| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkCodecPriv.h" |
| #include "SkColorPriv.h" |
| #include "SkSwizzler.h" |
| #include "SkTemplates.h" |
| #include "SkUtils.h" |
| |
| SkSwizzler::ResultAlpha SkSwizzler::GetResult(uint8_t zeroAlpha, |
| uint8_t maxAlpha) { |
| // In the transparent case, this returns 0x0000 |
| // In the opaque case, this returns 0xFFFF |
| // If the row is neither transparent nor opaque, returns something else |
| return (((uint16_t) maxAlpha) << 8) | zeroAlpha; |
| } |
| |
| // kIndex1, kIndex2, kIndex4 |
| |
| static SkSwizzler::ResultAlpha swizzle_small_index_to_index( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bitsPerPixel, int y, const SkPMColor ctable[]) { |
| |
| uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; |
| INIT_RESULT_ALPHA; |
| const uint32_t pixelsPerByte = 8 / bitsPerPixel; |
| const size_t rowBytes = compute_row_bytes_ppb(width, pixelsPerByte); |
| const uint8_t mask = (1 << bitsPerPixel) - 1; |
| int x = 0; |
| for (uint32_t byte = 0; byte < rowBytes; byte++) { |
| uint8_t pixelData = src[byte]; |
| for (uint32_t p = 0; p < pixelsPerByte && x < width; p++) { |
| uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask; |
| UPDATE_RESULT_ALPHA(ctable[index] >> SK_A32_SHIFT); |
| dst[x] = index; |
| pixelData <<= bitsPerPixel; |
| x++; |
| } |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_small_index_to_n32( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bitsPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*) dstRow; |
| INIT_RESULT_ALPHA; |
| const uint32_t pixelsPerByte = 8 / bitsPerPixel; |
| const size_t rowBytes = compute_row_bytes_ppb(width, pixelsPerByte); |
| const uint8_t mask = (1 << bitsPerPixel) - 1; |
| int x = 0; |
| for (uint32_t byte = 0; byte < rowBytes; byte++) { |
| uint8_t pixelData = src[byte]; |
| for (uint32_t p = 0; p < pixelsPerByte && x < width; p++) { |
| uint8_t index = (pixelData >> (8 - bitsPerPixel)) & mask; |
| SkPMColor c = ctable[index]; |
| UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); |
| dst[x] = c; |
| pixelData <<= bitsPerPixel; |
| x++; |
| } |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| // kIndex |
| |
| static SkSwizzler::ResultAlpha swizzle_index_to_index( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| uint8_t* SK_RESTRICT dst = (uint8_t*) dstRow; |
| memcpy(dst, src, width); |
| // TODO (msarett): Should we skip the loop here and guess that the row is opaque/not opaque? |
| // SkScaledBitmap sampler just guesses that it is opaque. This is dangerous |
| // and probably wrong since gif and bmp (rarely) may have alpha. |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| UPDATE_RESULT_ALPHA(ctable[src[x]] >> SK_A32_SHIFT); |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_index_to_n32( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| SkPMColor c = ctable[src[x]]; |
| UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); |
| dst[x] = c; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_index_to_n32_skipZ( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| SkPMColor c = ctable[src[x]]; |
| UPDATE_RESULT_ALPHA(c >> SK_A32_SHIFT); |
| if (c != 0) { |
| dst[x] = c; |
| } |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| #undef A32_MASK_IN_PLACE |
| |
| // kGray |
| |
| static SkSwizzler::ResultAlpha swizzle_gray_to_n32( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| for (int x = 0; x < width; x++) { |
| dst[x] = SkPackARGB32NoCheck(0xFF, src[x], src[x], src[x]); |
| } |
| return SkSwizzler::kOpaque_ResultAlpha; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_gray_to_gray( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| memcpy(dstRow, src, width); |
| return SkSwizzler::kOpaque_ResultAlpha; |
| } |
| |
| // kBGRX |
| |
| static SkSwizzler::ResultAlpha swizzle_bgrx_to_n32( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| for (int x = 0; x < width; x++) { |
| dst[x] = SkPackARGB32NoCheck(0xFF, src[2], src[1], src[0]); |
| src += bytesPerPixel; |
| } |
| return SkSwizzler::kOpaque_ResultAlpha; |
| } |
| |
| // kBGRA |
| |
| static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_unpremul( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| uint8_t alpha = src[3]; |
| UPDATE_RESULT_ALPHA(alpha); |
| dst[x] = SkPackARGB32NoCheck(alpha, src[2], src[1], src[0]); |
| src += bytesPerPixel; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_bgra_to_n32_premul( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| uint8_t alpha = src[3]; |
| UPDATE_RESULT_ALPHA(alpha); |
| dst[x] = SkPreMultiplyARGB(alpha, src[2], src[1], src[0]); |
| src += bytesPerPixel; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| // n32 |
| static SkSwizzler::ResultAlpha swizzle_rgbx_to_n32( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| for (int x = 0; x < width; x++) { |
| dst[x] = SkPackARGB32(0xFF, src[0], src[1], src[2]); |
| src += bytesPerPixel; |
| } |
| return SkSwizzler::kOpaque_ResultAlpha; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| unsigned alpha = src[3]; |
| UPDATE_RESULT_ALPHA(alpha); |
| dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]); |
| src += bytesPerPixel; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_unpremul( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| uint32_t* SK_RESTRICT dst = reinterpret_cast<uint32_t*>(dstRow); |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| unsigned alpha = src[3]; |
| UPDATE_RESULT_ALPHA(alpha); |
| dst[x] = SkPackARGB32NoCheck(alpha, src[0], src[1], src[2]); |
| src += bytesPerPixel; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| static SkSwizzler::ResultAlpha swizzle_rgba_to_n32_premul_skipZ( |
| void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| int bytesPerPixel, int y, const SkPMColor ctable[]) { |
| |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| INIT_RESULT_ALPHA; |
| for (int x = 0; x < width; x++) { |
| unsigned alpha = src[3]; |
| UPDATE_RESULT_ALPHA(alpha); |
| if (0 != alpha) { |
| dst[x] = SkPreMultiplyARGB(alpha, src[0], src[1], src[2]); |
| } |
| src += bytesPerPixel; |
| } |
| return COMPUTE_RESULT_ALPHA; |
| } |
| |
| /** |
| FIXME: This was my idea to cheat in order to continue taking advantage of skipping zeroes. |
| This would be fine for drawing normally, but not for drawing with transfer modes. Being |
| honest means we can draw correctly with transfer modes, with the cost of not being able |
| to take advantage of Android's free unwritten pages. Something to keep in mind when we |
| decide whether to switch to unpremul default. |
| static bool swizzle_rgba_to_n32_unpremul_skipZ(void* SK_RESTRICT dstRow, |
| const uint8_t* SK_RESTRICT src, |
| int width, int bitsPerPixel, |
| const SkPMColor[]) { |
| SkPMColor* SK_RESTRICT dst = (SkPMColor*)dstRow; |
| unsigned alphaMask = 0xFF; |
| for (int x = 0; x < width; x++) { |
| unsigned alpha = src[3]; |
| // NOTE: We cheat here. The caller requested unpremul and skip zeroes. It's possible |
| // the color components are not zero, but we skip them anyway, meaning they'll remain |
| // zero (implied by the request to skip zeroes). |
| if (0 != alpha) { |
| dst[x] = SkPackARGB32NoCheck(alpha, src[0], src[1], src[2]); |
| } |
| src += deltaSrc; |
| alphaMask &= alpha; |
| } |
| return alphaMask != 0xFF; |
| } |
| */ |
| |
| SkSwizzler* SkSwizzler::CreateSwizzler(SkSwizzler::SrcConfig sc, |
| const SkPMColor* ctable, |
| const SkImageInfo& info, void* dst, |
| size_t dstRowBytes, |
| SkCodec::ZeroInitialized zeroInit) { |
| if (info.colorType() == kUnknown_SkColorType || kUnknown == sc) { |
| return NULL; |
| } |
| if (info.minRowBytes() > dstRowBytes) { |
| return NULL; |
| } |
| if ((kIndex == sc || kIndex4 == sc || kIndex2 == sc || kIndex1 == sc) |
| && NULL == ctable) { |
| return NULL; |
| } |
| RowProc proc = NULL; |
| switch (sc) { |
| case kIndex1: |
| case kIndex2: |
| case kIndex4: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| proc = &swizzle_small_index_to_n32; |
| break; |
| case kIndex_8_SkColorType: |
| proc = &swizzle_small_index_to_index; |
| break; |
| default: |
| break; |
| } |
| break; |
| case kIndex: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| // We assume the color premultiplied ctable (or not) as desired. |
| if (SkCodec::kYes_ZeroInitialized == zeroInit) { |
| proc = &swizzle_index_to_n32_skipZ; |
| break; |
| } else { |
| proc = &swizzle_index_to_n32; |
| break; |
| } |
| break; |
| case kIndex_8_SkColorType: |
| proc = &swizzle_index_to_index; |
| break; |
| default: |
| break; |
| } |
| break; |
| case kGray: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| proc = &swizzle_gray_to_n32; |
| break; |
| case kGray_8_SkColorType: |
| proc = &swizzle_gray_to_gray; |
| default: |
| break; |
| } |
| break; |
| case kBGR: |
| case kBGRX: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| proc = &swizzle_bgrx_to_n32; |
| break; |
| default: |
| break; |
| } |
| break; |
| case kBGRA: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| switch (info.alphaType()) { |
| case kUnpremul_SkAlphaType: |
| proc = &swizzle_bgra_to_n32_unpremul; |
| break; |
| case kPremul_SkAlphaType: |
| proc = &swizzle_bgra_to_n32_premul; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| case kRGBX: |
| // TODO: Support other swizzles. |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| proc = &swizzle_rgbx_to_n32; |
| break; |
| default: |
| break; |
| } |
| break; |
| case kRGBA: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| if (info.alphaType() == kUnpremul_SkAlphaType) { |
| // Respect zeroInit? |
| proc = &swizzle_rgba_to_n32_unpremul; |
| } else { |
| if (SkCodec::kYes_ZeroInitialized == zeroInit) { |
| proc = &swizzle_rgba_to_n32_premul_skipZ; |
| } else { |
| proc = &swizzle_rgba_to_n32_premul; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| case kRGB: |
| switch (info.colorType()) { |
| case kN32_SkColorType: |
| proc = &swizzle_rgbx_to_n32; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| if (NULL == proc) { |
| return NULL; |
| } |
| |
| // Store deltaSrc in bytes if it is an even multiple, otherwise use bits |
| int deltaSrc = SkIsAlign8(BitsPerPixel(sc)) ? BytesPerPixel(sc) : |
| BitsPerPixel(sc); |
| return SkNEW_ARGS(SkSwizzler, (proc, ctable, deltaSrc, info, dst, |
| dstRowBytes)); |
| } |
| |
| SkSwizzler::SkSwizzler(RowProc proc, const SkPMColor* ctable, |
| int deltaSrc, const SkImageInfo& info, void* dst, |
| size_t rowBytes) |
| : fRowProc(proc) |
| , fColorTable(ctable) |
| , fDeltaSrc(deltaSrc) |
| , fDstInfo(info) |
| , fDstRow(dst) |
| , fDstRowBytes(rowBytes) |
| , fCurrY(0) |
| { |
| SkDEBUGCODE(fNextMode = kUninitialized_NextMode); |
| } |
| |
| SkSwizzler::ResultAlpha SkSwizzler::next(const uint8_t* SK_RESTRICT src) { |
| SkASSERT(0 <= fCurrY && fCurrY < fDstInfo.height()); |
| SkASSERT(fDstRow != NULL); |
| SkASSERT(kDesignateRow_NextMode != fNextMode); |
| SkDEBUGCODE(fNextMode = kConsecutive_NextMode); |
| |
| // Decode a row |
| const ResultAlpha result = fRowProc(fDstRow, src, fDstInfo.width(), |
| fDeltaSrc, fCurrY, fColorTable); |
| |
| // Move to the next row and return the result |
| fCurrY++; |
| fDstRow = SkTAddOffset<void>(fDstRow, fDstRowBytes); |
| return result; |
| } |
| |
| SkSwizzler::ResultAlpha SkSwizzler::next(const uint8_t* SK_RESTRICT src, |
| int y) { |
| SkASSERT(0 <= y && y < fDstInfo.height()); |
| SkASSERT(kConsecutive_NextMode != fNextMode); |
| SkDEBUGCODE(fNextMode = kDesignateRow_NextMode); |
| |
| // Choose the row |
| void* row = SkTAddOffset<void>(fDstRow, y*fDstRowBytes); |
| |
| // Decode the row |
| return fRowProc(row, src, fDstInfo.width(), fDeltaSrc, fCurrY, |
| fColorTable); |
| } |
| |
| void SkSwizzler::Fill(void* dstStartRow, const SkImageInfo& dstInfo, size_t dstRowBytes, |
| uint32_t numRows, uint32_t colorOrIndex, const SkPMColor* colorTable) { |
| SkASSERT(dstStartRow != NULL); |
| SkASSERT(numRows <= (uint32_t) dstInfo.height()); |
| |
| // Calculate bytes to fill. We use getSafeSize since the last row may not be padded. |
| const size_t bytesToFill = dstInfo.makeWH(dstInfo.width(), numRows).getSafeSize(dstRowBytes); |
| |
| // Use the proper memset routine to fill the remaining bytes |
| switch(dstInfo.colorType()) { |
| case kN32_SkColorType: |
| // Assume input is an index if we have a color table |
| uint32_t color; |
| if (NULL != colorTable) { |
| SkASSERT(colorOrIndex == (uint8_t) colorOrIndex); |
| color = colorTable[colorOrIndex]; |
| // Otherwise, assume the input is a color |
| } else { |
| color = colorOrIndex; |
| } |
| |
| // We must fill row by row in the case of unaligned row bytes |
| if (SkIsAlign4((size_t) dstStartRow) && SkIsAlign4(dstRowBytes)) { |
| sk_memset32((uint32_t*) dstStartRow, color, |
| (uint32_t) bytesToFill / sizeof(SkPMColor)); |
| } else { |
| // This is an unlikely, slow case |
| SkCodecPrintf("Warning: Strange number of row bytes, fill will be slow.\n"); |
| uint32_t* dstRow = (uint32_t*) dstStartRow; |
| for (uint32_t row = 0; row < numRows; row++) { |
| for (int32_t col = 0; col < dstInfo.width(); col++) { |
| dstRow[col] = color; |
| } |
| dstRow = SkTAddOffset<uint32_t>(dstRow, dstRowBytes); |
| } |
| } |
| break; |
| // On an index destination color type, always assume the input is an index |
| case kIndex_8_SkColorType: |
| SkASSERT(colorOrIndex == (uint8_t) colorOrIndex); |
| memset(dstStartRow, colorOrIndex, bytesToFill); |
| break; |
| case kGray_8_SkColorType: |
| // If the destination is kGray, the caller passes in an 8-bit color. |
| // We will not assert that the high bits of colorOrIndex must be zeroed. |
| // This allows us to take advantage of the fact that the low 8 bits of an |
| // SKPMColor may be a valid a grayscale color. For example, the low 8 |
| // bits of SK_ColorBLACK are identical to the grayscale representation |
| // for black. |
| memset(dstStartRow, (uint8_t) colorOrIndex, bytesToFill); |
| break; |
| default: |
| SkCodecPrintf("Error: Unsupported dst color type for fill(). Doing nothing.\n"); |
| SkASSERT(false); |
| break; |
| } |
| } |