blob: 483a9a5217afc1252ee1eb5d55e44d2801da5fdb [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawTarget.h"
#include "GrContext.h"
#include "GrDrawTargetCaps.h"
#include "GrPath.h"
#include "GrRenderTarget.h"
#include "GrTexture.h"
#include "GrVertexBuffer.h"
#include "SkStrokeRec.h"
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget::DrawInfo& GrDrawTarget::DrawInfo::operator =(const DrawInfo& di) {
fPrimitiveType = di.fPrimitiveType;
fStartVertex = di.fStartVertex;
fStartIndex = di.fStartIndex;
fVertexCount = di.fVertexCount;
fIndexCount = di.fIndexCount;
fInstanceCount = di.fInstanceCount;
fVerticesPerInstance = di.fVerticesPerInstance;
fIndicesPerInstance = di.fIndicesPerInstance;
if (NULL != di.fDevBounds) {
SkASSERT(di.fDevBounds == &di.fDevBoundsStorage);
fDevBoundsStorage = di.fDevBoundsStorage;
fDevBounds = &fDevBoundsStorage;
} else {
fDevBounds = NULL;
}
fDstCopy = di.fDstCopy;
return *this;
}
#ifdef SK_DEBUG
bool GrDrawTarget::DrawInfo::isInstanced() const {
if (fInstanceCount > 0) {
SkASSERT(0 == fIndexCount % fIndicesPerInstance);
SkASSERT(0 == fVertexCount % fVerticesPerInstance);
SkASSERT(fIndexCount / fIndicesPerInstance == fInstanceCount);
SkASSERT(fVertexCount / fVerticesPerInstance == fInstanceCount);
// there is no way to specify a non-zero start index to drawIndexedInstances().
SkASSERT(0 == fStartIndex);
return true;
} else {
SkASSERT(!fVerticesPerInstance);
SkASSERT(!fIndicesPerInstance);
return false;
}
}
#endif
void GrDrawTarget::DrawInfo::adjustInstanceCount(int instanceOffset) {
SkASSERT(this->isInstanced());
SkASSERT(instanceOffset + fInstanceCount >= 0);
fInstanceCount += instanceOffset;
fVertexCount = fVerticesPerInstance * fInstanceCount;
fIndexCount = fIndicesPerInstance * fInstanceCount;
}
void GrDrawTarget::DrawInfo::adjustStartVertex(int vertexOffset) {
fStartVertex += vertexOffset;
SkASSERT(fStartVertex >= 0);
}
void GrDrawTarget::DrawInfo::adjustStartIndex(int indexOffset) {
SkASSERT(this->isIndexed());
fStartIndex += indexOffset;
SkASSERT(fStartIndex >= 0);
}
////////////////////////////////////////////////////////////////////////////////
#define DEBUG_INVAL_BUFFER 0xdeadcafe
#define DEBUG_INVAL_START_IDX -1
GrDrawTarget::GrDrawTarget(GrContext* context)
: fClip(NULL)
, fContext(context)
, fGpuTraceMarkerCount(0) {
SkASSERT(NULL != context);
fDrawState = &fDefaultDrawState;
// We assume that fDrawState always owns a ref to the object it points at.
fDefaultDrawState.ref();
GeometrySrcState& geoSrc = fGeoSrcStateStack.push_back();
#ifdef SK_DEBUG
geoSrc.fVertexCount = DEBUG_INVAL_START_IDX;
geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER;
geoSrc.fIndexCount = DEBUG_INVAL_START_IDX;
geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER;
#endif
geoSrc.fVertexSrc = kNone_GeometrySrcType;
geoSrc.fIndexSrc = kNone_GeometrySrcType;
}
GrDrawTarget::~GrDrawTarget() {
SkASSERT(1 == fGeoSrcStateStack.count());
SkDEBUGCODE(GeometrySrcState& geoSrc = fGeoSrcStateStack.back());
SkASSERT(kNone_GeometrySrcType == geoSrc.fIndexSrc);
SkASSERT(kNone_GeometrySrcType == geoSrc.fVertexSrc);
fDrawState->unref();
}
void GrDrawTarget::releaseGeometry() {
int popCnt = fGeoSrcStateStack.count() - 1;
while (popCnt) {
this->popGeometrySource();
--popCnt;
}
this->resetVertexSource();
this->resetIndexSource();
}
void GrDrawTarget::setClip(const GrClipData* clip) {
clipWillBeSet(clip);
fClip = clip;
}
const GrClipData* GrDrawTarget::getClip() const {
return fClip;
}
void GrDrawTarget::setDrawState(GrDrawState* drawState) {
SkASSERT(NULL != fDrawState);
if (NULL == drawState) {
drawState = &fDefaultDrawState;
}
if (fDrawState != drawState) {
fDrawState->unref();
drawState->ref();
fDrawState = drawState;
}
}
bool GrDrawTarget::reserveVertexSpace(size_t vertexSize,
int vertexCount,
void** vertices) {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
bool acquired = false;
if (vertexCount > 0) {
SkASSERT(NULL != vertices);
this->releasePreviousVertexSource();
geoSrc.fVertexSrc = kNone_GeometrySrcType;
acquired = this->onReserveVertexSpace(vertexSize,
vertexCount,
vertices);
}
if (acquired) {
geoSrc.fVertexSrc = kReserved_GeometrySrcType;
geoSrc.fVertexCount = vertexCount;
geoSrc.fVertexSize = vertexSize;
} else if (NULL != vertices) {
*vertices = NULL;
}
return acquired;
}
bool GrDrawTarget::reserveIndexSpace(int indexCount,
void** indices) {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
bool acquired = false;
if (indexCount > 0) {
SkASSERT(NULL != indices);
this->releasePreviousIndexSource();
geoSrc.fIndexSrc = kNone_GeometrySrcType;
acquired = this->onReserveIndexSpace(indexCount, indices);
}
if (acquired) {
geoSrc.fIndexSrc = kReserved_GeometrySrcType;
geoSrc.fIndexCount = indexCount;
} else if (NULL != indices) {
*indices = NULL;
}
return acquired;
}
bool GrDrawTarget::reserveVertexAndIndexSpace(int vertexCount,
int indexCount,
void** vertices,
void** indices) {
size_t vertexSize = this->drawState()->getVertexSize();
this->willReserveVertexAndIndexSpace(vertexCount, indexCount);
if (vertexCount) {
if (!this->reserveVertexSpace(vertexSize, vertexCount, vertices)) {
if (indexCount) {
this->resetIndexSource();
}
return false;
}
}
if (indexCount) {
if (!this->reserveIndexSpace(indexCount, indices)) {
if (vertexCount) {
this->resetVertexSource();
}
return false;
}
}
return true;
}
bool GrDrawTarget::geometryHints(int32_t* vertexCount,
int32_t* indexCount) const {
if (NULL != vertexCount) {
*vertexCount = -1;
}
if (NULL != indexCount) {
*indexCount = -1;
}
return false;
}
void GrDrawTarget::releasePreviousVertexSource() {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
switch (geoSrc.fVertexSrc) {
case kNone_GeometrySrcType:
break;
case kArray_GeometrySrcType:
this->releaseVertexArray();
break;
case kReserved_GeometrySrcType:
this->releaseReservedVertexSpace();
break;
case kBuffer_GeometrySrcType:
geoSrc.fVertexBuffer->unref();
#ifdef SK_DEBUG
geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER;
#endif
break;
default:
SkFAIL("Unknown Vertex Source Type.");
break;
}
}
void GrDrawTarget::releasePreviousIndexSource() {
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
switch (geoSrc.fIndexSrc) {
case kNone_GeometrySrcType: // these two don't require
break;
case kArray_GeometrySrcType:
this->releaseIndexArray();
break;
case kReserved_GeometrySrcType:
this->releaseReservedIndexSpace();
break;
case kBuffer_GeometrySrcType:
geoSrc.fIndexBuffer->unref();
#ifdef SK_DEBUG
geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER;
#endif
break;
default:
SkFAIL("Unknown Index Source Type.");
break;
}
}
void GrDrawTarget::setVertexSourceToArray(const void* vertexArray,
int vertexCount) {
this->releasePreviousVertexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fVertexSrc = kArray_GeometrySrcType;
geoSrc.fVertexSize = this->drawState()->getVertexSize();
geoSrc.fVertexCount = vertexCount;
this->onSetVertexSourceToArray(vertexArray, vertexCount);
}
void GrDrawTarget::setIndexSourceToArray(const void* indexArray,
int indexCount) {
this->releasePreviousIndexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fIndexSrc = kArray_GeometrySrcType;
geoSrc.fIndexCount = indexCount;
this->onSetIndexSourceToArray(indexArray, indexCount);
}
void GrDrawTarget::setVertexSourceToBuffer(const GrVertexBuffer* buffer) {
this->releasePreviousVertexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fVertexSrc = kBuffer_GeometrySrcType;
geoSrc.fVertexBuffer = buffer;
buffer->ref();
geoSrc.fVertexSize = this->drawState()->getVertexSize();
}
void GrDrawTarget::setIndexSourceToBuffer(const GrIndexBuffer* buffer) {
this->releasePreviousIndexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fIndexSrc = kBuffer_GeometrySrcType;
geoSrc.fIndexBuffer = buffer;
buffer->ref();
}
void GrDrawTarget::resetVertexSource() {
this->releasePreviousVertexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fVertexSrc = kNone_GeometrySrcType;
}
void GrDrawTarget::resetIndexSource() {
this->releasePreviousIndexSource();
GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
geoSrc.fIndexSrc = kNone_GeometrySrcType;
}
void GrDrawTarget::pushGeometrySource() {
this->geometrySourceWillPush();
GeometrySrcState& newState = fGeoSrcStateStack.push_back();
newState.fIndexSrc = kNone_GeometrySrcType;
newState.fVertexSrc = kNone_GeometrySrcType;
#ifdef SK_DEBUG
newState.fVertexCount = ~0;
newState.fVertexBuffer = (GrVertexBuffer*)~0;
newState.fIndexCount = ~0;
newState.fIndexBuffer = (GrIndexBuffer*)~0;
#endif
}
void GrDrawTarget::popGeometrySource() {
// if popping last element then pops are unbalanced with pushes
SkASSERT(fGeoSrcStateStack.count() > 1);
this->geometrySourceWillPop(fGeoSrcStateStack.fromBack(1));
this->releasePreviousVertexSource();
this->releasePreviousIndexSource();
fGeoSrcStateStack.pop_back();
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawTarget::checkDraw(GrPrimitiveType type, int startVertex,
int startIndex, int vertexCount,
int indexCount) const {
const GrDrawState& drawState = this->getDrawState();
#ifdef SK_DEBUG
const GeometrySrcState& geoSrc = fGeoSrcStateStack.back();
int maxVertex = startVertex + vertexCount;
int maxValidVertex;
switch (geoSrc.fVertexSrc) {
case kNone_GeometrySrcType:
SkFAIL("Attempting to draw without vertex src.");
case kReserved_GeometrySrcType: // fallthrough
case kArray_GeometrySrcType:
maxValidVertex = geoSrc.fVertexCount;
break;
case kBuffer_GeometrySrcType:
maxValidVertex = static_cast<int>(geoSrc.fVertexBuffer->gpuMemorySize() / geoSrc.fVertexSize);
break;
}
if (maxVertex > maxValidVertex) {
SkFAIL("Drawing outside valid vertex range.");
}
if (indexCount > 0) {
int maxIndex = startIndex + indexCount;
int maxValidIndex;
switch (geoSrc.fIndexSrc) {
case kNone_GeometrySrcType:
SkFAIL("Attempting to draw indexed geom without index src.");
case kReserved_GeometrySrcType: // fallthrough
case kArray_GeometrySrcType:
maxValidIndex = geoSrc.fIndexCount;
break;
case kBuffer_GeometrySrcType:
maxValidIndex = static_cast<int>(geoSrc.fIndexBuffer->gpuMemorySize() / sizeof(uint16_t));
break;
}
if (maxIndex > maxValidIndex) {
SkFAIL("Index reads outside valid index range.");
}
}
SkASSERT(NULL != drawState.getRenderTarget());
for (int s = 0; s < drawState.numColorStages(); ++s) {
const GrEffect* effect = drawState.getColorStage(s).getEffect();
int numTextures = effect->numTextures();
for (int t = 0; t < numTextures; ++t) {
GrTexture* texture = effect->texture(t);
SkASSERT(texture->asRenderTarget() != drawState.getRenderTarget());
}
}
for (int s = 0; s < drawState.numCoverageStages(); ++s) {
const GrEffect* effect = drawState.getCoverageStage(s).getEffect();
int numTextures = effect->numTextures();
for (int t = 0; t < numTextures; ++t) {
GrTexture* texture = effect->texture(t);
SkASSERT(texture->asRenderTarget() != drawState.getRenderTarget());
}
}
SkASSERT(drawState.validateVertexAttribs());
#endif
if (NULL == drawState.getRenderTarget()) {
return false;
}
return true;
}
bool GrDrawTarget::setupDstReadIfNecessary(GrDeviceCoordTexture* dstCopy, const SkRect* drawBounds) {
if (this->caps()->dstReadInShaderSupport() || !this->getDrawState().willEffectReadDstColor()) {
return true;
}
GrRenderTarget* rt = this->drawState()->getRenderTarget();
SkIRect copyRect;
const GrClipData* clip = this->getClip();
clip->getConservativeBounds(rt, &copyRect);
if (NULL != drawBounds) {
SkIRect drawIBounds;
drawBounds->roundOut(&drawIBounds);
if (!copyRect.intersect(drawIBounds)) {
#ifdef SK_DEBUG
GrPrintf("Missed an early reject. Bailing on draw from setupDstReadIfNecessary.\n");
#endif
return false;
}
} else {
#ifdef SK_DEBUG
//GrPrintf("No dev bounds when dst copy is made.\n");
#endif
}
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrTextureDesc desc;
this->initCopySurfaceDstDesc(rt, &desc);
desc.fWidth = copyRect.width();
desc.fHeight = copyRect.height();
GrAutoScratchTexture ast(fContext, desc, GrContext::kApprox_ScratchTexMatch);
if (NULL == ast.texture()) {
GrPrintf("Failed to create temporary copy of destination texture.\n");
return false;
}
SkIPoint dstPoint = {0, 0};
if (this->copySurface(ast.texture(), rt, copyRect, dstPoint)) {
dstCopy->setTexture(ast.texture());
dstCopy->setOffset(copyRect.fLeft, copyRect.fTop);
return true;
} else {
return false;
}
}
void GrDrawTarget::drawIndexed(GrPrimitiveType type,
int startVertex,
int startIndex,
int vertexCount,
int indexCount,
const SkRect* devBounds) {
if (indexCount > 0 && this->checkDraw(type, startVertex, startIndex, vertexCount, indexCount)) {
DrawInfo info;
info.fPrimitiveType = type;
info.fStartVertex = startVertex;
info.fStartIndex = startIndex;
info.fVertexCount = vertexCount;
info.fIndexCount = indexCount;
info.fInstanceCount = 0;
info.fVerticesPerInstance = 0;
info.fIndicesPerInstance = 0;
if (NULL != devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
if (!this->setupDstReadIfNecessary(&info)) {
return;
}
this->onDraw(info);
}
}
void GrDrawTarget::drawNonIndexed(GrPrimitiveType type,
int startVertex,
int vertexCount,
const SkRect* devBounds) {
if (vertexCount > 0 && this->checkDraw(type, startVertex, -1, vertexCount, -1)) {
DrawInfo info;
info.fPrimitiveType = type;
info.fStartVertex = startVertex;
info.fStartIndex = 0;
info.fVertexCount = vertexCount;
info.fIndexCount = 0;
info.fInstanceCount = 0;
info.fVerticesPerInstance = 0;
info.fIndicesPerInstance = 0;
if (NULL != devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
if (!this->setupDstReadIfNecessary(&info)) {
return;
}
this->onDraw(info);
}
}
void GrDrawTarget::stencilPath(const GrPath* path, SkPath::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path stenciling.
SkASSERT(NULL != path);
SkASSERT(this->caps()->pathRenderingSupport());
SkASSERT(!SkPath::IsInverseFillType(fill));
this->onStencilPath(path, fill);
}
void GrDrawTarget::drawPath(const GrPath* path, SkPath::FillType fill) {
// TODO: extract portions of checkDraw that are relevant to path rendering.
SkASSERT(NULL != path);
SkASSERT(this->caps()->pathRenderingSupport());
const GrDrawState* drawState = &getDrawState();
SkRect devBounds;
if (SkPath::IsInverseFillType(fill)) {
devBounds = SkRect::MakeWH(SkIntToScalar(drawState->getRenderTarget()->width()),
SkIntToScalar(drawState->getRenderTarget()->height()));
} else {
devBounds = path->getBounds();
}
SkMatrix viewM = drawState->getViewMatrix();
viewM.mapRect(&devBounds);
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(&dstCopy, &devBounds)) {
return;
}
this->onDrawPath(path, fill, dstCopy.texture() ? &dstCopy : NULL);
}
void GrDrawTarget::drawPaths(int pathCount, const GrPath** paths,
const SkMatrix* transforms,
SkPath::FillType fill, SkStrokeRec::Style stroke) {
SkASSERT(pathCount > 0);
SkASSERT(NULL != paths);
SkASSERT(NULL != paths[0]);
SkASSERT(this->caps()->pathRenderingSupport());
SkASSERT(!SkPath::IsInverseFillType(fill));
const GrDrawState* drawState = &getDrawState();
SkRect devBounds;
transforms[0].mapRect(&devBounds, paths[0]->getBounds());
for (int i = 1; i < pathCount; ++i) {
SkRect mappedPathBounds;
transforms[i].mapRect(&mappedPathBounds, paths[i]->getBounds());
devBounds.join(mappedPathBounds);
}
SkMatrix viewM = drawState->getViewMatrix();
viewM.mapRect(&devBounds);
GrDeviceCoordTexture dstCopy;
if (!this->setupDstReadIfNecessary(&dstCopy, &devBounds)) {
return;
}
this->onDrawPaths(pathCount, paths, transforms, fill, stroke,
dstCopy.texture() ? &dstCopy : NULL);
}
typedef GrTraceMarkerSet::Iter TMIter;
void GrDrawTarget::saveActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fStoredTraceMarkers.count());
fStoredTraceMarkers.addSet(fActiveTraceMarkers);
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->removeGpuTraceMarker(&(*iter));
}
}
}
void GrDrawTarget::restoreActiveTraceMarkers() {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(0 == fActiveTraceMarkers.count());
for (TMIter iter = fStoredTraceMarkers.begin(); iter != fStoredTraceMarkers.end(); ++iter) {
this->addGpuTraceMarker(&(*iter));
}
for (TMIter iter = fActiveTraceMarkers.begin(); iter != fActiveTraceMarkers.end(); ++iter) {
this->fStoredTraceMarkers.remove(*iter);
}
}
}
void GrDrawTarget::addGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 0);
this->fActiveTraceMarkers.add(*marker);
this->didAddGpuTraceMarker();
++fGpuTraceMarkerCount;
}
}
void GrDrawTarget::removeGpuTraceMarker(const GrGpuTraceMarker* marker) {
if (this->caps()->gpuTracingSupport()) {
SkASSERT(fGpuTraceMarkerCount >= 1);
this->fActiveTraceMarkers.remove(*marker);
this->didRemoveGpuTraceMarker();
--fGpuTraceMarkerCount;
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawTarget::willUseHWAALines() const {
// There is a conflict between using smooth lines and our use of premultiplied alpha. Smooth
// lines tweak the incoming alpha value but not in a premul-alpha way. So we only use them when
// our alpha is 0xff and tweaking the color for partial coverage is OK
if (!this->caps()->hwAALineSupport() ||
!this->getDrawState().isHWAntialiasState()) {
return false;
}
GrDrawState::BlendOptFlags opts = this->getDrawState().getBlendOpts();
return (GrDrawState::kDisableBlend_BlendOptFlag & opts) &&
(GrDrawState::kCoverageAsAlpha_BlendOptFlag & opts);
}
bool GrDrawTarget::canApplyCoverage() const {
// we can correctly apply coverage if a) we have dual source blending
// or b) one of our blend optimizations applies.
return this->caps()->dualSourceBlendingSupport() ||
GrDrawState::kNone_BlendOpt != this->getDrawState().getBlendOpts(true);
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawTarget::drawIndexedInstances(GrPrimitiveType type,
int instanceCount,
int verticesPerInstance,
int indicesPerInstance,
const SkRect* devBounds) {
if (!verticesPerInstance || !indicesPerInstance) {
return;
}
int maxInstancesPerDraw = this->indexCountInCurrentSource() / indicesPerInstance;
if (!maxInstancesPerDraw) {
return;
}
DrawInfo info;
info.fPrimitiveType = type;
info.fStartIndex = 0;
info.fStartVertex = 0;
info.fIndicesPerInstance = indicesPerInstance;
info.fVerticesPerInstance = verticesPerInstance;
// Set the same bounds for all the draws.
if (NULL != devBounds) {
info.setDevBounds(*devBounds);
}
// TODO: We should continue with incorrect blending.
if (!this->setupDstReadIfNecessary(&info)) {
return;
}
while (instanceCount) {
info.fInstanceCount = SkTMin(instanceCount, maxInstancesPerDraw);
info.fVertexCount = info.fInstanceCount * verticesPerInstance;
info.fIndexCount = info.fInstanceCount * indicesPerInstance;
if (this->checkDraw(type,
info.fStartVertex,
info.fStartIndex,
info.fVertexCount,
info.fIndexCount)) {
this->onDraw(info);
}
info.fStartVertex += info.fVertexCount;
instanceCount -= info.fInstanceCount;
}
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// position + (optional) texture coord
extern const GrVertexAttrib gBWRectPosUVAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec2f_GrVertexAttribType, sizeof(SkPoint), kLocalCoord_GrVertexAttribBinding}
};
void set_vertex_attributes(GrDrawState* drawState, bool hasUVs) {
if (hasUVs) {
drawState->setVertexAttribs<gBWRectPosUVAttribs>(2);
} else {
drawState->setVertexAttribs<gBWRectPosUVAttribs>(1);
}
}
};
void GrDrawTarget::onDrawRect(const SkRect& rect,
const SkMatrix* matrix,
const SkRect* localRect,
const SkMatrix* localMatrix) {
GrDrawState::AutoViewMatrixRestore avmr;
if (NULL != matrix) {
avmr.set(this->drawState(), *matrix);
}
set_vertex_attributes(this->drawState(), NULL != localRect);
AutoReleaseGeometry geo(this, 4, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
size_t vsize = this->drawState()->getVertexSize();
geo.positions()->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize);
if (NULL != localRect) {
SkPoint* coords = GrTCast<SkPoint*>(GrTCast<intptr_t>(geo.vertices()) +
sizeof(SkPoint));
coords->setRectFan(localRect->fLeft, localRect->fTop,
localRect->fRight, localRect->fBottom,
vsize);
if (NULL != localMatrix) {
localMatrix->mapPointsWithStride(coords, vsize, 4);
}
}
SkRect bounds;
this->getDrawState().getViewMatrix().mapRect(&bounds, rect);
this->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4, &bounds);
}
void GrDrawTarget::clipWillBeSet(const GrClipData* clipData) {
}
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget::AutoStateRestore::AutoStateRestore() {
fDrawTarget = NULL;
}
GrDrawTarget::AutoStateRestore::AutoStateRestore(GrDrawTarget* target,
ASRInit init,
const SkMatrix* vm) {
fDrawTarget = NULL;
this->set(target, init, vm);
}
GrDrawTarget::AutoStateRestore::~AutoStateRestore() {
if (NULL != fDrawTarget) {
fDrawTarget->setDrawState(fSavedState);
fSavedState->unref();
}
}
void GrDrawTarget::AutoStateRestore::set(GrDrawTarget* target, ASRInit init, const SkMatrix* vm) {
SkASSERT(NULL == fDrawTarget);
fDrawTarget = target;
fSavedState = target->drawState();
SkASSERT(fSavedState);
fSavedState->ref();
if (kReset_ASRInit == init) {
if (NULL == vm) {
// calls the default cons
fTempState.init();
} else {
SkNEW_IN_TLAZY(&fTempState, GrDrawState, (*vm));
}
} else {
SkASSERT(kPreserve_ASRInit == init);
if (NULL == vm) {
fTempState.set(*fSavedState);
} else {
SkNEW_IN_TLAZY(&fTempState, GrDrawState, (*fSavedState, *vm));
}
}
target->setDrawState(fTempState.get());
}
bool GrDrawTarget::AutoStateRestore::setIdentity(GrDrawTarget* target, ASRInit init) {
SkASSERT(NULL == fDrawTarget);
fDrawTarget = target;
fSavedState = target->drawState();
SkASSERT(fSavedState);
fSavedState->ref();
if (kReset_ASRInit == init) {
// calls the default cons
fTempState.init();
} else {
SkASSERT(kPreserve_ASRInit == init);
// calls the copy cons
fTempState.set(*fSavedState);
if (!fTempState.get()->setIdentityViewMatrix()) {
// let go of any resources held by the temp
fTempState.get()->reset();
fDrawTarget = NULL;
fSavedState->unref();
fSavedState = NULL;
return false;
}
}
target->setDrawState(fTempState.get());
return true;
}
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry(
GrDrawTarget* target,
int vertexCount,
int indexCount) {
fTarget = NULL;
this->set(target, vertexCount, indexCount);
}
GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry() {
fTarget = NULL;
}
GrDrawTarget::AutoReleaseGeometry::~AutoReleaseGeometry() {
this->reset();
}
bool GrDrawTarget::AutoReleaseGeometry::set(GrDrawTarget* target,
int vertexCount,
int indexCount) {
this->reset();
fTarget = target;
bool success = true;
if (NULL != fTarget) {
fTarget = target;
success = target->reserveVertexAndIndexSpace(vertexCount,
indexCount,
&fVertices,
&fIndices);
if (!success) {
fTarget = NULL;
this->reset();
}
}
SkASSERT(success == (NULL != fTarget));
return success;
}
void GrDrawTarget::AutoReleaseGeometry::reset() {
if (NULL != fTarget) {
if (NULL != fVertices) {
fTarget->resetVertexSource();
}
if (NULL != fIndices) {
fTarget->resetIndexSource();
}
fTarget = NULL;
}
fVertices = NULL;
fIndices = NULL;
}
GrDrawTarget::AutoClipRestore::AutoClipRestore(GrDrawTarget* target, const SkIRect& newClip) {
fTarget = target;
fClip = fTarget->getClip();
fStack.init();
fStack.get()->clipDevRect(newClip, SkRegion::kReplace_Op);
fReplacementClip.fClipStack = fStack.get();
target->setClip(&fReplacementClip);
}
namespace {
// returns true if the read/written rect intersects the src/dst and false if not.
bool clip_srcrect_and_dstpoint(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
SkIRect* clippedSrcRect,
SkIPoint* clippedDstPoint) {
*clippedSrcRect = srcRect;
*clippedDstPoint = dstPoint;
// clip the left edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fLeft < 0) {
clippedDstPoint->fX -= clippedSrcRect->fLeft;
clippedSrcRect->fLeft = 0;
}
if (clippedDstPoint->fX < 0) {
clippedSrcRect->fLeft -= clippedDstPoint->fX;
clippedDstPoint->fX = 0;
}
// clip the top edge to src and dst bounds, adjusting dstPoint if necessary
if (clippedSrcRect->fTop < 0) {
clippedDstPoint->fY -= clippedSrcRect->fTop;
clippedSrcRect->fTop = 0;
}
if (clippedDstPoint->fY < 0) {
clippedSrcRect->fTop -= clippedDstPoint->fY;
clippedDstPoint->fY = 0;
}
// clip the right edge to the src and dst bounds.
if (clippedSrcRect->fRight > src->width()) {
clippedSrcRect->fRight = src->width();
}
if (clippedDstPoint->fX + clippedSrcRect->width() > dst->width()) {
clippedSrcRect->fRight = clippedSrcRect->fLeft + dst->width() - clippedDstPoint->fX;
}
// clip the bottom edge to the src and dst bounds.
if (clippedSrcRect->fBottom > src->height()) {
clippedSrcRect->fBottom = src->height();
}
if (clippedDstPoint->fY + clippedSrcRect->height() > dst->height()) {
clippedSrcRect->fBottom = clippedSrcRect->fTop + dst->height() - clippedDstPoint->fY;
}
// The above clipping steps may have inverted the rect if it didn't intersect either the src or
// dst bounds.
return !clippedSrcRect->isEmpty();
}
}
bool GrDrawTarget::copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(NULL != dst);
SkASSERT(NULL != src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we've already succeeded.
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
SkASSERT(this->canCopySurface(dst, src, srcRect, dstPoint));
return true;
}
bool result = this->onCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
SkASSERT(result == this->canCopySurface(dst, src, clippedSrcRect, clippedDstPoint));
return result;
}
bool GrDrawTarget::canCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(NULL != dst);
SkASSERT(NULL != src);
SkIRect clippedSrcRect;
SkIPoint clippedDstPoint;
// If the rect is outside the src or dst then we're guaranteed success
if (!clip_srcrect_and_dstpoint(dst,
src,
srcRect,
dstPoint,
&clippedSrcRect,
&clippedDstPoint)) {
return true;
}
return this->onCanCopySurface(dst, src, clippedSrcRect, clippedDstPoint);
}
bool GrDrawTarget::onCanCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
// Check that the read/write rects are contained within the src/dst bounds.
SkASSERT(!srcRect.isEmpty());
SkASSERT(SkIRect::MakeWH(src->width(), src->height()).contains(srcRect));
SkASSERT(dstPoint.fX >= 0 && dstPoint.fY >= 0);
SkASSERT(dstPoint.fX + srcRect.width() <= dst->width() &&
dstPoint.fY + srcRect.height() <= dst->height());
return !dst->isSameAs(src) && NULL != dst->asRenderTarget() && NULL != src->asTexture();
}
bool GrDrawTarget::onCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
if (!GrDrawTarget::onCanCopySurface(dst, src, srcRect, dstPoint)) {
return false;
}
GrRenderTarget* rt = dst->asRenderTarget();
GrTexture* tex = src->asTexture();
GrDrawTarget::AutoStateRestore asr(this, kReset_ASRInit);
this->drawState()->setRenderTarget(rt);
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(srcRect.fLeft - dstPoint.fX),
SkIntToScalar(srcRect.fTop - dstPoint.fY));
matrix.postIDiv(tex->width(), tex->height());
this->drawState()->addColorTextureEffect(tex, matrix);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX,
dstPoint.fY,
srcRect.width(),
srcRect.height());
this->drawSimpleRect(dstRect);
return true;
}
void GrDrawTarget::initCopySurfaceDstDesc(const GrSurface* src, GrTextureDesc* desc) {
// Make the dst of the copy be a render target because the default copySurface draws to the dst.
desc->fOrigin = kDefault_GrSurfaceOrigin;
desc->fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc->fConfig = src->config();
}
///////////////////////////////////////////////////////////////////////////////
void GrDrawTargetCaps::reset() {
fMipMapSupport = false;
fNPOTTextureTileSupport = false;
fTwoSidedStencilSupport = false;
fStencilWrapOpsSupport = false;
fHWAALineSupport = false;
fShaderDerivativeSupport = false;
fGeometryShaderSupport = false;
fDualSourceBlendingSupport = false;
fPathRenderingSupport = false;
fDstReadInShaderSupport = false;
fDiscardRenderTargetSupport = false;
fReuseScratchTextures = true;
fGpuTracingSupport = false;
fMapBufferFlags = kNone_MapFlags;
fMaxRenderTargetSize = 0;
fMaxTextureSize = 0;
fMaxSampleCount = 0;
memset(fConfigRenderSupport, 0, sizeof(fConfigRenderSupport));
memset(fConfigTextureSupport, 0, sizeof(fConfigTextureSupport));
}
GrDrawTargetCaps& GrDrawTargetCaps::operator=(const GrDrawTargetCaps& other) {
fMipMapSupport = other.fMipMapSupport;
fNPOTTextureTileSupport = other.fNPOTTextureTileSupport;
fTwoSidedStencilSupport = other.fTwoSidedStencilSupport;
fStencilWrapOpsSupport = other.fStencilWrapOpsSupport;
fHWAALineSupport = other.fHWAALineSupport;
fShaderDerivativeSupport = other.fShaderDerivativeSupport;
fGeometryShaderSupport = other.fGeometryShaderSupport;
fDualSourceBlendingSupport = other.fDualSourceBlendingSupport;
fPathRenderingSupport = other.fPathRenderingSupport;
fDstReadInShaderSupport = other.fDstReadInShaderSupport;
fDiscardRenderTargetSupport = other.fDiscardRenderTargetSupport;
fReuseScratchTextures = other.fReuseScratchTextures;
fGpuTracingSupport = other.fGpuTracingSupport;
fMapBufferFlags = other.fMapBufferFlags;
fMaxRenderTargetSize = other.fMaxRenderTargetSize;
fMaxTextureSize = other.fMaxTextureSize;
fMaxSampleCount = other.fMaxSampleCount;
memcpy(fConfigRenderSupport, other.fConfigRenderSupport, sizeof(fConfigRenderSupport));
memcpy(fConfigTextureSupport, other.fConfigTextureSupport, sizeof(fConfigTextureSupport));
return *this;
}
static SkString map_flags_to_string(uint32_t flags) {
SkString str;
if (GrDrawTargetCaps::kNone_MapFlags == flags) {
str = "none";
} else {
SkASSERT(GrDrawTargetCaps::kCanMap_MapFlag & flags);
SkDEBUGCODE(flags &= ~GrDrawTargetCaps::kCanMap_MapFlag);
str = "can_map";
if (GrDrawTargetCaps::kSubset_MapFlag & flags) {
str.append(" partial");
} else {
str.append(" full");
}
SkDEBUGCODE(flags &= ~GrDrawTargetCaps::kSubset_MapFlag);
}
SkASSERT(0 == flags); // Make sure we handled all the flags.
return str;
}
SkString GrDrawTargetCaps::dump() const {
SkString r;
static const char* gNY[] = {"NO", "YES"};
r.appendf("MIP Map Support : %s\n", gNY[fMipMapSupport]);
r.appendf("NPOT Texture Tile Support : %s\n", gNY[fNPOTTextureTileSupport]);
r.appendf("Two Sided Stencil Support : %s\n", gNY[fTwoSidedStencilSupport]);
r.appendf("Stencil Wrap Ops Support : %s\n", gNY[fStencilWrapOpsSupport]);
r.appendf("HW AA Lines Support : %s\n", gNY[fHWAALineSupport]);
r.appendf("Shader Derivative Support : %s\n", gNY[fShaderDerivativeSupport]);
r.appendf("Geometry Shader Support : %s\n", gNY[fGeometryShaderSupport]);
r.appendf("Dual Source Blending Support : %s\n", gNY[fDualSourceBlendingSupport]);
r.appendf("Path Rendering Support : %s\n", gNY[fPathRenderingSupport]);
r.appendf("Dst Read In Shader Support : %s\n", gNY[fDstReadInShaderSupport]);
r.appendf("Discard Render Target Support: %s\n", gNY[fDiscardRenderTargetSupport]);
r.appendf("Reuse Scratch Textures : %s\n", gNY[fReuseScratchTextures]);
r.appendf("Gpu Tracing Support : %s\n", gNY[fGpuTracingSupport]);
r.appendf("Max Texture Size : %d\n", fMaxTextureSize);
r.appendf("Max Render Target Size : %d\n", fMaxRenderTargetSize);
r.appendf("Max Sample Count : %d\n", fMaxSampleCount);
r.appendf("Map Buffer Support : %s\n", map_flags_to_string(fMapBufferFlags).c_str());
static const char* kConfigNames[] = {
"Unknown", // kUnknown_GrPixelConfig
"Alpha8", // kAlpha_8_GrPixelConfig,
"Index8", // kIndex_8_GrPixelConfig,
"RGB565", // kRGB_565_GrPixelConfig,
"RGBA444", // kRGBA_4444_GrPixelConfig,
"RGBA8888", // kRGBA_8888_GrPixelConfig,
"BGRA8888", // kBGRA_8888_GrPixelConfig,
"ETC1", // kETC1_GrPixelConfig,
"LATC", // kLATC_GrPixelConfig,
"R11EAC", // kR11_EAC_GrPixelConfig,
"ASTC12x12",// kASTC_12x12_GrPixelConfig,
"RGBAFloat", // kRGBA_float_GrPixelConfig
};
GR_STATIC_ASSERT(0 == kUnknown_GrPixelConfig);
GR_STATIC_ASSERT(1 == kAlpha_8_GrPixelConfig);
GR_STATIC_ASSERT(2 == kIndex_8_GrPixelConfig);
GR_STATIC_ASSERT(3 == kRGB_565_GrPixelConfig);
GR_STATIC_ASSERT(4 == kRGBA_4444_GrPixelConfig);
GR_STATIC_ASSERT(5 == kRGBA_8888_GrPixelConfig);
GR_STATIC_ASSERT(6 == kBGRA_8888_GrPixelConfig);
GR_STATIC_ASSERT(7 == kETC1_GrPixelConfig);
GR_STATIC_ASSERT(8 == kLATC_GrPixelConfig);
GR_STATIC_ASSERT(9 == kR11_EAC_GrPixelConfig);
GR_STATIC_ASSERT(10 == kASTC_12x12_GrPixelConfig);
GR_STATIC_ASSERT(11 == kRGBA_float_GrPixelConfig);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(kConfigNames) == kGrPixelConfigCnt);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][0]);
SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][1]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is renderable: %s, with MSAA: %s\n",
kConfigNames[i],
gNY[fConfigRenderSupport[i][0]],
gNY[fConfigRenderSupport[i][1]]);
}
SkASSERT(!fConfigTextureSupport[kUnknown_GrPixelConfig]);
for (size_t i = 1; i < SK_ARRAY_COUNT(kConfigNames); ++i) {
r.appendf("%s is uploadable to a texture: %s\n",
kConfigNames[i],
gNY[fConfigTextureSupport[i]]);
}
return r;
}