blob: 4fd123cef5ed2f7146642eb58011ce89c78c3f90 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTextureCompressor_opts_DEFINED
#define SkTextureCompressor_opts_DEFINED
#include "SkOpts.h"
namespace SK_OPTS_NS {
#if defined(SK_ARM_HAS_NEON)
// Converts indices in each of the four bits of the register from
// 0, 1, 2, 3, 4, 5, 6, 7
// to
// 3, 2, 1, 0, 4, 5, 6, 7
//
// A more detailed explanation can be found in SkTextureCompressor::convert_indices
static inline uint8x16_t convert_indices(const uint8x16_t &x) {
static const int8x16_t kThree = {
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
};
static const int8x16_t kZero = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
// Take top three bits
int8x16_t sx = vreinterpretq_s8_u8(x);
// Negate ...
sx = vnegq_s8(sx);
// Add three...
sx = vaddq_s8(sx, kThree);
// Generate negatives mask
const int8x16_t mask = vreinterpretq_s8_u8(vcltq_s8(sx, kZero));
// Absolute value
sx = vabsq_s8(sx);
// Add three to the values that were negative...
return vreinterpretq_u8_s8(vaddq_s8(sx, vandq_s8(mask, kThree)));
}
template<unsigned shift>
static inline uint64x2_t shift_swap(const uint64x2_t &x, const uint64x2_t &mask) {
uint64x2_t t = vandq_u64(mask, veorq_u64(x, vshrq_n_u64(x, shift)));
return veorq_u64(x, veorq_u64(t, vshlq_n_u64(t, shift)));
}
static inline uint64x2_t pack_indices(const uint64x2_t &x) {
// x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
static const uint64x2_t kMask1 = { 0x3FC0003FC00000ULL, 0x3FC0003FC00000ULL };
uint64x2_t ret = shift_swap<10>(x, kMask1);
// x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
static const uint64x2_t kMask2 = { (0x3FULL << 52), (0x3FULL << 52) };
static const uint64x2_t kMask3 = { (0x3FULL << 28), (0x3FULL << 28) };
const uint64x2_t x1 = vandq_u64(vshlq_n_u64(ret, 52), kMask2);
const uint64x2_t x2 = vandq_u64(vshlq_n_u64(ret, 20), kMask3);
ret = vshrq_n_u64(vorrq_u64(ret, vorrq_u64(x1, x2)), 16);
// x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
static const uint64x2_t kMask4 = { 0xFC0000ULL, 0xFC0000ULL };
ret = shift_swap<6>(ret, kMask4);
#if defined (SK_CPU_BENDIAN)
// x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
static const uint64x2_t kMask5 = { 0x3FULL, 0x3FULL };
ret = shift_swap<36>(ret, kMask5);
// x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
static const uint64x2_t kMask6 = { 0xFFF000000ULL, 0xFFF000000ULL };
ret = shift_swap<12>(ret, kMask6);
#else
// x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
static const uint64x2_t kMask5 = { 0xFC0ULL, 0xFC0ULL };
ret = shift_swap<36>(ret, kMask5);
// x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
static const uint64x2_t kMask6 = { (0xFFFULL << 36), (0xFFFULL << 36) };
static const uint64x2_t kMask7 = { 0xFFFFFFULL, 0xFFFFFFULL };
static const uint64x2_t kMask8 = { 0xFFFULL, 0xFFFULL };
const uint64x2_t y1 = vandq_u64(ret, kMask6);
const uint64x2_t y2 = vshlq_n_u64(vandq_u64(ret, kMask7), 12);
const uint64x2_t y3 = vandq_u64(vshrq_n_u64(ret, 24), kMask8);
ret = vorrq_u64(y1, vorrq_u64(y2, y3));
#endif
// x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
// Set the header
static const uint64x2_t kHeader = { 0x8490000000000000ULL, 0x8490000000000000ULL };
return vorrq_u64(kHeader, ret);
}
// Takes a row of alpha values and places the most significant three bits of each byte into
// the least significant bits of the same byte
static inline uint8x16_t make_index_row(const uint8x16_t &x) {
static const uint8x16_t kTopThreeMask = {
0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0,
};
return vshrq_n_u8(vandq_u8(x, kTopThreeMask), 5);
}
// Returns true if all of the bits in x are 0.
static inline bool is_zero(uint8x16_t x) {
// First experiments say that this is way slower than just examining the lanes
// but it might need a little more investigation.
#if 0
// This code path tests the system register for overflow. We trigger
// overflow by adding x to a register with all of its bits set. The
// first instruction sets the bits.
int reg;
asm ("VTST.8 %%q0, %q1, %q1\n"
"VQADD.u8 %q1, %%q0\n"
"VMRS %0, FPSCR\n"
: "=r"(reg) : "w"(vreinterpretq_f32_u8(x)) : "q0", "q1");
// Bit 21 corresponds to the overflow flag.
return reg & (0x1 << 21);
#else
const uint64x2_t cvt = vreinterpretq_u64_u8(x);
const uint64_t l1 = vgetq_lane_u64(cvt, 0);
return (l1 == 0) && (l1 == vgetq_lane_u64(cvt, 1));
#endif
}
#if defined (SK_CPU_BENDIAN)
static inline uint64x2_t fix_endianness(uint64x2_t x) {
return x;
}
#else
static inline uint64x2_t fix_endianness(uint64x2_t x) {
return vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(x)));
}
#endif
static void compress_r11eac_blocks(uint64_t* dst, const uint8_t* src, size_t rowBytes) {
// Try to avoid switching between vector and non-vector ops...
const uint8_t *const src1 = src;
const uint8_t *const src2 = src + rowBytes;
const uint8_t *const src3 = src + 2*rowBytes;
const uint8_t *const src4 = src + 3*rowBytes;
uint64_t *const dst1 = dst;
uint64_t *const dst2 = dst + 2;
const uint8x16_t alphaRow1 = vld1q_u8(src1);
const uint8x16_t alphaRow2 = vld1q_u8(src2);
const uint8x16_t alphaRow3 = vld1q_u8(src3);
const uint8x16_t alphaRow4 = vld1q_u8(src4);
const uint8x16_t cmp12 = vceqq_u8(alphaRow1, alphaRow2);
const uint8x16_t cmp34 = vceqq_u8(alphaRow3, alphaRow4);
const uint8x16_t cmp13 = vceqq_u8(alphaRow1, alphaRow3);
const uint8x16_t cmp = vandq_u8(vandq_u8(cmp12, cmp34), cmp13);
const uint8x16_t ncmp = vmvnq_u8(cmp);
const uint8x16_t nAlphaRow1 = vmvnq_u8(alphaRow1);
if (is_zero(ncmp)) {
if (is_zero(alphaRow1)) {
static const uint64x2_t kTransparent = { 0x0020000000002000ULL,
0x0020000000002000ULL };
vst1q_u64(dst1, kTransparent);
vst1q_u64(dst2, kTransparent);
return;
} else if (is_zero(nAlphaRow1)) {
vst1q_u64(dst1, vreinterpretq_u64_u8(cmp));
vst1q_u64(dst2, vreinterpretq_u64_u8(cmp));
return;
}
}
const uint8x16_t indexRow1 = convert_indices(make_index_row(alphaRow1));
const uint8x16_t indexRow2 = convert_indices(make_index_row(alphaRow2));
const uint8x16_t indexRow3 = convert_indices(make_index_row(alphaRow3));
const uint8x16_t indexRow4 = convert_indices(make_index_row(alphaRow4));
const uint64x2_t indexRow12 = vreinterpretq_u64_u8(
vorrq_u8(vshlq_n_u8(indexRow1, 3), indexRow2));
const uint64x2_t indexRow34 = vreinterpretq_u64_u8(
vorrq_u8(vshlq_n_u8(indexRow3, 3), indexRow4));
const uint32x4x2_t blockIndices = vtrnq_u32(vreinterpretq_u32_u64(indexRow12),
vreinterpretq_u32_u64(indexRow34));
const uint64x2_t blockIndicesLeft = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[0]));
const uint64x2_t blockIndicesRight = vreinterpretq_u64_u32(vrev64q_u32(blockIndices.val[1]));
const uint64x2_t indicesLeft = fix_endianness(pack_indices(blockIndicesLeft));
const uint64x2_t indicesRight = fix_endianness(pack_indices(blockIndicesRight));
const uint64x2_t d1 = vcombine_u64(vget_low_u64(indicesLeft), vget_low_u64(indicesRight));
const uint64x2_t d2 = vcombine_u64(vget_high_u64(indicesLeft), vget_high_u64(indicesRight));
vst1q_u64(dst1, d1);
vst1q_u64(dst2, d2);
}
static bool compress_a8_r11eac(uint8_t* dst, const uint8_t* src,
int width, int height, size_t rowBytes) {
// Since we're going to operate on 4 blocks at a time, the src width
// must be a multiple of 16. However, the height only needs to be a
// multiple of 4
if (0 == width || 0 == height || (width % 16) != 0 || (height % 4) != 0) {
return false;
}
const int blocksX = width >> 2;
const int blocksY = height >> 2;
SkASSERT((blocksX % 4) == 0);
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; x+=4) {
// Compress it
compress_r11eac_blocks(encPtr, src + 4*x, rowBytes);
encPtr += 4;
}
src += 4 * rowBytes;
}
return true;
}
static SkOpts::TextureCompressor texture_compressor(SkColorType ct,
SkTextureCompressor::Format fmt) {
if (ct == kAlpha_8_SkColorType && fmt == SkTextureCompressor::kR11_EAC_Format) {
return compress_a8_r11eac;
}
return nullptr;
}
static bool fill_block_dimensions(SkTextureCompressor::Format fmt, int* x, int* y) {
if (fmt == SkTextureCompressor::kR11_EAC_Format) {
*x = 16;
*y = 4;
return true;
}
return false;
}
#else
static SkOpts::TextureCompressor texture_compressor(SkColorType, SkTextureCompressor::Format) {
return nullptr;
}
static bool fill_block_dimensions(SkTextureCompressor::Format, int*, int*) {
return false;
}
#endif
} // namespace SK_OPTS_NS
#endif//SkTextureCompressor_opts_DEFINED