| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrDrawState_DEFINED |
| #define GrDrawState_DEFINED |
| |
| #include "GrColor.h" |
| #include "GrMatrix.h" |
| #include "GrNoncopyable.h" |
| #include "GrSamplerState.h" |
| #include "GrStencil.h" |
| |
| #include "SkXfermode.h" |
| |
| class GrRenderTarget; |
| class GrTexture; |
| |
| struct GrDrawState { |
| |
| /** |
| * Number of texture stages. Each stage takes as input a color and |
| * 2D texture coordinates. The color input to the first enabled stage is the |
| * per-vertex color or the constant color (setColor/setAlpha) if there are |
| * no per-vertex colors. For subsequent stages the input color is the output |
| * color from the previous enabled stage. The output color of each stage is |
| * the input color modulated with the result of a texture lookup. Texture |
| * lookups are specified by a texture a sampler (setSamplerState). Texture |
| * coordinates for each stage come from the vertices based on a |
| * GrVertexLayout bitfield. The output fragment color is the output color of |
| * the last enabled stage. The presence or absence of texture coordinates |
| * for each stage in the vertex layout indicates whether a stage is enabled |
| * or not. |
| */ |
| enum { |
| kNumStages = 3, |
| kMaxTexCoords = kNumStages |
| }; |
| |
| /** |
| * Bitfield used to indicate a set of stages. |
| */ |
| typedef uint32_t StageMask; |
| GR_STATIC_ASSERT(sizeof(StageMask)*8 >= GrDrawState::kNumStages); |
| |
| GrDrawState() { |
| this->reset(); |
| } |
| |
| GrDrawState(const GrDrawState& state) { |
| *this = state; |
| } |
| |
| /** |
| * Resets to the default state. Sampler states will not be modified. |
| */ |
| void reset() { |
| // make sure any pad is zero for memcmp |
| // all GrDrawState members should default to something valid by the |
| // the memset except those initialized individually below. There should |
| // be no padding between the individually initialized members. |
| static const size_t kMemsetSize = |
| reinterpret_cast<intptr_t>(&fColor) - |
| reinterpret_cast<intptr_t>(this); |
| memset(this, 0, kMemsetSize); |
| // pedantic assertion that our ptrs will |
| // be NULL (0 ptr is mem addr 0) |
| GrAssert((intptr_t)(void*)NULL == 0LL); |
| GR_STATIC_ASSERT(0 == kBoth_DrawFace); |
| GrAssert(fStencilSettings.isDisabled()); |
| |
| // memset exceptions |
| fColor = 0xffffffff; |
| fCoverage = 0xffffffff; |
| fFirstCoverageStage = kNumStages; |
| fColorFilterMode = SkXfermode::kDst_Mode; |
| fSrcBlend = kOne_BlendCoeff; |
| fDstBlend = kZero_BlendCoeff; |
| fViewMatrix.reset(); |
| |
| // ensure values that will be memcmp'ed in == but not memset in reset() |
| // are tightly packed |
| GrAssert(kMemsetSize + sizeof(fColor) + sizeof(fCoverage) + |
| sizeof(fFirstCoverageStage) + sizeof(fColorFilterMode) + |
| sizeof(fSrcBlend) + sizeof(fDstBlend) + sizeof(GrMatrix) == |
| reinterpret_cast<intptr_t>(&fEdgeAANumEdges) - |
| reinterpret_cast<intptr_t>(this)); |
| |
| fEdgeAANumEdges = 0; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Color |
| //// |
| |
| /** |
| * Sets color for next draw to a premultiplied-alpha color. |
| * |
| * @param color the color to set. |
| */ |
| void setColor(GrColor color) { fColor = color; } |
| |
| GrColor getColor() const { return fColor; } |
| |
| /** |
| * Sets the color to be used for the next draw to be |
| * (r,g,b,a) = (alpha, alpha, alpha, alpha). |
| * |
| * @param alpha The alpha value to set as the color. |
| */ |
| void setAlpha(uint8_t a) { |
| this->setColor((a << 24) | (a << 16) | (a << 8) | a); |
| } |
| |
| /** |
| * Add a color filter that can be represented by a color and a mode. Applied |
| * after color-computing texture stages. |
| */ |
| void setColorFilter(GrColor c, SkXfermode::Mode mode) { |
| fColorFilterColor = c; |
| fColorFilterMode = mode; |
| } |
| |
| GrColor getColorFilterColor() const { return fColorFilterColor; } |
| SkXfermode::Mode getColorFilterMode() const { return fColorFilterMode; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage |
| //// |
| |
| /** |
| * Sets a constant fractional coverage to be applied to the draw. The |
| * initial value (after construction or reset()) is 0xff. The constant |
| * coverage is ignored when per-vertex coverage is provided. |
| */ |
| void setCoverage(uint8_t coverage) { |
| fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage); |
| } |
| |
| /** |
| * Version of above that specifies 4 channel per-vertex color. The value |
| * should be premultiplied. |
| */ |
| void setCoverage4(GrColor coverage) { |
| fCoverage = coverage; |
| } |
| |
| GrColor getCoverage() const { |
| return fCoverage; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Textures |
| //// |
| |
| /** |
| * Sets the texture used at the next drawing call |
| * |
| * @param stage The texture stage for which the texture will be set |
| * |
| * @param texture The texture to set. Can be NULL though there is no |
| * advantage to settings a NULL texture if doing non-textured drawing |
| */ |
| void setTexture(int stage, GrTexture* texture) { |
| GrAssert((unsigned)stage < kNumStages); |
| fTextures[stage] = texture; |
| } |
| |
| /** |
| * Retrieves the currently set texture. |
| * |
| * @return The currently set texture. The return value will be NULL if no |
| * texture has been set, NULL was most recently passed to |
| * setTexture, or the last setTexture was destroyed. |
| */ |
| const GrTexture* getTexture(int stage) const { |
| GrAssert((unsigned)stage < kNumStages); |
| return fTextures[stage]; |
| } |
| GrTexture* getTexture(int stage) { |
| GrAssert((unsigned)stage < kNumStages); |
| return fTextures[stage]; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Samplers |
| //// |
| |
| /** |
| * Returns the current sampler for a stage. |
| */ |
| const GrSamplerState& getSampler(int stage) const { |
| GrAssert((unsigned)stage < kNumStages); |
| return fSamplerStates[stage]; |
| } |
| |
| /** |
| * Writable pointer to a stage's sampler. |
| */ |
| GrSamplerState* sampler(int stage) { |
| GrAssert((unsigned)stage < kNumStages); |
| return fSamplerStates + stage; |
| } |
| |
| /** |
| * Preconcats the matrix of all samplers in the mask with the same matrix. |
| */ |
| void preConcatSamplerMatrices(StageMask stageMask, const GrMatrix& matrix) { |
| GrAssert(!(stageMask & kIllegalStageMaskBits)); |
| for (int i = 0; i < kNumStages; ++i) { |
| if ((1 << i) & stageMask) { |
| fSamplerStates[i].preConcatMatrix(matrix); |
| } |
| } |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Coverage / Color Stages |
| //// |
| |
| /** |
| * A common pattern is to compute a color with the initial stages and then |
| * modulate that color by a coverage value in later stage(s) (AA, mask- |
| * filters, glyph mask, etc). Color-filters, xfermodes, etc should be |
| * computed based on the pre-coverage-modulated color. The division of |
| * stages between color-computing and coverage-computing is specified by |
| * this method. Initially this is kNumStages (all stages |
| * are color-computing). |
| */ |
| void setFirstCoverageStage(int firstCoverageStage) { |
| GrAssert((unsigned)firstCoverageStage <= kNumStages); |
| fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| /** |
| * Gets the index of the first coverage-computing stage. |
| */ |
| int getFirstCoverageStage() const { |
| return fFirstCoverageStage; |
| } |
| |
| ///@} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Blending |
| //// |
| |
| /** |
| * Sets the blending function coeffecients. |
| * |
| * The blend function will be: |
| * D' = sat(S*srcCoef + D*dstCoef) |
| * |
| * where D is the existing destination color, S is the incoming source |
| * color, and D' is the new destination color that will be written. sat() |
| * is the saturation function. |
| * |
| * @param srcCoef coeffecient applied to the src color. |
| * @param dstCoef coeffecient applied to the dst color. |
| */ |
| void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { |
| fSrcBlend = srcCoeff; |
| fDstBlend = dstCoeff; |
| #if GR_DEBUG |
| switch (dstCoeff) { |
| case kDC_BlendCoeff: |
| case kIDC_BlendCoeff: |
| case kDA_BlendCoeff: |
| case kIDA_BlendCoeff: |
| GrPrintf("Unexpected dst blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| switch (srcCoeff) { |
| case kSC_BlendCoeff: |
| case kISC_BlendCoeff: |
| case kSA_BlendCoeff: |
| case kISA_BlendCoeff: |
| GrPrintf("Unexpected src blend coeff. Won't work correctly with" |
| "coverage stages.\n"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; } |
| GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; } |
| |
| void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff, |
| GrBlendCoeff* dstBlendCoeff) const { |
| *srcBlendCoeff = fSrcBlend; |
| *dstBlendCoeff = fDstBlend; |
| } |
| |
| /** |
| * Sets the blending function constant referenced by the following blending |
| * coeffecients: |
| * kConstC_BlendCoeff |
| * kIConstC_BlendCoeff |
| * kConstA_BlendCoeff |
| * kIConstA_BlendCoeff |
| * |
| * @param constant the constant to set |
| */ |
| void setBlendConstant(GrColor constant) { fBlendConstant = constant; } |
| |
| /** |
| * Retrieves the last value set by setBlendConstant() |
| * @return the blending constant value |
| */ |
| GrColor getBlendConstant() const { return fBlendConstant; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name View Matrix |
| //// |
| |
| /** |
| * Sets the matrix applied to veretx positions. |
| * |
| * In the post-view-matrix space the rectangle [0,w]x[0,h] |
| * fully covers the render target. (w and h are the width and height of the |
| * the rendertarget.) |
| */ |
| void setViewMatrix(const GrMatrix& m) { fViewMatrix = m; } |
| |
| /** |
| * Gets a writable pointer to the view matrix. |
| */ |
| GrMatrix* viewMatrix() { return &fViewMatrix; } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = V*m where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void preConcatViewMatrix(const GrMatrix& m) { fViewMatrix.preConcat(m); } |
| |
| /** |
| * Multiplies the current view matrix by a matrix |
| * |
| * After this call V' = m*V where V is the old view matrix, |
| * m is the parameter to this function, and V' is the new view matrix. |
| * (We consider positions to be column vectors so position vector p is |
| * transformed by matrix X as p' = X*p.) |
| * |
| * @param m the matrix used to modify the view matrix. |
| */ |
| void postConcatViewMatrix(const GrMatrix& m) { fViewMatrix.postConcat(m); } |
| |
| /** |
| * Retrieves the current view matrix |
| * @return the current view matrix. |
| */ |
| const GrMatrix& getViewMatrix() const { return fViewMatrix; } |
| |
| /** |
| * Retrieves the inverse of the current view matrix. |
| * |
| * If the current view matrix is invertible, return true, and if matrix |
| * is non-null, copy the inverse into it. If the current view matrix is |
| * non-invertible, return false and ignore the matrix parameter. |
| * |
| * @param matrix if not null, will receive a copy of the current inverse. |
| */ |
| bool getViewInverse(GrMatrix* matrix) const { |
| // TODO: determine whether we really need to leave matrix unmodified |
| // at call sites when inversion fails. |
| GrMatrix inverse; |
| if (fViewMatrix.invert(&inverse)) { |
| if (matrix) { |
| *matrix = inverse; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| class AutoViewMatrixRestore : public ::GrNoncopyable { |
| public: |
| AutoViewMatrixRestore() : fDrawState(NULL) {} |
| AutoViewMatrixRestore(GrDrawState* ds, const GrMatrix& newMatrix) { |
| fDrawState = NULL; |
| this->set(ds, newMatrix); |
| } |
| AutoViewMatrixRestore(GrDrawState* ds) { |
| fDrawState = NULL; |
| this->set(ds); |
| } |
| ~AutoViewMatrixRestore() { |
| this->set(NULL, GrMatrix::I()); |
| } |
| void set(GrDrawState* ds, const GrMatrix& newMatrix) { |
| if (NULL != fDrawState) { |
| fDrawState->setViewMatrix(fSavedMatrix); |
| } |
| if (NULL != ds) { |
| fSavedMatrix = ds->getViewMatrix(); |
| ds->setViewMatrix(newMatrix); |
| } |
| fDrawState = ds; |
| } |
| void set(GrDrawState* ds) { |
| if (NULL != fDrawState) { |
| fDrawState->setViewMatrix(fSavedMatrix); |
| } |
| if (NULL != ds) { |
| fSavedMatrix = ds->getViewMatrix(); |
| } |
| fDrawState = ds; |
| } |
| private: |
| GrDrawState* fDrawState; |
| GrMatrix fSavedMatrix; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Render Target |
| //// |
| |
| /** |
| * Sets the rendertarget used at the next drawing call |
| * |
| * @param target The render target to set. |
| */ |
| void setRenderTarget(GrRenderTarget* target) { fRenderTarget = target; } |
| |
| /** |
| * Retrieves the currently set rendertarget. |
| * |
| * @return The currently set render target. |
| */ |
| const GrRenderTarget* getRenderTarget() const { return fRenderTarget; } |
| GrRenderTarget* getRenderTarget() { return fRenderTarget; } |
| |
| class AutoRenderTargetRestore : public ::GrNoncopyable { |
| public: |
| AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {} |
| AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) { |
| fDrawState = NULL; |
| this->set(ds, newTarget); |
| } |
| ~AutoRenderTargetRestore() { this->set(NULL, NULL); } |
| void set(GrDrawState* ds, GrRenderTarget* newTarget) { |
| if (NULL != fDrawState) { |
| fDrawState->setRenderTarget(fSavedTarget); |
| } |
| if (NULL != ds) { |
| fSavedTarget = ds->getRenderTarget(); |
| ds->setRenderTarget(newTarget); |
| } |
| fDrawState = ds; |
| } |
| private: |
| GrDrawState* fDrawState; |
| GrRenderTarget* fSavedTarget; |
| }; |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Stencil |
| //// |
| |
| /** |
| * Sets the stencil settings to use for the next draw. |
| * Changing the clip has the side-effect of possibly zeroing |
| * out the client settable stencil bits. So multipass algorithms |
| * using stencil should not change the clip between passes. |
| * @param settings the stencil settings to use. |
| */ |
| void setStencil(const GrStencilSettings& settings) { |
| fStencilSettings = settings; |
| } |
| |
| /** |
| * Shortcut to disable stencil testing and ops. |
| */ |
| void disableStencil() { |
| fStencilSettings.setDisabled(); |
| } |
| |
| const GrStencilSettings& getStencil() const { return fStencilSettings; } |
| |
| GrStencilSettings* stencil() { return &fStencilSettings; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Color Matrix |
| //// |
| |
| /** |
| * Sets the color matrix to use for the next draw. |
| * @param matrix the 5x4 matrix to apply to the incoming color |
| */ |
| void setColorMatrix(const float matrix[20]) { |
| memcpy(fColorMatrix, matrix, sizeof(fColorMatrix)); |
| } |
| |
| const float* getColorMatrix() const { return fColorMatrix; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // @name Edge AA |
| // There are two ways to perform antialiasing using edge equations. One |
| // is to specify an (linear or quadratic) edge eq per-vertex. This requires |
| // splitting vertices shared by primitives. |
| // |
| // The other is via setEdgeAAData which sets a set of edges and each |
| // is tested against all the edges. |
| //// |
| |
| /** |
| * When specifying edges as vertex data this enum specifies what type of |
| * edges are in use. The edges are always 4 GrScalars in memory, even when |
| * the edge type requires fewer than 4. |
| */ |
| enum VertexEdgeType { |
| /* 1-pixel wide line |
| 2D implicit line eq (a*x + b*y +c = 0). 4th component unused */ |
| kHairLine_EdgeType, |
| /* Quadratic specified by u^2-v canonical coords (only 2 |
| components used). Coverage based on signed distance with negative |
| being inside, positive outside.*/ |
| kQuad_EdgeType, |
| /* Same as above but for hairline quadratics. Uses unsigned distance. |
| Coverage is min(0, 1-distance). */ |
| kHairQuad_EdgeType, |
| |
| kVertexEdgeTypeCnt |
| }; |
| |
| /** |
| * Determines the interpretation per-vertex edge data when the |
| * kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges |
| * are not specified the value of this setting has no effect. |
| */ |
| void setVertexEdgeType(VertexEdgeType type) { |
| GrAssert(type >=0 && type < kVertexEdgeTypeCnt); |
| fVertexEdgeType = type; |
| } |
| |
| VertexEdgeType getVertexEdgeType() const { return fVertexEdgeType; } |
| |
| /** |
| * The absolute maximum number of edges that may be specified for |
| * a single draw call when performing edge antialiasing. This is used for |
| * the size of several static buffers, so implementations of getMaxEdges() |
| * (below) should clamp to this value. |
| */ |
| enum { |
| // TODO: this should be 32 when GrTesselatedPathRenderer is used |
| // Visual Studio 2010 does not permit a member array of size 0. |
| kMaxEdges = 1 |
| }; |
| |
| class Edge { |
| public: |
| Edge() {} |
| Edge(float x, float y, float z) : fX(x), fY(y), fZ(z) {} |
| GrPoint intersect(const Edge& other) { |
| return GrPoint::Make( |
| SkFloatToScalar((fY * other.fZ - other.fY * fZ) / |
| (fX * other.fY - other.fX * fY)), |
| SkFloatToScalar((fX * other.fZ - other.fX * fZ) / |
| (other.fX * fY - fX * other.fY))); |
| } |
| float fX, fY, fZ; |
| }; |
| |
| /** |
| * Sets the edge data required for edge antialiasing. |
| * |
| * @param edges 3 * numEdges float values, representing the edge |
| * equations in Ax + By + C form |
| */ |
| void setEdgeAAData(const Edge* edges, int numEdges) { |
| GrAssert(numEdges <= GrDrawState::kMaxEdges); |
| memcpy(fEdgeAAEdges, edges, numEdges * sizeof(GrDrawState::Edge)); |
| fEdgeAANumEdges = numEdges; |
| } |
| |
| int getNumAAEdges() const { return fEdgeAANumEdges; } |
| |
| const Edge* getAAEdges() const { return fEdgeAAEdges; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name State Flags |
| //// |
| |
| /** |
| * Flags that affect rendering. Controlled using enable/disableState(). All |
| * default to disabled. |
| */ |
| enum StateBits { |
| /** |
| * Perform dithering. TODO: Re-evaluate whether we need this bit |
| */ |
| kDither_StateBit = 0x01, |
| /** |
| * Perform HW anti-aliasing. This means either HW FSAA, if supported |
| * by the render target, or smooth-line rendering if a line primitive |
| * is drawn and line smoothing is supported by the 3D API. |
| */ |
| kHWAntialias_StateBit = 0x02, |
| /** |
| * Draws will respect the clip, otherwise the clip is ignored. |
| */ |
| kClip_StateBit = 0x04, |
| /** |
| * Disables writing to the color buffer. Useful when performing stencil |
| * operations. |
| */ |
| kNoColorWrites_StateBit = 0x08, |
| /** |
| * Modifies the behavior of edge AA specified by setEdgeAA. If set, |
| * will test edge pairs for convexity when rasterizing. Set this if the |
| * source polygon is non-convex. |
| */ |
| kEdgeAAConcave_StateBit = 0x10, |
| /** |
| * Draws will apply the color matrix, otherwise the color matrix is |
| * ignored. |
| */ |
| kColorMatrix_StateBit = 0x20, |
| |
| // Users of the class may add additional bits to the vector |
| kDummyStateBit, |
| kLastPublicStateBit = kDummyStateBit-1, |
| }; |
| |
| void resetStateFlags() { |
| fFlagBits = 0; |
| } |
| |
| /** |
| * Enable render state settings. |
| * |
| * @param flags bitfield of StateBits specifing the states to enable |
| */ |
| void enableState(uint32_t stateBits) { |
| fFlagBits |= stateBits; |
| } |
| |
| /** |
| * Disable render state settings. |
| * |
| * @param flags bitfield of StateBits specifing the states to disable |
| */ |
| void disableState(uint32_t stateBits) { |
| fFlagBits &= ~(stateBits); |
| } |
| |
| bool isDitherState() const { |
| return 0 != (fFlagBits & kDither_StateBit); |
| } |
| |
| bool isHWAntialiasState() const { |
| return 0 != (fFlagBits & kHWAntialias_StateBit); |
| } |
| |
| bool isClipState() const { |
| return 0 != (fFlagBits & kClip_StateBit); |
| } |
| |
| bool isColorWriteDisabled() const { |
| return 0 != (fFlagBits & kNoColorWrites_StateBit); |
| } |
| |
| bool isConcaveEdgeAAState() const { |
| return 0 != (fFlagBits & kEdgeAAConcave_StateBit); |
| } |
| |
| bool isStateFlagEnabled(uint32_t stateBit) const { |
| return 0 != (stateBit & fFlagBits); |
| } |
| |
| void copyStateFlags(const GrDrawState& ds) { |
| fFlagBits = ds.fFlagBits; |
| } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| /// @name Face Culling |
| //// |
| |
| enum DrawFace { |
| kBoth_DrawFace, |
| kCCW_DrawFace, |
| kCW_DrawFace, |
| }; |
| |
| /** |
| * Controls whether clockwise, counterclockwise, or both faces are drawn. |
| * @param face the face(s) to draw. |
| */ |
| void setDrawFace(DrawFace face) { |
| fDrawFace = face; |
| } |
| |
| /** |
| * Gets whether the target is drawing clockwise, counterclockwise, |
| * or both faces. |
| * @return the current draw face(s). |
| */ |
| DrawFace getDrawFace() const { return fDrawFace; } |
| |
| /// @} |
| |
| /////////////////////////////////////////////////////////////////////////// |
| |
| // Most stages are usually not used, so conditionals here |
| // reduce the expected number of bytes touched by 50%. |
| bool operator ==(const GrDrawState& s) const { |
| if (memcmp(this, &s, this->leadingBytes())) return false; |
| |
| for (int i = 0; i < kNumStages; i++) { |
| if (fTextures[i] && |
| memcmp(&this->fSamplerStates[i], &s.fSamplerStates[i], |
| sizeof(GrSamplerState))) { |
| return false; |
| } |
| } |
| if (kColorMatrix_StateBit & s.fFlagBits) { |
| if (memcmp(fColorMatrix, |
| s.fColorMatrix, |
| sizeof(fColorMatrix))) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| bool operator !=(const GrDrawState& s) const { return !(*this == s); } |
| |
| // Most stages are usually not used, so conditionals here |
| // reduce the expected number of bytes touched by 50%. |
| GrDrawState& operator =(const GrDrawState& s) { |
| memcpy(this, &s, this->leadingBytes()); |
| |
| for (int i = 0; i < kNumStages; i++) { |
| if (s.fTextures[i]) { |
| memcpy(&this->fSamplerStates[i], &s.fSamplerStates[i], |
| sizeof(GrSamplerState)); |
| } |
| } |
| if (kColorMatrix_StateBit & s.fFlagBits) { |
| memcpy(this->fColorMatrix, s.fColorMatrix, sizeof(fColorMatrix)); |
| } |
| |
| return *this; |
| } |
| |
| private: |
| static const StageMask kIllegalStageMaskBits = ~((1 << kNumStages)-1); |
| // @{ these fields can be initialized with memset to 0 |
| GrColor fBlendConstant; |
| GrTexture* fTextures[kNumStages]; |
| GrColor fColorFilterColor; |
| uint32_t fFlagBits; |
| DrawFace fDrawFace; |
| VertexEdgeType fVertexEdgeType; |
| GrStencilSettings fStencilSettings; |
| GrRenderTarget* fRenderTarget; |
| // @} |
| |
| // @{ Initialized to values other than zero |
| GrColor fColor; |
| GrColor fCoverage; |
| int fFirstCoverageStage; |
| SkXfermode::Mode fColorFilterMode; |
| GrBlendCoeff fSrcBlend; |
| GrBlendCoeff fDstBlend; |
| GrMatrix fViewMatrix; |
| // @} |
| |
| // @{ Data for GrTesselatedPathRenderer |
| // TODO: currently ignored in copying & comparison for performance. |
| // Must be considered if GrTesselatedPathRenderer is being used. |
| int fEdgeAANumEdges; |
| Edge fEdgeAAEdges[kMaxEdges]; |
| // @} |
| |
| // This field must be last; it will not be copied or compared |
| // if the corresponding fTexture[] is NULL. |
| GrSamplerState fSamplerStates[kNumStages]; |
| // only compared if the color matrix enable flag is set |
| float fColorMatrix[20]; // 5 x 4 matrix |
| |
| size_t leadingBytes() const { |
| // Can't use offsetof() with non-POD types, so stuck with pointer math. |
| // TODO: ignores GrTesselatedPathRenderer data structures. We don't |
| // have a compile-time flag that lets us know if it's being used, and |
| // checking at runtime seems to cost 5% performance. |
| return (size_t) ((unsigned char*)&fEdgeAANumEdges - |
| (unsigned char*)&fBlendConstant); |
| } |
| |
| }; |
| |
| #endif |