blob: caada921597cb3bcb0df8b29e698384db8eb33ee [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTwoPointConicalGradient.h"
#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "GrPaint.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkTwoPointConicalGradient_gpu.h"
// For brevity
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
static const SkScalar kErrorTol = 0.00001f;
static const SkScalar kEdgeErrorTol = 5.f * kErrorTol;
/**
* We have three general cases for 2pt conical gradients. First we always assume that
* the start radius <= end radius. Our first case (kInside_) is when the start circle
* is completely enclosed by the end circle. The second case (kOutside_) is the case
* when the start circle is either completely outside the end circle or the circles
* overlap. The final case (kEdge_) is when the start circle is inside the end one,
* but the two are just barely touching at 1 point along their edges.
*/
enum ConicalType {
kInside_ConicalType,
kOutside_ConicalType,
kEdge_ConicalType,
};
//////////////////////////////////////////////////////////////////////////////
static void set_matrix_edge_conical(const SkTwoPointConicalGradient& shader,
SkMatrix* invLMatrix) {
// Inverse of the current local matrix is passed in then,
// translate to center1, rotate so center2 is on x axis.
const SkPoint& center1 = shader.getStartCenter();
const SkPoint& center2 = shader.getEndCenter();
invLMatrix->postTranslate(-center1.fX, -center1.fY);
SkPoint diff = center2 - center1;
SkScalar diffLen = diff.length();
if (0 != diffLen) {
SkScalar invDiffLen = SkScalarInvert(diffLen);
SkMatrix rot;
rot.setSinCos(-invDiffLen * diff.fY, invDiffLen * diff.fX);
invLMatrix->postConcat(rot);
}
}
class Edge2PtConicalEffect : public GrGradientEffect {
public:
class GLSLEdge2PtConicalProcessor;
static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args) {
auto processor = std::unique_ptr<Edge2PtConicalEffect>(new Edge2PtConicalEffect(args));
return processor->isValid() ? std::move(processor) : nullptr;
}
const char* name() const override {
return "Two-Point Conical Gradient Edge Touching";
}
// The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
SkScalar center() const { return fCenterX1; }
SkScalar diffRadius() const { return fDiffRadius; }
SkScalar radius() const { return fRadius0; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new Edge2PtConicalEffect(*this));
}
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const Edge2PtConicalEffect& s = sBase.cast<Edge2PtConicalEffect>();
return (INHERITED::onIsEqual(sBase) &&
this->fCenterX1 == s.fCenterX1 &&
this->fRadius0 == s.fRadius0 &&
this->fDiffRadius == s.fDiffRadius);
}
explicit Edge2PtConicalEffect(const CreateArgs& args)
: INHERITED(args, false /* opaque: draws transparent black outside of the cone. */) {
const SkTwoPointConicalGradient& shader =
*static_cast<const SkTwoPointConicalGradient*>(args.fShader);
fCenterX1 = shader.getCenterX1();
fRadius0 = shader.getStartRadius();
fDiffRadius = shader.getDiffRadius();
this->initClassID<Edge2PtConicalEffect>();
// We should only be calling this shader if we are degenerate case with touching circles
// When deciding if we are in edge case, we scaled by the end radius for cases when the
// start radius was close to zero, otherwise we scaled by the start radius. In addition
// Our test for the edge case in set_matrix_circle_conical has a higher tolerance so we
// need the sqrt value below
SkASSERT(SkScalarAbs(SkScalarAbs(fDiffRadius) - fCenterX1) <
(fRadius0 < kErrorTol ? shader.getEndRadius() * kEdgeErrorTol :
fRadius0 * sqrt(kEdgeErrorTol)));
// We pass the linear part of the quadratic as a varying.
// float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
fBTransform = this->getCoordTransform();
SkMatrix& bMatrix = *fBTransform.accessMatrix();
SkScalar r0dr = fRadius0 * fDiffRadius;
bMatrix[SkMatrix::kMScaleX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMScaleX] +
r0dr * bMatrix[SkMatrix::kMPersp0]);
bMatrix[SkMatrix::kMSkewX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMSkewX] +
r0dr * bMatrix[SkMatrix::kMPersp1]);
bMatrix[SkMatrix::kMTransX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMTransX] +
r0dr * bMatrix[SkMatrix::kMPersp2]);
this->addCoordTransform(&fBTransform);
}
explicit Edge2PtConicalEffect(const Edge2PtConicalEffect& that)
: INHERITED(that)
, fBTransform(that.fBTransform)
, fCenterX1(that.fCenterX1)
, fRadius0(that.fRadius0)
, fDiffRadius(that.fDiffRadius) {
this->initClassID<Edge2PtConicalEffect>();
this->addCoordTransform(&fBTransform);
}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
// @{
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
GrCoordTransform fBTransform;
SkScalar fCenterX1;
SkScalar fRadius0;
SkScalar fDiffRadius;
// @}
typedef GrGradientEffect INHERITED;
};
class Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor : public GrGradientEffect::GLSLProcessor {
public:
GLSLEdge2PtConicalProcessor(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
// @{
/// Values last uploaded as uniforms
SkScalar fCachedRadius;
SkScalar fCachedDiffRadius;
// @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
void Edge2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* Edge2PtConicalEffect::onCreateGLSLInstance() const {
return new Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor(*this);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(Edge2PtConicalEffect);
/*
* All Two point conical gradient test create functions may occasionally create edge case shaders
*/
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> Edge2PtConicalEffect::TestCreate(GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
SkScalar radius1 = d->fRandom->nextUScalar1();
SkPoint center2;
SkScalar radius2;
do {
center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
// If the circles are identical the factory will give us an empty shader.
// This will happen if we pick identical centers
} while (center1 == center2);
// Below makes sure that circle one is contained within circle two
// and both circles are touching on an edge
SkPoint diff = center2 - center1;
SkScalar diffLen = diff.length();
radius2 = radius1 + diffLen;
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GLSLEdge2PtConicalProcessor(const GrProcessor&)
: fVSVaryingName(nullptr)
, fFSVaryingName(nullptr)
, fCachedRadius(-SK_ScalarMax)
, fCachedDiffRadius(-SK_ScalarMax) {}
void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::emitCode(EmitArgs& args) {
const Edge2PtConicalEffect& ge = args.fFp.cast<Edge2PtConicalEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
this->emitUniforms(uniformHandler, ge);
fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSParams");
SkString cName("c");
SkString tName("t");
SkString p0; // start radius
SkString p1; // start radius squared
SkString p2; // difference in radii (r1 - r0)
p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
p2.appendf("%s.z", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
// We interpolate the linear component in coords[1].
SkASSERT(args.fTransformedCoords[0].getType() == args.fTransformedCoords[1].getType());
const char* coords2D;
SkString bVar;
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
if (kVec3f_GrSLType == args.fTransformedCoords[0].getType()) {
fragBuilder->codeAppendf("\tfloat3 interpolants = float3(%s.xy / %s.z, %s.x / %s.z);\n",
args.fTransformedCoords[0].c_str(),
args.fTransformedCoords[0].c_str(),
args.fTransformedCoords[1].c_str(),
args.fTransformedCoords[1].c_str());
coords2D = "interpolants.xy";
bVar = "interpolants.z";
} else {
coords2D = args.fTransformedCoords[0].c_str();
bVar.printf("%s.x", args.fTransformedCoords[1].c_str());
}
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fragBuilder->codeAppendf("\t%s = float4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
// c = (x^2)+(y^2) - params[1]
fragBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), coords2D, coords2D, p1.c_str());
// linear case: t = -c/b
fragBuilder->codeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// if r(t) > 0, then t will be the x coordinate
fragBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
p2.c_str(), p0.c_str());
fragBuilder->codeAppend("\t");
this->emitColor(fragBuilder,
uniformHandler,
args.fShaderCaps,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
fragBuilder->codeAppend("\t}\n");
}
void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::onSetData(
const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
INHERITED::onSetData(pdman, processor);
const Edge2PtConicalEffect& data = processor.cast<Edge2PtConicalEffect>();
SkScalar radius0 = data.radius();
SkScalar diffRadius = data.diffRadius();
if (fCachedRadius != radius0 ||
fCachedDiffRadius != diffRadius) {
pdman.set3f(fParamUni, radius0, radius0 * radius0, diffRadius);
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;
}
}
void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GenKey(const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
b->add32(GenBaseGradientKey(processor));
}
//////////////////////////////////////////////////////////////////////////////
// Focal Conical Gradients
//////////////////////////////////////////////////////////////////////////////
static ConicalType set_matrix_focal_conical(const SkTwoPointConicalGradient& shader,
SkMatrix* invLMatrix, SkScalar* focalX) {
// Inverse of the current local matrix is passed in then,
// translate, scale, and rotate such that endCircle is unit circle on x-axis,
// and focal point is at the origin.
ConicalType conicalType;
const SkPoint& focal = shader.getStartCenter();
const SkPoint& centerEnd = shader.getEndCenter();
SkScalar radius = shader.getEndRadius();
SkScalar invRadius = 1.f / radius;
SkMatrix matrix;
matrix.setTranslate(-centerEnd.fX, -centerEnd.fY);
matrix.postScale(invRadius, invRadius);
SkPoint focalTrans;
matrix.mapPoints(&focalTrans, &focal, 1);
*focalX = focalTrans.length();
if (0.f != *focalX) {
SkScalar invFocalX = SkScalarInvert(*focalX);
SkMatrix rot;
rot.setSinCos(-invFocalX * focalTrans.fY, invFocalX * focalTrans.fX);
matrix.postConcat(rot);
}
matrix.postTranslate(-(*focalX), 0.f);
// If the focal point is touching the edge of the circle it will
// cause a degenerate case that must be handled separately
// kEdgeErrorTol = 5 * kErrorTol was picked after manual testing the
// stability trade off versus the linear approx used in the Edge Shader
if (SkScalarAbs(1.f - (*focalX)) < kEdgeErrorTol) {
return kEdge_ConicalType;
}
// Scale factor 1 / (1 - focalX * focalX)
SkScalar oneMinusF2 = 1.f - *focalX * *focalX;
SkScalar s = SkScalarInvert(oneMinusF2);
if (s >= 0.f) {
conicalType = kInside_ConicalType;
matrix.postScale(s, s * SkScalarSqrt(oneMinusF2));
} else {
conicalType = kOutside_ConicalType;
matrix.postScale(s, s);
}
invLMatrix->postConcat(matrix);
return conicalType;
}
//////////////////////////////////////////////////////////////////////////////
class FocalOutside2PtConicalEffect : public GrGradientEffect {
public:
class GLSLFocalOutside2PtConicalProcessor;
static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX) {
auto processor = std::unique_ptr<FocalOutside2PtConicalEffect>(
new FocalOutside2PtConicalEffect(args, focalX));
return processor->isValid() ? std::move(processor) : nullptr;
}
const char* name() const override {
return "Two-Point Conical Gradient Focal Outside";
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new FocalOutside2PtConicalEffect(*this));
}
bool isFlipped() const { return fIsFlipped; }
SkScalar focal() const { return fFocalX; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const FocalOutside2PtConicalEffect& s = sBase.cast<FocalOutside2PtConicalEffect>();
return (INHERITED::onIsEqual(sBase) &&
this->fFocalX == s.fFocalX &&
this->fIsFlipped == s.fIsFlipped);
}
static bool IsFlipped(const CreateArgs& args) {
// eww.
return static_cast<const SkTwoPointConicalGradient*>(args.fShader)->isFlippedGrad();
}
FocalOutside2PtConicalEffect(const CreateArgs& args, SkScalar focalX)
: INHERITED(args, false /* opaque: draws transparent black outside of the cone. */)
, fFocalX(focalX)
, fIsFlipped(IsFlipped(args)) {
this->initClassID<FocalOutside2PtConicalEffect>();
}
explicit FocalOutside2PtConicalEffect(const FocalOutside2PtConicalEffect& that)
: INHERITED(that), fFocalX(that.fFocalX), fIsFlipped(that.fIsFlipped) {
this->initClassID<FocalOutside2PtConicalEffect>();
}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
SkScalar fFocalX;
bool fIsFlipped;
typedef GrGradientEffect INHERITED;
};
class FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor
: public GrGradientEffect::GLSLProcessor {
public:
GLSLFocalOutside2PtConicalProcessor(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsFlipped;
// @{
/// Values last uploaded as uniforms
SkScalar fCachedFocal;
// @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
void FocalOutside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* FocalOutside2PtConicalEffect::onCreateGLSLInstance() const {
return new FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor(*this);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalOutside2PtConicalEffect);
/*
* All Two point conical gradient test create functions may occasionally create edge case shaders
*/
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> FocalOutside2PtConicalEffect::TestCreate(
GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
SkScalar radius1 = 0.f;
SkPoint center2;
SkScalar radius2;
do {
center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
// Need to make sure the centers are not the same or else focal point will be inside
} while (center1 == center2);
SkPoint diff = center2 - center1;
SkScalar diffLen = diff.length();
// Below makes sure that the focal point is not contained within circle two
radius2 = d->fRandom->nextRangeF(0.f, diffLen);
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor
::GLSLFocalOutside2PtConicalProcessor(const GrProcessor& processor)
: fVSVaryingName(nullptr)
, fFSVaryingName(nullptr)
, fCachedFocal(SK_ScalarMax) {
const FocalOutside2PtConicalEffect& data = processor.cast<FocalOutside2PtConicalEffect>();
fIsFlipped = data.isFlipped();
}
void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::emitCode(EmitArgs& args) {
const FocalOutside2PtConicalEffect& ge = args.fFp.cast<FocalOutside2PtConicalEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
this->emitUniforms(uniformHandler, ge);
fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSParams");
SkString tName("t");
SkString p0; // focalX
SkString p1; // 1 - focalX * focalX
p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
// if we have a float3 from being in perspective, convert it to a float2 first
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
const char* coords2D = coords2DString.c_str();
// t = p.x * focal.x +/- sqrt(p.x^2 + (1 - focal.x^2) * p.y^2)
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fragBuilder->codeAppendf("\t%s = float4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
fragBuilder->codeAppendf("\tfloat xs = %s.x * %s.x;\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat ys = %s.y * %s.y;\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = xs + %s * ys;\n", p1.c_str());
// Must check to see if we flipped the circle order (to make sure start radius < end radius)
// If so we must also flip sign on sqrt
if (!fIsFlipped) {
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
} else {
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s - sqrt(d);\n", tName.c_str(),
coords2D, p0.c_str());
}
fragBuilder->codeAppendf("\tif (%s >= 0.0 && d >= 0.0) {\n", tName.c_str());
fragBuilder->codeAppend("\t\t");
this->emitColor(fragBuilder,
uniformHandler,
args.fShaderCaps,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
fragBuilder->codeAppend("\t}\n");
}
void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::onSetData(
const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
INHERITED::onSetData(pdman, processor);
const FocalOutside2PtConicalEffect& data = processor.cast<FocalOutside2PtConicalEffect>();
SkASSERT(data.isFlipped() == fIsFlipped);
SkScalar focal = data.focal();
if (fCachedFocal != focal) {
SkScalar oneMinus2F = 1.f - focal * focal;
pdman.set2f(fParamUni, SkScalarToFloat(focal), SkScalarToFloat(oneMinus2F));
fCachedFocal = focal;
}
}
void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::GenKey(
const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
uint32_t* key = b->add32n(2);
key[0] = GenBaseGradientKey(processor);
key[1] = processor.cast<FocalOutside2PtConicalEffect>().isFlipped();
}
//////////////////////////////////////////////////////////////////////////////
class FocalInside2PtConicalEffect : public GrGradientEffect {
public:
class GLSLFocalInside2PtConicalProcessor;
static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX) {
auto processor = std::unique_ptr<FocalInside2PtConicalEffect>(
new FocalInside2PtConicalEffect(args, focalX));
return processor->isValid() ? std::move(processor) : nullptr;
}
const char* name() const override {
return "Two-Point Conical Gradient Focal Inside";
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new FocalInside2PtConicalEffect(*this));
}
SkScalar focal() const { return fFocalX; }
typedef FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor GLSLProcessor;
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const FocalInside2PtConicalEffect& s = sBase.cast<FocalInside2PtConicalEffect>();
return (INHERITED::onIsEqual(sBase) &&
this->fFocalX == s.fFocalX);
}
FocalInside2PtConicalEffect(const CreateArgs& args, SkScalar focalX)
: INHERITED(args, args.fShader->colorsAreOpaque()), fFocalX(focalX) {
this->initClassID<FocalInside2PtConicalEffect>();
}
explicit FocalInside2PtConicalEffect(const FocalInside2PtConicalEffect& that)
: INHERITED(that), fFocalX(that.fFocalX) {
this->initClassID<FocalInside2PtConicalEffect>();
}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
SkScalar fFocalX;
typedef GrGradientEffect INHERITED;
};
class FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor
: public GrGradientEffect::GLSLProcessor {
public:
GLSLFocalInside2PtConicalProcessor(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
UniformHandle fFocalUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
// @{
/// Values last uploaded as uniforms
SkScalar fCachedFocal;
// @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
void FocalInside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* FocalInside2PtConicalEffect::onCreateGLSLInstance() const {
return new FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor(*this);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalInside2PtConicalEffect);
/*
* All Two point conical gradient test create functions may occasionally create edge case shaders
*/
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> FocalInside2PtConicalEffect::TestCreate(
GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
SkScalar radius1 = 0.f;
SkPoint center2;
SkScalar radius2;
do {
center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
// Below makes sure radius2 is larger enouch such that the focal point
// is inside the end circle
SkScalar increase = d->fRandom->nextUScalar1();
SkPoint diff = center2 - center1;
SkScalar diffLen = diff.length();
radius2 = diffLen + increase;
// If the circles are identical the factory will give us an empty shader.
} while (radius1 == radius2 && center1 == center2);
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor
::GLSLFocalInside2PtConicalProcessor(const GrProcessor&)
: fVSVaryingName(nullptr)
, fFSVaryingName(nullptr)
, fCachedFocal(SK_ScalarMax) {}
void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::emitCode(EmitArgs& args) {
const FocalInside2PtConicalEffect& ge = args.fFp.cast<FocalInside2PtConicalEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
this->emitUniforms(uniformHandler, ge);
fFocalUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Conical2FSParams");
SkString tName("t");
// this is the distance along x-axis from the end center to focal point in
// transformed coordinates
GrShaderVar focal = uniformHandler->getUniformVariable(fFocalUni);
// if we have a float3 from being in perspective, convert it to a float2 first
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
const char* coords2D = coords2DString.c_str();
// t = p.x * focalX + length(p)
fragBuilder->codeAppendf("\tfloat %s = %s.x * %s + length(%s);\n", tName.c_str(),
coords2D, focal.c_str(), coords2D);
this->emitColor(fragBuilder,
uniformHandler,
args.fShaderCaps,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
}
void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::onSetData(
const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
INHERITED::onSetData(pdman, processor);
const FocalInside2PtConicalEffect& data = processor.cast<FocalInside2PtConicalEffect>();
SkScalar focal = data.focal();
if (fCachedFocal != focal) {
pdman.set1f(fFocalUni, SkScalarToFloat(focal));
fCachedFocal = focal;
}
}
void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::GenKey(
const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
b->add32(GenBaseGradientKey(processor));
}
//////////////////////////////////////////////////////////////////////////////
// Circle Conical Gradients
//////////////////////////////////////////////////////////////////////////////
struct CircleConicalInfo {
SkPoint fCenterEnd;
SkScalar fA;
SkScalar fB;
SkScalar fC;
};
// Returns focal distance along x-axis in transformed coords
static ConicalType set_matrix_circle_conical(const SkTwoPointConicalGradient& shader,
SkMatrix* invLMatrix, CircleConicalInfo* info) {
// Inverse of the current local matrix is passed in then,
// translate and scale such that start circle is on the origin and has radius 1
const SkPoint& centerStart = shader.getStartCenter();
const SkPoint& centerEnd = shader.getEndCenter();
SkScalar radiusStart = shader.getStartRadius();
SkScalar radiusEnd = shader.getEndRadius();
SkMatrix matrix;
matrix.setTranslate(-centerStart.fX, -centerStart.fY);
SkScalar invStartRad = 1.f / radiusStart;
matrix.postScale(invStartRad, invStartRad);
radiusEnd /= radiusStart;
SkPoint centerEndTrans;
matrix.mapPoints(&centerEndTrans, &centerEnd, 1);
SkScalar A = centerEndTrans.fX * centerEndTrans.fX + centerEndTrans.fY * centerEndTrans.fY
- radiusEnd * radiusEnd + 2 * radiusEnd - 1;
// Check to see if start circle is inside end circle with edges touching.
// If touching we return that it is of kEdge_ConicalType, and leave the matrix setting
// to the edge shader. kEdgeErrorTol = 5 * kErrorTol was picked after manual testing
// so that C = 1 / A is stable, and the linear approximation used in the Edge shader is
// still accurate.
if (SkScalarAbs(A) < kEdgeErrorTol) {
return kEdge_ConicalType;
}
SkScalar C = 1.f / A;
SkScalar B = (radiusEnd - 1.f) * C;
matrix.postScale(C, C);
invLMatrix->postConcat(matrix);
info->fCenterEnd = centerEndTrans;
info->fA = A;
info->fB = B;
info->fC = C;
// if A ends up being negative, the start circle is contained completely inside the end cirlce
if (A < 0.f) {
return kInside_ConicalType;
}
return kOutside_ConicalType;
}
class CircleInside2PtConicalEffect : public GrGradientEffect {
public:
class GLSLCircleInside2PtConicalProcessor;
static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args,
const CircleConicalInfo& info) {
auto processor = std::unique_ptr<CircleInside2PtConicalEffect>(
new CircleInside2PtConicalEffect(args, info));
return processor->isValid() ? std::move(processor) : nullptr;
}
const char* name() const override { return "Two-Point Conical Gradient Inside"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new CircleInside2PtConicalEffect(*this));
}
SkScalar centerX() const { return fInfo.fCenterEnd.fX; }
SkScalar centerY() const { return fInfo.fCenterEnd.fY; }
SkScalar A() const { return fInfo.fA; }
SkScalar B() const { return fInfo.fB; }
SkScalar C() const { return fInfo.fC; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const CircleInside2PtConicalEffect& s = sBase.cast<CircleInside2PtConicalEffect>();
return (INHERITED::onIsEqual(sBase) &&
this->fInfo.fCenterEnd == s.fInfo.fCenterEnd &&
this->fInfo.fA == s.fInfo.fA &&
this->fInfo.fB == s.fInfo.fB &&
this->fInfo.fC == s.fInfo.fC);
}
CircleInside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info)
: INHERITED(args, args.fShader->colorsAreOpaque()), fInfo(info) {
this->initClassID<CircleInside2PtConicalEffect>();
}
explicit CircleInside2PtConicalEffect(const CircleInside2PtConicalEffect& that)
: INHERITED(that), fInfo(that.fInfo) {
this->initClassID<CircleInside2PtConicalEffect>();
}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
const CircleConicalInfo fInfo;
typedef GrGradientEffect INHERITED;
};
class CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor
: public GrGradientEffect::GLSLProcessor {
public:
GLSLCircleInside2PtConicalProcessor(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
UniformHandle fCenterUni;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
// @{
/// Values last uploaded as uniforms
SkScalar fCachedCenterX;
SkScalar fCachedCenterY;
SkScalar fCachedA;
SkScalar fCachedB;
SkScalar fCachedC;
// @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
void CircleInside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* CircleInside2PtConicalEffect::onCreateGLSLInstance() const {
return new CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor(*this);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleInside2PtConicalEffect);
/*
* All Two point conical gradient test create functions may occasionally create edge case shaders
*/
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> CircleInside2PtConicalEffect::TestCreate(
GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0
SkPoint center2;
SkScalar radius2;
do {
center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
// Below makes sure that circle one is contained within circle two
SkScalar increase = d->fRandom->nextUScalar1();
SkPoint diff = center2 - center1;
SkScalar diffLen = diff.length();
radius2 = radius1 + diffLen + increase;
// If the circles are identical the factory will give us an empty shader.
} while (radius1 == radius2 && center1 == center2);
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor
::GLSLCircleInside2PtConicalProcessor(const GrProcessor& processor)
: fVSVaryingName(nullptr)
, fFSVaryingName(nullptr)
, fCachedCenterX(SK_ScalarMax)
, fCachedCenterY(SK_ScalarMax)
, fCachedA(SK_ScalarMax)
, fCachedB(SK_ScalarMax)
, fCachedC(SK_ScalarMax) {}
void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::emitCode(EmitArgs& args) {
const CircleInside2PtConicalEffect& ge = args.fFp.cast<CircleInside2PtConicalEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
this->emitUniforms(uniformHandler, ge);
fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSCenter");
fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSParams");
SkString tName("t");
GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni);
// params.x = A
// params.y = B
// params.z = C
GrShaderVar params = uniformHandler->getUniformVariable(fParamUni);
// if we have a float3 from being in perspective, convert it to a float2 first
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
const char* coords2D = coords2DString.c_str();
// p = coords2D
// e = center end
// r = radius end
// A = dot(e, e) - r^2 + 2 * r - 1
// B = (r -1) / A
// C = 1 / A
// d = dot(e, p) + B
// t = d +/- sqrt(d^2 - A * dot(p, p) + C)
fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fragBuilder->codeAppendf("\tfloat %s = d + sqrt(d * d - %s.x * pDotp + %s.z);\n",
tName.c_str(), params.c_str(), params.c_str());
this->emitColor(fragBuilder,
uniformHandler,
args.fShaderCaps,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
}
void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::onSetData(
const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
INHERITED::onSetData(pdman, processor);
const CircleInside2PtConicalEffect& data = processor.cast<CircleInside2PtConicalEffect>();
SkScalar centerX = data.centerX();
SkScalar centerY = data.centerY();
SkScalar A = data.A();
SkScalar B = data.B();
SkScalar C = data.C();
if (fCachedCenterX != centerX || fCachedCenterY != centerY ||
fCachedA != A || fCachedB != B || fCachedC != C) {
pdman.set2f(fCenterUni, SkScalarToFloat(centerX), SkScalarToFloat(centerY));
pdman.set3f(fParamUni, SkScalarToFloat(A), SkScalarToFloat(B), SkScalarToFloat(C));
fCachedCenterX = centerX;
fCachedCenterY = centerY;
fCachedA = A;
fCachedB = B;
fCachedC = C;
}
}
void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::GenKey(
const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
b->add32(GenBaseGradientKey(processor));
}
//////////////////////////////////////////////////////////////////////////////
class CircleOutside2PtConicalEffect : public GrGradientEffect {
public:
class GLSLCircleOutside2PtConicalProcessor;
static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args,
const CircleConicalInfo& info) {
return std::unique_ptr<GrFragmentProcessor>(new CircleOutside2PtConicalEffect(args, info));
}
const char* name() const override { return "Two-Point Conical Gradient Outside"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new CircleOutside2PtConicalEffect(*this));
}
SkScalar centerX() const { return fInfo.fCenterEnd.fX; }
SkScalar centerY() const { return fInfo.fCenterEnd.fY; }
SkScalar A() const { return fInfo.fA; }
SkScalar B() const { return fInfo.fB; }
SkScalar C() const { return fInfo.fC; }
SkScalar tLimit() const { return fTLimit; }
bool isFlipped() const { return fIsFlipped; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const CircleOutside2PtConicalEffect& s = sBase.cast<CircleOutside2PtConicalEffect>();
return (INHERITED::onIsEqual(sBase) &&
this->fInfo.fCenterEnd == s.fInfo.fCenterEnd &&
this->fInfo.fA == s.fInfo.fA &&
this->fInfo.fB == s.fInfo.fB &&
this->fInfo.fC == s.fInfo.fC &&
this->fTLimit == s.fTLimit &&
this->fIsFlipped == s.fIsFlipped);
}
CircleOutside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info)
: INHERITED(args, false /* opaque: draws transparent black outside of the cone. */)
, fInfo(info) {
this->initClassID<CircleOutside2PtConicalEffect>();
const SkTwoPointConicalGradient& shader =
*static_cast<const SkTwoPointConicalGradient*>(args.fShader);
if (shader.getStartRadius() != shader.getEndRadius()) {
fTLimit = shader.getStartRadius() / (shader.getStartRadius() - shader.getEndRadius());
} else {
fTLimit = SK_ScalarMin;
}
fIsFlipped = shader.isFlippedGrad();
}
explicit CircleOutside2PtConicalEffect(const CircleOutside2PtConicalEffect& that)
: INHERITED(that)
, fInfo(that.fInfo)
, fTLimit(that.fTLimit)
, fIsFlipped(that.fIsFlipped) {
this->initClassID<CircleOutside2PtConicalEffect>();
}
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
const CircleConicalInfo fInfo;
SkScalar fTLimit;
bool fIsFlipped;
typedef GrGradientEffect INHERITED;
};
class CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor
: public GrGradientEffect::GLSLProcessor {
public:
GLSLCircleOutside2PtConicalProcessor(const GrProcessor&);
virtual void emitCode(EmitArgs&) override;
static void GenKey(const GrProcessor&, const GrShaderCaps& caps, GrProcessorKeyBuilder* b);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
UniformHandle fCenterUni;
UniformHandle fParamUni;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsFlipped;
// @{
/// Values last uploaded as uniforms
SkScalar fCachedCenterX;
SkScalar fCachedCenterY;
SkScalar fCachedA;
SkScalar fCachedB;
SkScalar fCachedC;
SkScalar fCachedTLimit;
// @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
};
void CircleOutside2PtConicalEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* CircleOutside2PtConicalEffect::onCreateGLSLInstance() const {
return new CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor(*this);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleOutside2PtConicalEffect);
/*
* All Two point conical gradient test create functions may occasionally create edge case shaders
*/
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> CircleOutside2PtConicalEffect::TestCreate(
GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0
SkPoint center2;
SkScalar radius2;
SkScalar diffLen;
do {
center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
// If the circles share a center than we can't be in the outside case
} while (center1 == center2);
SkPoint diff = center2 - center1;
diffLen = diff.length();
// Below makes sure that circle one is not contained within circle two
// and have radius2 >= radius to match sorting on cpu side
radius2 = radius1 + d->fRandom->nextRangeF(0.f, diffLen);
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors4f, params.fColorSpace, params.fStops,
params.fColorCount, params.fTileMode) :
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
params.fColors, params.fStops,
params.fColorCount, params.fTileMode);
GrTest::TestAsFPArgs asFPArgs(d);
std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
GrAlwaysAssert(fp);
return fp;
}
#endif
CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor
::GLSLCircleOutside2PtConicalProcessor(const GrProcessor& processor)
: fVSVaryingName(nullptr)
, fFSVaryingName(nullptr)
, fCachedCenterX(SK_ScalarMax)
, fCachedCenterY(SK_ScalarMax)
, fCachedA(SK_ScalarMax)
, fCachedB(SK_ScalarMax)
, fCachedC(SK_ScalarMax)
, fCachedTLimit(SK_ScalarMax) {
const CircleOutside2PtConicalEffect& data = processor.cast<CircleOutside2PtConicalEffect>();
fIsFlipped = data.isFlipped();
}
void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::emitCode(EmitArgs& args) {
const CircleOutside2PtConicalEffect& ge = args.fFp.cast<CircleOutside2PtConicalEffect>();
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
this->emitUniforms(uniformHandler, ge);
fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSCenter");
fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Conical2FSParams");
SkString tName("t");
GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni);
// params.x = A
// params.y = B
// params.z = C
GrShaderVar params = uniformHandler->getUniformVariable(fParamUni);
// if we have a float3 from being in perspective, convert it to a float2 first
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
const char* coords2D = coords2DString.c_str();
// output will default to transparent black (we simply won't write anything
// else to it if invalid, instead of discarding or returning prematurely)
fragBuilder->codeAppendf("\t%s = float4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
// p = coords2D
// e = center end
// r = radius end
// A = dot(e, e) - r^2 + 2 * r - 1
// B = (r -1) / A
// C = 1 / A
// d = dot(e, p) + B
// t = d +/- sqrt(d^2 - A * dot(p, p) + C)
fragBuilder->codeAppendf("\tfloat pDotp = dot(%s, %s);\n", coords2D, coords2D);
fragBuilder->codeAppendf("\tfloat d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
params.c_str());
fragBuilder->codeAppendf("\tfloat deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(),
params.c_str());
// Must check to see if we flipped the circle order (to make sure start radius < end radius)
// If so we must also flip sign on sqrt
if (!fIsFlipped) {
fragBuilder->codeAppendf("\tfloat %s = d + sqrt(deter);\n", tName.c_str());
} else {
fragBuilder->codeAppendf("\tfloat %s = d - sqrt(deter);\n", tName.c_str());
}
fragBuilder->codeAppendf("\tif (%s >= %s.w && deter >= 0.0) {\n",
tName.c_str(), params.c_str());
fragBuilder->codeAppend("\t\t");
this->emitColor(fragBuilder,
uniformHandler,
args.fShaderCaps,
ge,
tName.c_str(),
args.fOutputColor,
args.fInputColor,
args.fTexSamplers);
fragBuilder->codeAppend("\t}\n");
}
void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::onSetData(
const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
INHERITED::onSetData(pdman, processor);
const CircleOutside2PtConicalEffect& data = processor.cast<CircleOutside2PtConicalEffect>();
SkASSERT(data.isFlipped() == fIsFlipped);
SkScalar centerX = data.centerX();
SkScalar centerY = data.centerY();
SkScalar A = data.A();
SkScalar B = data.B();
SkScalar C = data.C();
SkScalar tLimit = data.tLimit();
if (fCachedCenterX != centerX || fCachedCenterY != centerY ||
fCachedA != A || fCachedB != B || fCachedC != C || fCachedTLimit != tLimit) {
pdman.set2f(fCenterUni, SkScalarToFloat(centerX), SkScalarToFloat(centerY));
pdman.set4f(fParamUni, SkScalarToFloat(A), SkScalarToFloat(B), SkScalarToFloat(C),
SkScalarToFloat(tLimit));
fCachedCenterX = centerX;
fCachedCenterY = centerY;
fCachedA = A;
fCachedB = B;
fCachedC = C;
fCachedTLimit = tLimit;
}
}
void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::GenKey(
const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
uint32_t* key = b->add32n(2);
key[0] = GenBaseGradientKey(processor);
key[1] = processor.cast<CircleOutside2PtConicalEffect>().isFlipped();
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> Gr2PtConicalGradientEffect::Make(
const GrGradientEffect::CreateArgs& args) {
const SkTwoPointConicalGradient& shader =
*static_cast<const SkTwoPointConicalGradient*>(args.fShader);
SkMatrix matrix;
if (!shader.getLocalMatrix().invert(&matrix)) {
return nullptr;
}
if (args.fMatrix) {
SkMatrix inv;
if (!args.fMatrix->invert(&inv)) {
return nullptr;
}
matrix.postConcat(inv);
}
GrGradientEffect::CreateArgs newArgs(args.fContext, args.fShader, &matrix, args.fTileMode,
std::move(args.fColorSpaceXform), args.fGammaCorrect);
if (shader.getStartRadius() < kErrorTol) {
SkScalar focalX;
ConicalType type = set_matrix_focal_conical(shader, &matrix, &focalX);
if (type == kInside_ConicalType) {
return FocalInside2PtConicalEffect::Make(newArgs, focalX);
} else if(type == kEdge_ConicalType) {
set_matrix_edge_conical(shader, &matrix);
return Edge2PtConicalEffect::Make(newArgs);
} else {
return FocalOutside2PtConicalEffect::Make(newArgs, focalX);
}
}
CircleConicalInfo info;
ConicalType type = set_matrix_circle_conical(shader, &matrix, &info);
if (type == kInside_ConicalType) {
return CircleInside2PtConicalEffect::Make(newArgs, info);
} else if (type == kEdge_ConicalType) {
set_matrix_edge_conical(shader, &matrix);
return Edge2PtConicalEffect::Make(newArgs);
} else {
return CircleOutside2PtConicalEffect::Make(newArgs, info);
}
}
#endif