", |
| fInputs.attr(Attrib::kShapeCoords)); |
| |
| // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is |
| // narrower than a pixel. |
| v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *" |
| "min(0.5, shapeHalfSize.y);"); |
| v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;", |
| fInputs.attr(Attrib::kVertexAttrs)); |
| |
| if (fTriangleIsArc.vsOut()) { |
| v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { |
| // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs. |
| v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", |
| fInputs.attr(Attrib::kVertexAttrs)); |
| v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));", |
| fInputs.attr(Attrib::kShapeCoords)); |
| v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut()); |
| if (fEllipseName.vsOut()) { |
| v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut()); |
| } |
| if (fBloatedRadius.vsOut()) { |
| SkASSERT(fShapeIsCircle); |
| v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut()); |
| } |
| if (fTriangleIsArc.vsOut()) { |
| v->codeAppendf("%s = int(%s != 0);", |
| fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| } |
| if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) { |
| v->codeAppendf("rectCoverage = 1.0;"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| // We try to let the AA borders line up with the arc edges on their particular side, but we |
| // can't allow them to get closer than one half pixel to the edge or they might overlap with |
| // their neighboring border. |
| v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); |
| v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);"); |
| // 0.5 is a special value that indicates this vertex is an arc edge. |
| v->codeAppendf("if (abs(%s.x) == 0.5)" |
| "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords)); |
| v->codeAppendf("if (abs(%s.y) == 0.5)" |
| "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords)); |
| |
| // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special |
| // value to indicate these points. |
| v->codeAppendf("if (abs(%s.x) == 0.75) " |
| "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;", |
| fInputs.attr(Attrib::kShapeCoords)); |
| v->codeAppendf("if (abs(%s.y) == 0.75) " |
| "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;", |
| fInputs.attr(Attrib::kShapeCoords)); |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) { |
| // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but |
| // we still need to recompute this value because when the rrect gets thinner than one pixel, the |
| // interior edge of the border will necessarily clamp, and we need to match the AA behavior of |
| // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel |
| // actully has less coverage because it's not completely inside the opposite edge.) |
| v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;"); |
| v->codeAppend("rectCoverage = min(d.x, d.y);"); |
| |
| SkASSERT(!fShapeIsCircle); |
| // The AA border does not get closer than one half pixel to the edge of the rect, so to get a |
| // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half |
| // pixel. (We don't worry about the transition on the opposite side when a radius is so large |
| // that the border clamped on that side.) |
| v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); |
| v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * " |
| "shapeHalfSize;", fEllipseCoords.vsOut()); |
| v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);", |
| fEllipseName.vsOut()); |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;"); |
| |
| if (kOval_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, |
| kMedium_GrSLPrecision); |
| varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, kHigh_GrSLPrecision); |
| } else { |
| varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, |
| kMedium_GrSLPrecision); |
| varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize, |
| kMedium_GrSLPrecision); |
| if (kRect_ShapeFlag != fOpInfo.fInnerShapeTypes) { |
| varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, |
| kMedium_GrSLPrecision); |
| varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
| kHigh_GrSLPrecision); |
| varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision); |
| } |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) { |
| if (fInnerRRect.vsOut()) { |
| // The fragment shader will generalize every inner shape as a round rect. Since this one |
| // is a rect, we simply emit bogus parameters for the round rect (effectively negative |
| // radii) that ensure the fragment shader always takes the "emitRect" codepath. |
| v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);", |
| fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) { |
| v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", |
| fInnerEllipseName.vsOut()); |
| if (fInnerEllipseCoords.vsOut()) { |
| v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut()); |
| } |
| if (fInnerRRect.vsOut()) { |
| v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::onSetupInnerSimpleRRect(GrGLSLVertexBuilder* v) { |
| // The distance to ellipse formula doesn't work well when the radii are less than half a pixel. |
| v->codeAppend ("innerRadii = max(innerRadii, bloat);"); |
| v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " |
| "innerShapeHalfSize);", |
| fInnerEllipseName.vsOut()); |
| v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut()); |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, |
| GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage, |
| const char* outColor) { |
| if (fColorTimesRectCoverage.vsOut()) { |
| SkASSERT(!fRectCoverage.vsOut()); |
| v->codeAppendf("%s = %s * rectCoverage;", |
| fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor)); |
| } |
| if (fRectCoverage.vsOut()) { |
| SkASSERT(!fColorTimesRectCoverage.vsOut()); |
| v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut()); |
| } |
| |
| SkString coverage("lowp float coverage"); |
| if (fOpInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) { |
| f->codeAppendf("%s;", coverage.c_str()); |
| coverage = "coverage"; |
| } |
| if (fTriangleIsArc.fsIn()) { |
| f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| this->emitRect(f, coverage.c_str(), outColor); |
| f->codeAppend ("} else {"); |
| if (fShapeIsCircle) { |
| this->emitCircle(f, coverage.c_str()); |
| } else { |
| bool ellipseCoordsMayBeNegative = SkToBool(fOpInfo.fShapeTypes & kOval_ShapeFlag); |
| this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), |
| true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative, |
| coverage.c_str()); |
| } |
| if (fTweakAlphaForCoverage) { |
| f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); |
| } |
| f->codeAppend ("}"); |
| } else { |
| this->emitRect(f, coverage.c_str(), outColor); |
| } |
| |
| if (fOpInfo.fInnerShapeTypes) { |
| f->codeAppendf("// Inner shape.\n"); |
| SkString innerCoverageDecl("lowp float innerCoverage"); |
| if (kOval_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(), |
| true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/, |
| innerCoverageDecl.c_str()); |
| } else { |
| v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", |
| fDistanceToInnerEdge.vsOut()); |
| v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut()); |
| |
| if (kRect_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| this->emitInnerRect(f, innerCoverageDecl.c_str()); |
| } else { |
| f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str()); |
| f->codeAppendf("mediump vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {"); |
| this->emitInnerRect(f, "innerCoverage"); |
| f->codeAppend ("} else {"); |
| f->codeAppendf( "mediump vec2 ellipseCoords = distanceToArcEdge * %s.zw;", |
| fInnerRRect.fsIn()); |
| this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), |
| false /*ellipseCoordsNeedClamp*/, |
| false /*ellipseCoordsMayBeNegative*/, "innerCoverage"); |
| f->codeAppend ("}"); |
| } |
| } |
| f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage); |
| } else if (!fTweakAlphaForCoverage) { |
| f->codeAppendf("%s = vec4(coverage);", outCoverage); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage, |
| const char* outColor) { |
| if (fColorTimesRectCoverage.fsIn()) { |
| f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn()); |
| } else if (fTweakAlphaForCoverage) { |
| // We are drawing just ovals. The interior rect always has 100% coverage. |
| f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| } else if (fRectCoverage.fsIn()) { |
| f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn()); |
| } else { |
| f->codeAppendf("%s = 1.0;", outCoverage); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage) { |
| // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects. |
| SkASSERT(!(kRRect_ShapesMask & fOpInfo.fShapeTypes)); |
| f->codeAppendf("mediump float distanceToEdge = %s - length(%s);", |
| fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); |
| f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, |
| const char* ellipseCoords, |
| const char* ellipseName, |
| bool ellipseCoordsNeedClamp, |
| bool ellipseCoordsMayBeNegative, |
| const char* outCoverage) { |
| SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); |
| if (ellipseCoordsNeedClamp) { |
| // This serves two purposes: |
| // - To restrict the arcs of rounded rects to their positive quadrants. |
| // - To avoid inversesqrt(0) in the ellipse formula. |
| if (ellipseCoordsMayBeNegative) { |
| f->codeAppendf("mediump vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", |
| ellipseCoords); |
| } else { |
| f->codeAppendf("mediump vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", |
| ellipseCoords); |
| } |
| ellipseCoords = "ellipseClampedCoords"; |
| } |
| // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. |
| f->codeAppendf("highp vec2 Z = %s * %s;", ellipseCoords, ellipseName); |
| // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| f->codeAppendf("highp float implicit = dot(Z, %s) - 1.0;", ellipseCoords); |
| // gradDot is the squared length of the gradient of the implicit. |
| f->codeAppendf("highp float gradDot = 4.0 * dot(Z, Z);"); |
| f->codeAppend ("mediump float approxDist = implicit * inversesqrt(gradDot);"); |
| f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); |
| } |
| |
| void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f, |
| const char* outCoverage) { |
| f->codeAppendf("lowp vec2 c = %s - abs(%s);", |
| fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn()); |
| f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class GLSLInstanceProcessor::BackendMultisample : public Backend { |
| public: |
| BackendMultisample(OpInfo opInfo, const VertexInputs& inputs, int effectiveSampleCnt) |
| : INHERITED(opInfo, inputs) |
| , fEffectiveSampleCnt(effectiveSampleCnt) |
| , fShapeCoords(kVec2f_GrSLType) |
| , fShapeInverseMatrix(kMat22f_GrSLType) |
| , fFragShapeHalfSpan(kVec2f_GrSLType) |
| , fArcTest(kVec2f_GrSLType) |
| , fArcInverseMatrix(kMat22f_GrSLType) |
| , fFragArcHalfSpan(kVec2f_GrSLType) |
| , fEarlyAccept(kInt_GrSLType) |
| , fInnerShapeInverseMatrix(kMat22f_GrSLType) |
| , fFragInnerShapeHalfSpan(kVec2f_GrSLType) { |
| fRectTrianglesMaySplit = fOpInfo.fHasPerspective; |
| fNeedsNeighborRadii = this->isMixedSampled() && !fOpInfo.fHasPerspective; |
| } |
| |
| private: |
| bool isMixedSampled() const { return GrAAType::kMixedSamples == fOpInfo.aaType(); } |
| |
| void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupRect(GrGLSLVertexBuilder*) override; |
| void setupOval(GrGLSLVertexBuilder*) override; |
| void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| void onSetupRRect(GrGLSLVertexBuilder*) override; |
| |
| void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| void setupInnerRect(GrGLSLVertexBuilder*) override; |
| void setupInnerOval(GrGLSLVertexBuilder*) override; |
| void onSetupInnerSimpleRRect(GrGLSLVertexBuilder*) override; |
| |
| void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| const char*) override; |
| |
| struct EmitShapeCoords { |
| const GrGLSLVarying* fVarying; |
| const char* fInverseMatrix; |
| const char* fFragHalfSpan; |
| }; |
| |
| struct EmitShapeOpts { |
| bool fIsTightGeometry; |
| bool fResolveMixedSamples; |
| bool fInvertCoverage; |
| }; |
| |
| void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&); |
| void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative, |
| bool clampCoords, const EmitShapeOpts&); |
| void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect, |
| const EmitShapeOpts&); |
| void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx, |
| const char* interpolationMatrix); |
| void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&); |
| void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&, |
| bool maybeSharedEdge = true); |
| |
| int fEffectiveSampleCnt; |
| bool fRectTrianglesMaySplit; |
| GrGLSLVertToFrag fShapeCoords; |
| GrGLSLVertToFrag fShapeInverseMatrix; |
| GrGLSLVertToFrag fFragShapeHalfSpan; |
| GrGLSLVertToFrag fArcTest; |
| GrGLSLVertToFrag fArcInverseMatrix; |
| GrGLSLVertToFrag fFragArcHalfSpan; |
| GrGLSLVertToFrag fEarlyAccept; |
| GrGLSLVertToFrag fInnerShapeInverseMatrix; |
| GrGLSLVertToFrag fFragInnerShapeHalfSpan; |
| SkString fSquareFun; |
| |
| typedef Backend INHERITED; |
| }; |
| |
| void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| if (!this->isMixedSampled()) { |
| if (kRect_ShapeFlag != fOpInfo.fShapeTypes) { |
| varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kLow_GrSLPrecision); |
| varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
| if (!fOpInfo.fHasPerspective) { |
| varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
| kHigh_GrSLPrecision); |
| varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
| kHigh_GrSLPrecision); |
| } |
| } else if (!fOpInfo.fInnerShapeTypes) { |
| return; |
| } |
| } else { |
| varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision); |
| if (!fOpInfo.fHasPerspective) { |
| varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix, |
| kHigh_GrSLPrecision); |
| varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan, |
| kHigh_GrSLPrecision); |
| } |
| if (fOpInfo.fShapeTypes & kRRect_ShapesMask) { |
| varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); |
| varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision); |
| if (!fOpInfo.fHasPerspective) { |
| varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, |
| kHigh_GrSLPrecision); |
| varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, |
| kHigh_GrSLPrecision); |
| } |
| } else if (fOpInfo.fShapeTypes & kOval_ShapeFlag) { |
| fArcCoords = fShapeCoords; |
| fArcInverseMatrix = fShapeInverseMatrix; |
| fFragArcHalfSpan = fFragShapeHalfSpan; |
| if (fOpInfo.fShapeTypes & kRect_ShapeFlag) { |
| varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
| kLow_GrSLPrecision); |
| } |
| } |
| if (kRect_ShapeFlag != fOpInfo.fShapeTypes) { |
| v->defineConstantf("int", "SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
| varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision); |
| } |
| } |
| if (!fOpInfo.fHasPerspective) { |
| v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); |
| v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " |
| "abs(vec4(shapeInverseMatrix).yw);"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) { |
| if (fShapeCoords.vsOut()) { |
| v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
| } |
| if (fShapeInverseMatrix.vsOut()) { |
| v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| } |
| if (fFragShapeHalfSpan.vsOut()) { |
| v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| } |
| if (fArcTest.vsOut()) { |
| // Pick a value that is not > 0. |
| v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); |
| } |
| if (fTriangleIsArc.vsOut()) { |
| v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| } |
| if (fEarlyAccept.vsOut()) { |
| v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) { |
| v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); |
| if (fArcInverseMatrix.vsOut()) { |
| v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); |
| v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", |
| fArcInverseMatrix.vsOut()); |
| } |
| if (fFragArcHalfSpan.vsOut()) { |
| v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); |
| } |
| if (fArcTest.vsOut()) { |
| // Pick a value that is > 0. |
| v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); |
| } |
| if (fTriangleIsArc.vsOut()) { |
| if (!this->isMixedSampled()) { |
| v->codeAppendf("%s = %s & 1;", |
| fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| } else { |
| v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); |
| } |
| } |
| if (fEarlyAccept.vsOut()) { |
| v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", |
| fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) { |
| if (!this->isMixedSampled()) { |
| INHERITED::adjustRRectVertices(v); |
| return; |
| } |
| |
| if (!fOpInfo.fHasPerspective) { |
| // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that |
| // more of the pixels that cross into the arc region are completely inside the shared edges. |
| // We also snap to a regular rect if the radii shrink smaller than a pixel. |
| v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); |
| v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? " |
| "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);"); |
| } else { |
| // TODO: We could still bloat the corner triangle in the perspective case; we would just |
| // need to find the screen-space derivative of shape coords at this particular point. |
| v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;"); |
| } |
| |
| v->codeAppendf("if (abs(%s.x) == 0.5)" |
| "%s.x = cornerSign.x * (1.0 - cornerSize.x);", |
| fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| v->codeAppendf("if (abs(%s.y) == 0.5)" |
| "%s.y = cornerSign.y * (1.0 - cornerSize.y);", |
| fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) { |
| if (fShapeCoords.vsOut()) { |
| v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); |
| } |
| if (fShapeInverseMatrix.vsOut()) { |
| v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| } |
| if (fFragShapeHalfSpan.vsOut()) { |
| v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| } |
| if (fArcInverseMatrix.vsOut()) { |
| v->codeAppend ("vec2 s = cornerSign / radii;"); |
| v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", |
| fArcInverseMatrix.vsOut()); |
| } |
| if (fFragArcHalfSpan.vsOut()) { |
| v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", |
| fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), |
| fArcInverseMatrix.vsOut()); |
| } |
| if (fArcTest.vsOut()) { |
| // The interior triangles are laid out as a fan. fArcTest is both distances from shared |
| // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a |
| // fragment is too close to either shared edge, in which case we point sample the shape as a |
| // rect at that point in order to guarantee the mixed samples discard logic works correctly. |
| v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " |
| "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);", |
| fArcTest.vsOut(), fModifiedShapeCoords); |
| if (!fOpInfo.fHasPerspective) { |
| // Shift the point at which distances to edges are measured from the center of the pixel |
| // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel |
| // is completely inside the shared edge. Perspective mode will accomplish this same task |
| // by finding the derivatives in the fragment shader. |
| v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);", |
| fArcTest.vsOut()); |
| } |
| } |
| if (fEarlyAccept.vsOut()) { |
| SkASSERT(this->isMixedSampled()); |
| v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;", |
| fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords)); |
| } |
| } |
| |
| void |
| GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, |
| GrGLSLVertexBuilder* v) { |
| varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); |
| if (kOval_ShapeFlag != fOpInfo.fInnerShapeTypes && |
| kRect_ShapeFlag != fOpInfo.fInnerShapeTypes) { |
| varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); |
| } |
| if (!fOpInfo.fHasPerspective) { |
| varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix, |
| kHigh_GrSLPrecision); |
| v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);", |
| fInnerShapeInverseMatrix.vsOut()); |
| varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan, |
| kHigh_GrSLPrecision); |
| v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;", |
| fFragInnerShapeHalfSpan.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) { |
| if (fInnerRRect.vsOut()) { |
| // The fragment shader will generalize every inner shape as a round rect. Since this one |
| // is a rect, we simply emit bogus parameters for the round rect (negative radii) that |
| // ensure the fragment shader always takes the "sample as rect" codepath. |
| v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));", |
| fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) { |
| if (fInnerRRect.vsOut()) { |
| v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::onSetupInnerSimpleRRect(GrGLSLVertexBuilder* v) { |
| // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel. |
| if (fFragInnerShapeHalfSpan.vsOut()) { |
| v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut()); |
| } else { |
| v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); |
| } |
| v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, |
| GrGLSLPPFragmentBuilder* f, |
| const char*, const char*) { |
| f->defineConstant("SAMPLE_COUNT", fEffectiveSampleCnt); |
| if (this->isMixedSampled()) { |
| f->defineConstantf("int", "SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
| f->defineConstantf("int", "SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); |
| } |
| |
| if (kRect_ShapeFlag != (fOpInfo.fShapeTypes | fOpInfo.fInnerShapeTypes)) { |
| GrShaderVar x("x", kVec2f_GrSLType, GrShaderVar::kNonArray, kHigh_GrSLPrecision); |
| f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun); |
| } |
| |
| EmitShapeCoords shapeCoords; |
| shapeCoords.fVarying = &fShapeCoords; |
| shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); |
| shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); |
| |
| EmitShapeCoords arcCoords; |
| arcCoords.fVarying = &fArcCoords; |
| arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); |
| arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); |
| bool clampArcCoords = this->isMixedSampled() && (fOpInfo.fShapeTypes & kRRect_ShapesMask); |
| |
| EmitShapeOpts opts; |
| opts.fIsTightGeometry = true; |
| opts.fResolveMixedSamples = this->isMixedSampled(); |
| opts.fInvertCoverage = false; |
| |
| if (fOpInfo.fHasPerspective && fOpInfo.fInnerShapeTypes) { |
| // This determines if the fragment should consider the inner shape in its sample mask. |
| // We take the derivative early in case discards may occur before we get to the inner shape. |
| f->codeAppendf("highp vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", |
| fInnerShapeCoords.fsIn()); |
| } |
| |
| if (!this->isMixedSampled()) { |
| SkASSERT(!fArcTest.fsIn()); |
| if (fTriangleIsArc.fsIn()) { |
| f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); |
| this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| |
| f->codeAppend ("}"); |
| } |
| } else { |
| const char* arcTest = fArcTest.fsIn(); |
| if (arcTest && fOpInfo.fHasPerspective) { |
| // The non-perspective version accounts for fwidth() in the vertex shader. |
| // We make sure to take the derivative here, before a neighbor pixel may early accept. |
| f->codeAppendf("highp vec2 arcTest = %s - 0.5 * fwidth(%s);", |
| fArcTest.fsIn(), fArcTest.fsIn()); |
| arcTest = "arcTest"; |
| } |
| const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL"; |
| f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); |
| f->overrideSampleCoverage(earlyAccept); |
| f->codeAppend ("} else {"); |
| if (arcTest) { |
| // At this point, if the sample mask is all set it means we are inside an arc triangle. |
| f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " |
| "all(greaterThan(%s, vec2(0)))) {", arcTest); |
| this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| f->codeAppend ("} else {"); |
| this->emitRect(f, shapeCoords, opts); |
| f->codeAppend ("}"); |
| } else if (fTriangleIsArc.fsIn()) { |
| f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| this->emitRect(f, shapeCoords, opts); |
| f->codeAppend ("} else {"); |
| this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| f->codeAppend ("}"); |
| } else if (fOpInfo.fShapeTypes == kOval_ShapeFlag) { |
| this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| } else { |
| SkASSERT(fOpInfo.fShapeTypes == kRect_ShapeFlag); |
| this->emitRect(f, shapeCoords, opts); |
| } |
| f->codeAppend ("}"); |
| } |
| |
| if (fOpInfo.fInnerShapeTypes) { |
| f->codeAppendf("// Inner shape.\n"); |
| |
| EmitShapeCoords innerShapeCoords; |
| innerShapeCoords.fVarying = &fInnerShapeCoords; |
| if (!fOpInfo.fHasPerspective) { |
| innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); |
| innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); |
| } |
| |
| EmitShapeOpts innerOpts; |
| innerOpts.fIsTightGeometry = false; |
| innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape. |
| innerOpts.fInvertCoverage = true; |
| |
| if (kOval_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| this->emitArc(f, innerShapeCoords, true, false, innerOpts); |
| } else { |
| f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(), |
| !fOpInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan |
| : "fragInnerShapeApproxHalfSpan"); // Above. |
| if (kRect_ShapeFlag == fOpInfo.fInnerShapeTypes) { |
| this->emitRect(f, innerShapeCoords, innerOpts); |
| } else { |
| this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts); |
| } |
| f->codeAppend ("}"); |
| } |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f, |
| const EmitShapeCoords& coords, |
| const EmitShapeOpts& opts) { |
| // Full MSAA doesn't need to do anything to draw a rect. |
| SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); |
| if (coords.fFragHalfSpan) { |
| f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", |
| coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| // The entire pixel is inside the rect. |
| this->acceptOrRejectWholeFragment(f, true, opts); |
| f->codeAppend ("} else "); |
| if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { |
| f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", |
| coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| // The pixel falls on an edge of the rectangle and is known to not be on a shared edge. |
| this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); |
| f->codeAppend ("} else"); |
| } |
| f->codeAppend ("{"); |
| } |
| f->codeAppend ("int rectMask = 0;"); |
| f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| f->codeAppend ( "highp vec2 pt = "); |
| this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| f->codeAppend ( ";"); |
| f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);"); |
| f->codeAppend ("}"); |
| this->acceptCoverageMask(f, "rectMask", opts); |
| if (coords.fFragHalfSpan) { |
| f->codeAppend ("}"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f, |
| const EmitShapeCoords& coords, |
| bool coordsMayBeNegative, bool clampCoords, |
| const EmitShapeOpts& opts) { |
| if (coords.fFragHalfSpan) { |
| SkString absArcCoords; |
| absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn()); |
| if (clampCoords) { |
| f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", |
| fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| } else { |
| f->codeAppendf("if (%s(%s + %s) < 1.0) {", |
| fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| } |
| // The entire pixel is inside the arc. |
| this->acceptOrRejectWholeFragment(f, true, opts); |
| f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", |
| fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); |
| // The entire pixel is outside the arc. |
| this->acceptOrRejectWholeFragment(f, false, opts); |
| f->codeAppend ("} else {"); |
| } |
| f->codeAppend ( "int arcMask = 0;"); |
| f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| f->codeAppend ( "highp vec2 pt = "); |
| this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| f->codeAppend ( ";"); |
| if (clampCoords) { |
| SkASSERT(!coordsMayBeNegative); |
| f->codeAppend ( "pt = max(pt, vec2(0));"); |
| } |
| f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str()); |
| f->codeAppend ( "}"); |
| this->acceptCoverageMask(f, "arcMask", opts); |
| if (coords.fFragHalfSpan) { |
| f->codeAppend ("}"); |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f, |
| const EmitShapeCoords& coords, |
| const char* rrect, |
| const EmitShapeOpts& opts) { |
| f->codeAppendf("highp vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), |
| rrect); |
| f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
| this->emitRect(f, coords, opts); |
| f->codeAppend ("} else {"); |
| if (coords.fInverseMatrix && coords.fFragHalfSpan) { |
| f->codeAppendf("highp vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); |
| f->codeAppendf("highp vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect); |
| f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str()); |
| // The entire pixel is inside the round rect. |
| this->acceptOrRejectWholeFragment(f, true, opts); |
| f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {", |
| fSquareFun.c_str()); |
| // The entire pixel is outside the round rect. |
| this->acceptOrRejectWholeFragment(f, false, opts); |
| f->codeAppend ("} else {"); |
| f->codeAppendf( "highp vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn()); |
| f->codeAppendf( "highp mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);", |
| coords.fInverseMatrix); |
| f->codeAppend ( "highp int rrectMask = 0;"); |
| f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| f->codeAppend ( "highp vec2 pt = rrectCoords + "); |
| f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
| f->codeAppend ( "* innerRRectInverseMatrix;"); |
| f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);", |
| fSquareFun.c_str()); |
| f->codeAppend ( "}"); |
| this->acceptCoverageMask(f, "rrectMask", opts); |
| f->codeAppend ("}"); |
| } else { |
| f->codeAppend ("int rrectMask = 0;"); |
| f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| f->codeAppend ( "highp vec2 shapePt = "); |
| this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); |
| f->codeAppend ( ";"); |
| f->codeAppendf( "highp vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;", |
| rrect, rrect); |
| f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str()); |
| f->codeAppend ("}"); |
| this->acceptCoverageMask(f, "rrectMask", opts); |
| } |
| f->codeAppend ("}"); |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f, |
| const GrGLSLVarying& varying, |
| const char* sampleIdx, |
| const char* interpolationMatrix) { |
| if (interpolationMatrix) { |
| f->codeAppendf("(%s + ", varying.fsIn()); |
| f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); |
| f->codeAppendf(" * %s)", interpolationMatrix); |
| } else { |
| SkAssertResult( |
| f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature)); |
| f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); |
| f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates); |
| f->codeAppend(")"); |
| } |
| } |
| |
| void |
| GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f, |
| bool inside, |
| const EmitShapeOpts& opts) { |
| if (inside != opts.fInvertCoverage) { // Accept the entire fragment. |
| if (opts.fResolveMixedSamples) { |
| // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage |
| // to one fragment, and drop all other fragments that may fall on this same pixel. Since |
| // our geometry is water tight and non-overlapping, we can take advantage of the |
| // properties that (1) the incoming sample masks will be disjoint across fragments that |
| // fall on a common pixel, and (2) since the entire fragment is inside the shape, each |
| // sample's corresponding bit will be set in the incoming sample mask of exactly one |
| // fragment. |
| f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); |
| // Drop this fragment. |
| if (!fOpInfo.fCannotDiscard) { |
| f->codeAppend("discard;"); |
| } else { |
| f->overrideSampleCoverage("0"); |
| } |
| f->codeAppend("} else {"); |
| // Override the lone surviving fragment to full coverage. |
| f->overrideSampleCoverage("-1"); |
| f->codeAppend("}"); |
| } |
| } else { // Reject the entire fragment. |
| if (!fOpInfo.fCannotDiscard) { |
| f->codeAppend("discard;"); |
| } else if (opts.fResolveMixedSamples) { |
| f->overrideSampleCoverage("0"); |
| } else { |
| f->maskSampleCoverage("0"); |
| } |
| } |
| } |
| |
| void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f, |
| const char* shapeMask, |
| const EmitShapeOpts& opts, |
| bool maybeSharedEdge) { |
| if (opts.fResolveMixedSamples) { |
| if (maybeSharedEdge) { |
| // This is a mixed sampled fragment, potentially on the outer edge of the shape, with |
| // only partial shape coverage. Override the coverage of one fragment to "shapeMask", |
| // and drop all other fragments that may fall on this same pixel. Since our geometry is |
| // water tight, non-overlapping, and completely contains the shape, this means that each |
| // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one, |
| // and only one, fragment that falls on this same pixel. |
| SkASSERT(!opts.fInvertCoverage); |
| f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask); |
| // Drop this fragment. |
| if (!fOpInfo.fCannotDiscard) { |
| f->codeAppend ("discard;"); |
| } else { |
| f->overrideSampleCoverage("0"); |
| } |
| f->codeAppend ("} else {"); |
| // Override the coverage of the lone surviving fragment to "shapeMask". |
| f->overrideSampleCoverage(shapeMask); |
| f->codeAppend ("}"); |
| } else { |
| f->overrideSampleCoverage(shapeMask); |
| } |
| } else { |
| f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| GLSLInstanceProcessor::Backend* GLSLInstanceProcessor::Backend::Create(const GrPipeline& pipeline, |
| OpInfo opInfo, |
| const VertexInputs& inputs) { |
| switch (opInfo.aaType()) { |
| default: |
| SkFAIL("Unexpected antialias mode."); |
| case GrAAType::kNone: |
| return new BackendNonAA(opInfo, inputs); |
| case GrAAType::kCoverage: |
| return new BackendCoverage(opInfo, inputs); |
| case GrAAType::kMSAA: |
| case GrAAType::kMixedSamples: { |
| const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv(); |
| const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline); |
| return new BackendMultisample(opInfo, inputs, specs.fEffectiveSampleCnt); |
| } |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| const ShapeVertex kVertexData[] = { |
| // Rectangle. |
| {+1, +1, ~0}, /*0*/ |
| {-1, +1, ~0}, /*1*/ |
| {-1, -1, ~0}, /*2*/ |
| {+1, -1, ~0}, /*3*/ |
| // The next 4 are for the bordered version. |
| {+1, +1, 0}, /*4*/ |
| {-1, +1, 0}, /*5*/ |
| {-1, -1, 0}, /*6*/ |
| {+1, -1, 0}, /*7*/ |
| |
| // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| {+1.000000f, 0.000000f, 0}, /* 8*/ |
| {+1.000000f, +0.414214f, ~0}, /* 9*/ |
| {+0.707106f, +0.707106f, 0}, /*10*/ |
| {+0.414214f, +1.000000f, ~0}, /*11*/ |
| { 0.000000f, +1.000000f, 0}, /*12*/ |
| {-0.414214f, +1.000000f, ~0}, /*13*/ |
| {-0.707106f, +0.707106f, 0}, /*14*/ |
| {-1.000000f, +0.414214f, ~0}, /*15*/ |
| {-1.000000f, 0.000000f, 0}, /*16*/ |
| {-1.000000f, -0.414214f, ~0}, /*17*/ |
| {-0.707106f, -0.707106f, 0}, /*18*/ |
| {-0.414214f, -1.000000f, ~0}, /*19*/ |
| { 0.000000f, -1.000000f, 0}, /*20*/ |
| {+0.414214f, -1.000000f, ~0}, /*21*/ |
| {+0.707106f, -0.707106f, 0}, /*22*/ |
| {+1.000000f, -0.414214f, ~0}, /*23*/ |
| // This vertex is for the fanned versions. |
| { 0.000000f, 0.000000f, ~0}, /*24*/ |
| |
| // Rectangle with disjoint corner segments. |
| {+1.0, +0.5, 0x3}, /*25*/ |
| {+1.0, +1.0, 0x3}, /*26*/ |
| {+0.5, +1.0, 0x3}, /*27*/ |
| {-0.5, +1.0, 0x2}, /*28*/ |
| {-1.0, +1.0, 0x2}, /*29*/ |
| {-1.0, +0.5, 0x2}, /*30*/ |
| {-1.0, -0.5, 0x0}, /*31*/ |
| {-1.0, -1.0, 0x0}, /*32*/ |
| {-0.5, -1.0, 0x0}, /*33*/ |
| {+0.5, -1.0, 0x1}, /*34*/ |
| {+1.0, -1.0, 0x1}, /*35*/ |
| {+1.0, -0.5, 0x1}, /*36*/ |
| // The next 4 are for the fanned version. |
| { 0.0, 0.0, 0x3}, /*37*/ |
| { 0.0, 0.0, 0x2}, /*38*/ |
| { 0.0, 0.0, 0x0}, /*39*/ |
| { 0.0, 0.0, 0x1}, /*40*/ |
| // The next 8 are for the bordered version. |
| {+0.75, +0.50, 0x3}, /*41*/ |
| {+0.50, +0.75, 0x3}, /*42*/ |
| {-0.50, +0.75, 0x2}, /*43*/ |
| {-0.75, +0.50, 0x2}, /*44*/ |
| {-0.75, -0.50, 0x0}, /*45*/ |
| {-0.50, -0.75, 0x0}, /*46*/ |
| {+0.50, -0.75, 0x1}, /*47*/ |
| {+0.75, -0.50, 0x1}, /*48*/ |
| |
| // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. |
| {+1.000000f, +0.000000f, 0}, /*49*/ |
| {+1.000000f, +0.198913f, ~0}, /*50*/ |
| {+0.923879f, +0.382683f, 0}, /*51*/ |
| {+0.847760f, +0.566455f, ~0}, /*52*/ |
| {+0.707106f, +0.707106f, 0}, /*53*/ |
| {+0.566455f, +0.847760f, ~0}, /*54*/ |
| {+0.382683f, +0.923879f, 0}, /*55*/ |
| {+0.198913f, +1.000000f, ~0}, /*56*/ |
| {+0.000000f, +1.000000f, 0}, /*57*/ |
| {-0.198913f, +1.000000f, ~0}, /*58*/ |
| {-0.382683f, +0.923879f, 0}, /*59*/ |
| {-0.566455f, +0.847760f, ~0}, /*60*/ |
| {-0.707106f, +0.707106f, 0}, /*61*/ |
| {-0.847760f, +0.566455f, ~0}, /*62*/ |
| {-0.923879f, +0.382683f, 0}, /*63*/ |
| {-1.000000f, +0.198913f, ~0}, /*64*/ |
| {-1.000000f, +0.000000f, 0}, /*65*/ |
| {-1.000000f, -0.198913f, ~0}, /*66*/ |
| {-0.923879f, -0.382683f, 0}, /*67*/ |
| {-0.847760f, -0.566455f, ~0}, /*68*/ |
| {-0.707106f, -0.707106f, 0}, /*69*/ |
| {-0.566455f, -0.847760f, ~0}, /*70*/ |
| {-0.382683f, -0.923879f, 0}, /*71*/ |
| {-0.198913f, -1.000000f, ~0}, /*72*/ |
| {-0.000000f, -1.000000f, 0}, /*73*/ |
| {+0.198913f, -1.000000f, ~0}, /*74*/ |
| {+0.382683f, -0.923879f, 0}, /*75*/ |
| {+0.566455f, -0.847760f, ~0}, /*76*/ |
| {+0.707106f, -0.707106f, 0}, /*77*/ |
| {+0.847760f, -0.566455f, ~0}, /*78*/ |
| {+0.923879f, -0.382683f, 0}, /*79*/ |
| {+1.000000f, -0.198913f, ~0}, /*80*/ |
| }; |
| |
| const uint8_t kIndexData[] = { |
| // Rectangle. |
| 0, 1, 2, |
| 0, 2, 3, |
| |
| // Rectangle with a border. |
| 0, 1, 5, |
| 5, 4, 0, |
| 1, 2, 6, |
| 6, 5, 1, |
| 2, 3, 7, |
| 7, 6, 2, |
| 3, 0, 4, |
| 4, 7, 3, |
| 4, 5, 6, |
| 6, 7, 4, |
| |
| // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| 10, 8, 9, |
| 12, 10, 11, |
| 14, 12, 13, |
| 16, 14, 15, |
| 18, 16, 17, |
| 20, 18, 19, |
| 22, 20, 21, |
| 8, 22, 23, |
| 8, 10, 12, |
| 12, 14, 16, |
| 16, 18, 20, |
| 20, 22, 8, |
| 8, 12, 16, |
| 16, 20, 8, |
| |
| // Same octagons, but with the interior arranged as a fan. Used by mixed samples. |
| 10, 8, 9, |
| 12, 10, 11, |
| 14, 12, 13, |
| 16, 14, 15, |
| 18, 16, 17, |
| 20, 18, 19, |
| 22, 20, 21, |
| 8, 22, 23, |
| 24, 8, 10, |
| 12, 24, 10, |
| 24, 12, 14, |
| 16, 24, 14, |
| 24, 16, 18, |
| 20, 24, 18, |
| 24, 20, 22, |
| 8, 24, 22, |
| |
| // Same octagons, but with the inner and outer disjoint. Used by coverage AA. |
| 8, 22, 23, |
| 9, 8, 23, |
| 10, 8, 9, |
| 11, 10, 9, |
| 12, 10, 11, |
| 13, 12, 11, |
| 14, 12, 13, |
| 15, 14, 13, |
| 16, 14, 15, |
| 17, 16, 15, |
| 18, 16, 17, |
| 19, 18, 17, |
| 20, 18, 19, |
| 21, 20, 19, |
| 22, 20, 21, |
| 23, 22, 21, |
| 22, 8, 10, |
| 10, 12, 14, |
| 14, 16, 18, |
| 18, 20, 22, |
| 22, 10, 14, |
| 14, 18, 22, |
| |
| // Rectangle with disjoint corner segments. |
| 27, 25, 26, |
| 30, 28, 29, |
| 33, 31, 32, |
| 36, 34, 35, |
| 25, 27, 28, |
| 28, 30, 31, |
| 31, 33, 34, |
| 34, 36, 25, |
| 25, 28, 31, |
| 31, 34, 25, |
| |
| // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by |
| // mixed samples. |
| 27, 25, 26, |
| 30, 28, 29, |
| 33, 31, 32, |
| 36, 34, 35, |
| 27, 37, 25, |
| 28, 37, 27, |
| 30, 38, 28, |
| 31, 38, 30, |
| 33, 39, 31, |
| 34, 39, 33, |
| 36, 40, 34, |
| 25, 40, 36, |
| |
| // Same rectangle with disjoint corners, with a border as well. Used by coverage AA. |
| 41, 25, 26, |
| 42, 41, 26, |
| 27, 42, 26, |
| 43, 28, 29, |
| 44, 43, 29, |
| 30, 44, 29, |
| 45, 31, 32, |
| 46, 45, 32, |
| 33, 46, 32, |
| 47, 34, 35, |
| 48, 47, 35, |
| 36, 48, 35, |
| 27, 28, 42, |
| 42, 28, 43, |
| 30, 31, 44, |
| 44, 31, 45, |
| 33, 34, 46, |
| 46, 34, 47, |
| 36, 25, 48, |
| 48, 25, 41, |
| 41, 42, 43, |
| 43, 44, 45, |
| 45, 46, 47, |
| 47, 48, 41, |
| 41, 43, 45, |
| 45, 47, 41, |
| |
| // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is |
| // sufficiently large. |
| 49, 79, 80, |
| 50, 49, 80, |
| 51, 49, 50, |
| 52, 51, 50, |
| 53, 51, 52, |
| 54, 53, 52, |
| 55, 53, 54, |
| 56, 55, 54, |
| 57, 55, 56, |
| 58, 57, 56, |
| 59, 57, 58, |
| 60, 59, 58, |
| 61, 59, 60, |
| 62, 61, 60, |
| 63, 61, 62, |
| 64, 63, 62, |
| 65, 63, 64, |
| 66, 65, 64, |
| 67, 65, 66, |
| 68, 67, 66, |
| 69, 67, 68, |
| 70, 69, 68, |
| 71, 69, 70, |
| 72, 71, 70, |
| 73, 71, 72, |
| 74, 73, 72, |
| 75, 73, 74, |
| 76, 75, 74, |
| 77, 75, 76, |
| 78, 77, 76, |
| 79, 77, 78, |
| 80, 79, 78, |
| 49, 51, 53, |
| 53, 55, 57, |
| 57, 59, 61, |
| 61, 63, 65, |
| 65, 67, 69, |
| 69, 71, 73, |
| 73, 75, 77, |
| 77, 79, 49, |
| 49, 53, 57, |
| 57, 61, 65, |
| 65, 69, 73, |
| 73, 77, 49, |
| 49, 57, 65, |
| 65, 73, 49, |
| }; |
| |
| enum { |
| kRect_FirstIndex = 0, |
| kRect_TriCount = 2, |
| |
| kFramedRect_FirstIndex = 6, |
| kFramedRect_TriCount = 10, |
| |
| kOctagons_FirstIndex = 36, |
| kOctagons_TriCount = 14, |
| |
| kOctagonsFanned_FirstIndex = 78, |
| kOctagonsFanned_TriCount = 16, |
| |
| kDisjointOctagons_FirstIndex = 126, |
| kDisjointOctagons_TriCount = 22, |
| |
| kCorneredRect_FirstIndex = 192, |
| kCorneredRect_TriCount = 10, |
| |
| kCorneredRectFanned_FirstIndex = 222, |
| kCorneredRectFanned_TriCount = 12, |
| |
| kCorneredFramedRect_FirstIndex = 258, |
| kCorneredFramedRect_TriCount = 26, |
| |
| kDisjoint16Gons_FirstIndex = 336, |
| kDisjoint16Gons_TriCount = 46, |
| }; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey); |
| |
| const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey); |
| GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeVertexBufferKey)) { |
| return static_cast<GrBuffer*>(cached); |
| } |
| if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType, |
| kStatic_GrAccessPattern, kVertexData)) { |
| buffer->resourcePriv().setUniqueKey(gShapeVertexBufferKey); |
| return buffer; |
| } |
| return nullptr; |
| } |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey); |
| |
| const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey); |
| GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeIndexBufferKey)) { |
| return static_cast<GrBuffer*>(cached); |
| } |
| if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType, |
| kStatic_GrAccessPattern, kIndexData)) { |
| buffer->resourcePriv().setUniqueKey(gShapeIndexBufferKey); |
| return buffer; |
| } |
| return nullptr; |
| } |
| |
| IndexRange InstanceProcessor::GetIndexRangeForRect(GrAAType aaType) { |
| switch (aaType) { |
| case GrAAType::kCoverage: |
| return {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}; |
| case GrAAType::kNone: |
| case GrAAType::kMSAA: |
| case GrAAType::kMixedSamples: |
| return {kRect_FirstIndex, 3 * kRect_TriCount}; |
| } |
| SkFAIL("Unexpected aa type!"); |
| return {0, 0}; |
| } |
| |
| IndexRange InstanceProcessor::GetIndexRangeForOval(GrAAType aaType, const SkRect& devBounds) { |
| if (GrAAType::kCoverage == aaType && devBounds.height() * devBounds.width() >= 256 * 256) { |
| // This threshold was chosen quasi-scientifically on Tegra X1. |
| return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; |
| } |
| |
| switch (aaType) { |
| case GrAAType::kNone: |
| case GrAAType::kMSAA: |
| return {kOctagons_FirstIndex, 3 * kOctagons_TriCount}; |
| case GrAAType::kCoverage: |
| return {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}; |
| case GrAAType::kMixedSamples: |
| return {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount}; |
| } |
| SkFAIL("Unexpected aa type!"); |
| return {0, 0}; |
| } |
| |
| IndexRange InstanceProcessor::GetIndexRangeForRRect(GrAAType aaType) { |
| switch (aaType) { |
| case GrAAType::kNone: |
| case GrAAType::kMSAA: |
| return {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}; |
| case GrAAType::kCoverage: |
| return {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}; |
| case GrAAType::kMixedSamples: |
| return {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount}; |
| } |
| SkFAIL("Unexpected aa type!"); |
| return {0, 0}; |
| } |
| |
| const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { |
| switch (range.fStart) { |
| case kRect_FirstIndex: return "basic_rect"; |
| case kFramedRect_FirstIndex: return "coverage_rect"; |
| |
| case kOctagons_FirstIndex: return "basic_oval"; |
| case kDisjointOctagons_FirstIndex: return "coverage_oval"; |
| case kDisjoint16Gons_FirstIndex: return "coverage_large_oval"; |
| case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; |
| |
| case kCorneredRect_FirstIndex: return "basic_round_rect"; |
| case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; |
| case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; |
| |
| default: return "unknown"; |
| } |
| } |
| |
| } |