| /* |
| * Copyright 2014 |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTextureCompressor.h" |
| #include "SkTextureCompression_opts.h" |
| |
| #include <arm_neon.h> |
| |
| // Converts indices in each of the four bits of the register from |
| // 0, 1, 2, 3, 4, 5, 6, 7 |
| // to |
| // 3, 2, 1, 0, 4, 5, 6, 7 |
| // |
| // A more detailed explanation can be found in SkTextureCompressor::convert_indices |
| static inline uint8x16_t convert_indices(const uint8x16_t &x) { |
| static const int8x16_t kThree = { |
| 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, |
| 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, |
| }; |
| |
| static const int8x16_t kZero = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| }; |
| |
| // Take top three bits |
| int8x16_t sx = vreinterpretq_s8_u8(x); |
| |
| // Negate ... |
| sx = vnegq_s8(sx); |
| |
| // Add three... |
| sx = vaddq_s8(sx, kThree); |
| |
| // Generate negatives mask |
| const int8x16_t mask = vreinterpretq_s8_u8(vcltq_s8(sx, kZero)); |
| |
| // Absolute value |
| sx = vabsq_s8(sx); |
| |
| // Add three to the values that were negative... |
| return vreinterpretq_u8_s8(vaddq_s8(sx, vandq_s8(mask, kThree))); |
| } |
| |
| template<unsigned shift> |
| static inline uint64x2_t shift_swap(const uint64x2_t &x, const uint64x2_t &mask) { |
| uint64x2_t t = vandq_u64(mask, veorq_u64(x, vshrq_n_u64(x, shift))); |
| return veorq_u64(x, veorq_u64(t, vshlq_n_u64(t, shift))); |
| } |
| |
| static inline uint64x2_t pack_indices(const uint64x2_t &x) { |
| // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
| |
| static const uint64x2_t kMask1 = { 0x3FC0003FC00000ULL, 0x3FC0003FC00000ULL }; |
| uint64x2_t ret = shift_swap<10>(x, kMask1); |
| |
| // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
| static const uint64x2_t kMask2 = { (0x3FULL << 52), (0x3FULL << 52) }; |
| static const uint64x2_t kMask3 = { (0x3FULL << 28), (0x3FULL << 28) }; |
| const uint64x2_t x1 = vandq_u64(vshlq_n_u64(ret, 52), kMask2); |
| const uint64x2_t x2 = vandq_u64(vshlq_n_u64(ret, 20), kMask3); |
| ret = vshrq_n_u64(vorrq_u64(ret, vorrq_u64(x1, x2)), 16); |
| |
| // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
| |
| static const uint64x2_t kMask4 = { 0xFC0000ULL, 0xFC0000ULL }; |
| ret = shift_swap<6>(ret, kMask4); |
| |
| #if defined (SK_CPU_BENDIAN) |
| // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
| |
| static const uint64x2_t kMask5 = { 0x3FULL, 0x3FULL }; |
| ret = shift_swap<36>(ret, kMask5); |
| |
| // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
| |
| static const uint64x2_t kMask6 = { 0xFFF000000ULL, 0xFFF000000ULL }; |
| ret = shift_swap<12>(ret, kMask6); |
| #else |
| // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
| |
| static const uint64x2_t kMask5 = { 0xFC0ULL, 0xFC0ULL }; |
| ret = shift_swap<36>(ret, kMask5); |
| |
| // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
| |
| static const uint64x2_t kMask6 = { (0xFFFULL << 36), (0xFFFULL << 36) }; |
| static const uint64x2_t kMask7 = { 0xFFFFFFULL, 0xFFFFFFULL }; |
| static const uint64x2_t kMask8 = { 0xFFFULL, 0xFFFULL }; |
| const uint64x2_t y1 = vandq_u64(ret, kMask6); |
| const uint64x2_t y2 = vshlq_n_u64(vandq_u64(ret, kMask7), 12); |
| const uint64x2_t y3 = vandq_u64(vshrq_n_u64(ret, 24), kMask8); |
| ret = vorrq_u64(y1, vorrq_u64(y2, y3)); |
| #endif |
| |
| // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| |
| // Set the header |
| static const uint64x2_t kHeader = { 0x8490000000000000ULL, 0x8490000000000000ULL }; |
| return vorrq_u64(kHeader, ret); |
| } |
| |
| // Takes a row of alpha values and places the most significant three bits of each byte into |
| // the least significant bits of the same byte |
| static inline uint8x16_t make_index_row(const uint8x16_t &x) { |
| static const uint8x16_t kTopThreeMask = { |
| 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, |
| 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, |
| }; |
| return vshrq_n_u8(vandq_u8(x, kTopThreeMask), 5); |
| } |
| |
| // Returns true if all of the bits in x are 0. |
| static inline bool is_zero(uint8x16_t x) { |
| // First experiments say that this is way slower than just examining the lanes |
| // but it might need a little more investigation. |
| #if 0 |
| // This code path tests the system register for overflow. We trigger |
| // overflow by adding x to a register with all of its bits set. The |
| // first instruction sets the bits. |
| int reg; |
| asm ("VTST.8 %%q0, %q1, %q1\n" |
| "VQADD.u8 %q1, %%q0\n" |
| "VMRS %0, FPSCR\n" |
| : "=r"(reg) : "w"(vreinterpretq_f32_u8(x)) : "q0", "q1"); |
| |
| // Bit 21 corresponds to the overflow flag. |
| return reg & (0x1 << 21); |
| #else |
| const uint64x2_t cvt = vreinterpretq_u64_u8(x); |
| const uint64_t l1 = vgetq_lane_u64(cvt, 0); |
| return (l1 == 0) && (l1 == vgetq_lane_u64(cvt, 1)); |
| #endif |
| } |
| |
| #if defined (SK_CPU_BENDIAN) |
| static inline uint64x2_t fix_endianness(uint64x2_t x) { |
| return x; |
| } |
| #else |
| static inline uint64x2_t fix_endianness(uint64x2_t x) { |
| return vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(x))); |
| } |
| #endif |
| |
| static void compress_r11eac_blocks(uint64_t* dst, const uint8_t* src, int rowBytes) { |
| |
| // Try to avoid switching between vector and non-vector ops... |
| const uint8_t *const src1 = src; |
| const uint8_t *const src2 = src + rowBytes; |
| const uint8_t *const src3 = src + 2*rowBytes; |
| const uint8_t *const src4 = src + 3*rowBytes; |
| uint64_t *const dst1 = dst; |
| uint64_t *const dst2 = dst + 2; |
| |
| const uint8x16_t alphaRow1 = vld1q_u8(src1); |
| const uint8x16_t alphaRow2 = vld1q_u8(src2); |
| const uint8x16_t alphaRow3 = vld1q_u8(src3); |
| const uint8x16_t alphaRow4 = vld1q_u8(src4); |
| |
| const uint8x16_t cmp12 = vceqq_u8(alphaRow1, alphaRow2); |
| const uint8x16_t cmp34 = vceqq_u8(alphaRow3, alphaRow4); |
| const uint8x16_t cmp13 = vceqq_u8(alphaRow1, alphaRow3); |
| |
| const uint8x16_t cmp = vandq_u8(vandq_u8(cmp12, cmp34), cmp13); |
| const uint8x16_t ncmp = vmvnq_u8(cmp); |
| const uint8x16_t nAlphaRow1 = vmvnq_u8(alphaRow1); |
| if (is_zero(ncmp)) { |
| if (is_zero(alphaRow1)) { |
| static const uint64x2_t kTransparent = { 0x0020000000002000ULL, |
| 0x0020000000002000ULL }; |
| vst1q_u64(dst1, kTransparent); |
| vst1q_u64(dst2, kTransparent); |
| return; |
| } else if (is_zero(nAlphaRow1)) { |
| vst1q_u64(dst1, vreinterpretq_u64_u8(cmp)); |
| vst1q_u64(dst2, vreinterpretq_u64_u8(cmp)); |
| return; |
| } |
| } |
| |
| const uint8x16_t indexRow1 = convert_indices(make_index_row(alphaRow1)); |
| const uint8x16_t indexRow2 = convert_indices(make_index_row(alphaRow2)); |
| const uint8x16_t indexRow3 = convert_indices(make_index_row(alphaRow3)); |
| const uint8x16_t indexRow4 = convert_indices(make_index_row(alphaRow4)); |
| |
| const uint64x2_t indexRow12 = vreinterpretq_u64_u8( |
| vorrq_u8(vshlq_n_u8(indexRow1, 3), indexRow2)); |
| const uint64x2_t indexRow34 = vreinterpretq_u64_u8( |
| vorrq_u8(vshlq_n_u8(indexRow3, 3), indexRow4)); |
| |
| const uint32x4x2_t blockIndices = vtrnq_u32(vreinterpretq_u32_u64(indexRow12), |
| vreinterpretq_u32_u64(indexRow34)); |
| const uint64x2_t blockIndicesLeft = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[0])); |
| const uint64x2_t blockIndicesRight = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[1])); |
| |
| const uint64x2_t indicesLeft = fix_endianness(pack_indices(blockIndicesLeft)); |
| const uint64x2_t indicesRight = fix_endianness(pack_indices(blockIndicesRight)); |
| |
| const uint64x2_t d1 = vcombine_u64(vget_low_u64(indicesLeft), vget_low_u64(indicesRight)); |
| const uint64x2_t d2 = vcombine_u64(vget_high_u64(indicesLeft), vget_high_u64(indicesRight)); |
| vst1q_u64(dst1, d1); |
| vst1q_u64(dst2, d2); |
| } |
| |
| bool CompressA8toR11EAC_NEON(uint8_t* dst, const uint8_t* src, |
| int width, int height, int rowBytes) { |
| |
| // Since we're going to operate on 4 blocks at a time, the src width |
| // must be a multiple of 16. However, the height only needs to be a |
| // multiple of 4 |
| if (0 == width || 0 == height || (width % 16) != 0 || (height % 4) != 0) { |
| return SkTextureCompressor::CompressBufferToFormat( |
| dst, src, |
| kAlpha_8_SkColorType, |
| width, height, rowBytes, |
| SkTextureCompressor::kR11_EAC_Format, false); |
| } |
| |
| const int blocksX = width >> 2; |
| const int blocksY = height >> 2; |
| |
| SkASSERT((blocksX % 4) == 0); |
| |
| uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| for (int y = 0; y < blocksY; ++y) { |
| for (int x = 0; x < blocksX; x+=4) { |
| // Compress it |
| compress_r11eac_blocks(encPtr, src + 4*x, rowBytes); |
| encPtr += 4; |
| } |
| src += 4 * rowBytes; |
| } |
| return true; |
| } |