blob: eb969e4704f7d7ac542f07bab85a0f7dd10d0d65 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGpu_DEFINED
#define GrGpu_DEFINED
#include "GrCaps.h"
#include "GrGpuCommandBuffer.h"
#include "GrProgramDesc.h"
#include "GrSwizzle.h"
#include "GrAllocator.h"
#include "GrTextureProducer.h"
#include "GrTypes.h"
#include "GrXferProcessor.h"
#include "SkPath.h"
#include "SkTArray.h"
#include <map>
class GrBackendRenderTarget;
class GrBackendSemaphore;
class GrBuffer;
class GrContext;
struct GrContextOptions;
class GrGLContext;
class GrMesh;
class GrPath;
class GrPathRenderer;
class GrPathRendererChain;
class GrPathRendering;
class GrPipeline;
class GrPrimitiveProcessor;
class GrRenderTarget;
class GrSemaphore;
class GrStencilAttachment;
class GrStencilSettings;
class GrSurface;
class GrTexture;
class SkJSONWriter;
class GrGpu : public SkRefCnt {
public:
GrGpu(GrContext* context);
~GrGpu() override;
GrContext* getContext() { return fContext; }
const GrContext* getContext() const { return fContext; }
/**
* Gets the capabilities of the draw target.
*/
const GrCaps* caps() const { return fCaps.get(); }
sk_sp<const GrCaps> refCaps() const { return fCaps; }
GrPathRendering* pathRendering() { return fPathRendering.get(); }
enum class DisconnectType {
// No cleanup should be attempted, immediately cease making backend API calls
kAbandon,
// Free allocated resources (not known by GrResourceCache) before returning and
// ensure no backend backend 3D API calls will be made after disconnect() returns.
kCleanup,
};
// Called by GrContext when the underlying backend context is already or will be destroyed
// before GrContext.
virtual void disconnect(DisconnectType);
/**
* The GrGpu object normally assumes that no outsider is setting state
* within the underlying 3D API's context/device/whatever. This call informs
* the GrGpu that the state was modified and it shouldn't make assumptions
* about the state.
*/
void markContextDirty(uint32_t state = kAll_GrBackendState) { fResetBits |= state; }
/**
* Creates a texture object. If kRenderTarget_GrSurfaceFlag the texture can
* be used as a render target by calling GrTexture::asRenderTarget(). Not all
* pixel configs can be used as render targets. Support for configs as textures
* or render targets can be checked using GrCaps.
*
* @param desc describes the texture to be created.
* @param budgeted does this texture count against the resource cache budget?
* @param texels array of mipmap levels containing texel data to load.
* Each level begins with full-size palette data for paletted textures.
* It contains width*height texels. If there is only one
* element and it contains nullptr fPixels, texture data is
* uninitialized.
* @param mipLevelCount the number of levels in 'texels'
* @return The texture object if successful, otherwise nullptr.
*/
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, const GrMipLevel texels[],
int mipLevelCount);
/**
* Simplified createTexture() interface for when there is no initial texel data to upload.
*/
sk_sp<GrTexture> createTexture(const GrSurfaceDesc& desc, SkBudgeted);
/**
* Implements GrResourceProvider::wrapBackendTexture
*/
sk_sp<GrTexture> wrapBackendTexture(const GrBackendTexture&, GrWrapOwnership);
/**
* Implements GrResourceProvider::wrapRenderableBackendTexture
*/
sk_sp<GrTexture> wrapRenderableBackendTexture(const GrBackendTexture&,
int sampleCnt, GrWrapOwnership);
/**
* Implements GrResourceProvider::wrapBackendRenderTarget
*/
sk_sp<GrRenderTarget> wrapBackendRenderTarget(const GrBackendRenderTarget&);
/**
* Implements GrResourceProvider::wrapBackendTextureAsRenderTarget
*/
sk_sp<GrRenderTarget> wrapBackendTextureAsRenderTarget(const GrBackendTexture&,
int sampleCnt);
/**
* Creates a buffer in GPU memory. For a client-side buffer use GrBuffer::CreateCPUBacked.
*
* @param size size of buffer to create.
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param accessPattern hint to the graphics subsystem about how the data will be accessed.
* @param data optional data with which to initialize the buffer.
*
* @return the buffer if successful, otherwise nullptr.
*/
GrBuffer* createBuffer(size_t size, GrBufferType intendedType, GrAccessPattern accessPattern,
const void* data = nullptr);
/**
* Resolves MSAA.
*/
void resolveRenderTarget(GrRenderTarget*);
/** Info struct returned by getReadPixelsInfo about performing intermediate draws before
reading pixels for performance or correctness. */
struct ReadPixelTempDrawInfo {
/**
* If the GrGpu is requesting that the caller do a draw to an intermediate surface then
* this is descriptor for the temp surface. The draw should always be a rect with dst
* 0,0,w,h.
*/
GrSurfaceDesc fTempSurfaceDesc;
/**
* Indicates whether there is a performance advantage to using an exact match texture
* (in terms of width and height) for the intermediate texture instead of approximate.
*/
SkBackingFit fTempSurfaceFit;
/**
* Swizzle to apply during the draw. This is used to compensate for either feature or
* performance limitations in the underlying 3D API.
*/
GrSwizzle fSwizzle;
/**
* The color type that should be used to read from the temp surface after the draw. This
* may be different than the original read color type in order to compensate for swizzling.
* The read data will effectively be in the original color type. The original gamma
* encoding is always used.
*/
GrColorType fReadColorType;
};
/** Describes why an intermediate draw must/should be performed before readPixels. */
enum DrawPreference {
/**
* On input means that the caller would proceed without draw if the GrGpu doesn't request
* one. On output means that the GrGpu is not requesting a draw.
*/
kNoDraw_DrawPreference,
/**
* Means that the client would prefer a draw for performance of the readback but
* can satisfy a straight readPixels call on the inputs without an intermediate draw.
* getReadPixelsInfo will never set the draw preference to this value but may leave
* it set.
*/
kCallerPrefersDraw_DrawPreference,
/**
* On output means that GrGpu would prefer a draw for performance of the readback but
* can satisfy a straight readPixels call on the inputs without an intermediate draw. The
* caller of getReadPixelsInfo should never specify this on intput.
*/
kGpuPrefersDraw_DrawPreference,
/**
* On input means that the caller requires a draw to do a transformation and there is no
* CPU fallback. On output means that GrGpu can only satisfy the readPixels request if the
* intermediate draw is performed.
*/
kRequireDraw_DrawPreference
};
/**
* Used to negotiate whether and how an intermediate draw should or must be performed before
* a readPixels call. If this returns false then GrGpu could not deduce an intermediate draw
* that would allow a successful readPixels call. The passed width, height, and rowBytes,
* must be non-zero and already reflect clipping to the src bounds.
*/
bool getReadPixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, size_t rowBytes,
GrColorType, GrSRGBConversion, DrawPreference*, ReadPixelTempDrawInfo*);
/**
* Info struct returned by getWritePixelsInfo about performing an intermediate draw in order
* to write pixels to a GrSurface for either performance or correctness reasons.
*/
struct WritePixelTempDrawInfo {
/**
* If the GrGpu is requesting that the caller upload to an intermediate surface and draw
* that to the dst then this is the descriptor for the intermediate surface. The caller
* should upload the pixels such that the upper left pixel of the upload rect is at 0,0 in
* the intermediate surface
*/
GrSurfaceDesc fTempSurfaceDesc;
/**
* Swizzle to apply during the draw. This is used to compensate for either feature or
* performance limitations in the underlying 3D API.
*/
GrSwizzle fSwizzle;
/**
* The color type that should be specified when uploading the *original* data to the temp
* surface before the draw. This may be different than the original src color type in
* order to compensate for swizzling that will occur when drawing. The original gamma
* encoding is always used.
*/
GrColorType fWriteColorType;
};
/**
* Used to negotiate whether and how an intermediate surface should be used to write pixels to
* a GrSurface. If this returns false then GrGpu could not deduce an intermediate draw
* that would allow a successful transfer of the src pixels to the dst. The passed width,
* height, and rowBytes, must be non-zero and already reflect clipping to the dst bounds.
*/
bool getWritePixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height, GrColorType,
GrSRGBConversion, DrawPreference*, WritePixelTempDrawInfo*);
/**
* Reads a rectangle of pixels from a render target. No sRGB/linear conversions are performed.
*
* @param surface The surface to read from
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param dstColorType the color type of the destination buffer.
* @param buffer memory to read the rectangle into.
* @param rowBytes the number of bytes between consecutive rows. Zero
* means rows are tightly packed.
* @param invertY buffer should be populated bottom-to-top as opposed
* to top-to-bottom (skia's usual order)
*
* @return true if the read succeeded, false if not. The read can fail
* because of a unsupported pixel config or because no render
* target is currently set.
*/
bool readPixels(GrSurface* surface, GrSurfaceOrigin, int left, int top, int width, int height,
GrColorType dstColorType, void* buffer, size_t rowBytes);
/**
* This version of readPixels doesn't take an origin. TODO: Remove origin handling from
* GrGpu::readPixels entirely.
*/
bool readPixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType dstColorType, void* buffer, size_t rowBytes) {
return this->readPixels(surface, kTopLeft_GrSurfaceOrigin, left, top, width, height,
dstColorType, buffer, rowBytes);
}
/**
* Updates the pixels in a rectangle of a surface. No sRGB/linear conversions are performed.
*
* @param surface The surface to write to.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param srcColorType the color type of the source buffer.
* @param texels array of mipmap levels containing texture data
* @param mipLevelCount number of levels in 'texels'
*/
bool writePixels(GrSurface* surface, GrSurfaceOrigin origin, int left, int top, int width,
int height, GrColorType srcColorType, const GrMipLevel texels[],
int mipLevelCount);
/**
* This function is a shim which creates a SkTArray<GrMipLevel> of size 1.
* It then calls writePixels with that SkTArray.
*/
bool writePixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width, int height,
GrColorType, const void* buffer, size_t rowBytes);
/**
* This version of writePixels doesn't take an origin. TODO: Remove origin handling from
* GrGpu::writePixels entirely.
*/
bool writePixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType srcColorType, const void* buffer, size_t rowBytes) {
return this->writePixels(surface, kTopLeft_GrSurfaceOrigin, left, top, width, height,
srcColorType, buffer, rowBytes);
}
/**
* Updates the pixels in a rectangle of a texture using a buffer
*
* There are a couple of assumptions here. First, we only update the top miplevel.
* And second, that any y flip needed has already been done in the buffer.
*
* @param texture The texture to write to.
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param bufferColorType the color type of the transfer buffer's pixel data
* @param transferBuffer GrBuffer to read pixels from (type must be "kXferCpuToGpu")
* @param offset offset from the start of the buffer
* @param rowBytes number of bytes between consecutive rows in the buffer. Zero
* means rows are tightly packed.
*/
bool transferPixels(GrTexture* texture, int left, int top, int width, int height,
GrColorType bufferColorType, GrBuffer* transferBuffer, size_t offset,
size_t rowBytes);
// After the client interacts directly with the 3D context state the GrGpu
// must resync its internal state and assumptions about 3D context state.
// Each time this occurs the GrGpu bumps a timestamp.
// state of the 3D context
// At 10 resets / frame and 60fps a 64bit timestamp will overflow in about
// a billion years.
typedef uint64_t ResetTimestamp;
// This timestamp is always older than the current timestamp
static const ResetTimestamp kExpiredTimestamp = 0;
// Returns a timestamp based on the number of times the context was reset.
// This timestamp can be used to lazily detect when cached 3D context state
// is dirty.
ResetTimestamp getResetTimestamp() const { return fResetTimestamp; }
// Called to perform a surface to surface copy. Fallbacks to issuing a draw from the src to dst
// take place at the GrOpList level and this function implement faster copy paths. The rect
// and point are pre-clipped. The src rect and implied dst rect are guaranteed to be within the
// src/dst bounds and non-empty. If canDiscardOutsideDstRect is set to true then we don't need
// to preserve any data on the dst surface outside of the copy.
bool copySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect,
const SkIPoint& dstPoint,
bool canDiscardOutsideDstRect = false);
// Creates a GrGpuRTCommandBuffer which GrOpLists send draw commands to instead of directly
// to the Gpu object.
virtual GrGpuRTCommandBuffer* createCommandBuffer(
GrRenderTarget*, GrSurfaceOrigin,
const GrGpuRTCommandBuffer::LoadAndStoreInfo&,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo&) = 0;
// Creates a GrGpuTextureCommandBuffer which GrOpLists send texture commands to instead of
// directly to the Gpu object.
virtual GrGpuTextureCommandBuffer* createCommandBuffer(GrTexture*, GrSurfaceOrigin) = 0;
// Called by GrDrawingManager when flushing.
// Provides a hook for post-flush actions (e.g. Vulkan command buffer submits). This will also
// insert any numSemaphore semaphores on the gpu and set the backendSemaphores to match the
// inserted semaphores.
GrSemaphoresSubmitted finishFlush(int numSemaphores, GrBackendSemaphore backendSemaphores[]);
virtual GrFence SK_WARN_UNUSED_RESULT insertFence() = 0;
virtual bool waitFence(GrFence, uint64_t timeout = 1000) = 0;
virtual void deleteFence(GrFence) const = 0;
virtual sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned = true) = 0;
virtual sk_sp<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) = 0;
virtual void insertSemaphore(sk_sp<GrSemaphore> semaphore, bool flush = false) = 0;
virtual void waitSemaphore(sk_sp<GrSemaphore> semaphore) = 0;
/**
* Put this texture in a safe and known state for use across multiple GrContexts. Depending on
* the backend, this may return a GrSemaphore. If so, other contexts should wait on that
* semaphore before using this texture.
*/
virtual sk_sp<GrSemaphore> prepareTextureForCrossContextUsage(GrTexture*) = 0;
///////////////////////////////////////////////////////////////////////////
// Debugging and Stats
class Stats {
public:
#if GR_GPU_STATS
Stats() { this->reset(); }
void reset() {
fRenderTargetBinds = 0;
fShaderCompilations = 0;
fTextureCreates = 0;
fTextureUploads = 0;
fTransfersToTexture = 0;
fStencilAttachmentCreates = 0;
fNumDraws = 0;
fNumFailedDraws = 0;
}
int renderTargetBinds() const { return fRenderTargetBinds; }
void incRenderTargetBinds() { fRenderTargetBinds++; }
int shaderCompilations() const { return fShaderCompilations; }
void incShaderCompilations() { fShaderCompilations++; }
int textureCreates() const { return fTextureCreates; }
void incTextureCreates() { fTextureCreates++; }
int textureUploads() const { return fTextureUploads; }
void incTextureUploads() { fTextureUploads++; }
int transfersToTexture() const { return fTransfersToTexture; }
void incTransfersToTexture() { fTransfersToTexture++; }
void incStencilAttachmentCreates() { fStencilAttachmentCreates++; }
void incNumDraws() { fNumDraws++; }
void incNumFailedDraws() { ++fNumFailedDraws; }
void dump(SkString*);
void dumpKeyValuePairs(SkTArray<SkString>* keys, SkTArray<double>* values);
int numDraws() const { return fNumDraws; }
int numFailedDraws() const { return fNumFailedDraws; }
private:
int fRenderTargetBinds;
int fShaderCompilations;
int fTextureCreates;
int fTextureUploads;
int fTransfersToTexture;
int fStencilAttachmentCreates;
int fNumDraws;
int fNumFailedDraws;
#else
void dump(SkString*) {}
void dumpKeyValuePairs(SkTArray<SkString>*, SkTArray<double>*) {}
void incRenderTargetBinds() {}
void incShaderCompilations() {}
void incTextureCreates() {}
void incTextureUploads() {}
void incTransfersToTexture() {}
void incStencilAttachmentCreates() {}
void incNumDraws() {}
void incNumFailedDraws() {}
#endif
};
Stats* stats() { return &fStats; }
void dumpJSON(SkJSONWriter*) const;
#if GR_TEST_UTILS
/** Creates a texture directly in the backend API without wrapping it in a GrTexture. This is
only to be used for testing (particularly for testing the methods that import an externally
created texture into Skia. Must be matched with a call to deleteTestingOnlyTexture(). */
GrBackendTexture createTestingOnlyBackendTexture(const void* pixels, int w, int h, SkColorType,
SkColorSpace* cs, bool isRenderTarget,
GrMipMapped);
/** Older version based on GrPixelConfig. Currently the preferred one above devolves to this. */
virtual GrBackendTexture createTestingOnlyBackendTexture(const void* pixels, int w, int h,
GrPixelConfig config,
bool isRenderTarget,
GrMipMapped mipMapped) = 0;
/** Check a handle represents an actual texture in the backend API that has not been freed. */
virtual bool isTestingOnlyBackendTexture(const GrBackendTexture&) const = 0;
/**
* Frees a texture created by createTestingOnlyBackendTexture(). If ownership of the backend
* texture has been transferred to a GrContext using adopt semantics this should not be called.
*/
virtual void deleteTestingOnlyBackendTexture(const GrBackendTexture&) = 0;
virtual GrBackendRenderTarget createTestingOnlyBackendRenderTarget(int w, int h, GrColorType,
GrSRGBEncoded) = 0;
virtual void deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget&) = 0;
// This is only to be used in GL-specific tests.
virtual const GrGLContext* glContextForTesting() const { return nullptr; }
// This is only to be used by testing code
virtual void resetShaderCacheForTesting() const {}
/**
* Flushes all work to the gpu and forces the GPU to wait until all the gpu work has completed.
* This is for testing purposes only.
*/
virtual void testingOnly_flushGpuAndSync() = 0;
#endif
// width and height may be larger than rt (if underlying API allows it).
// Returns nullptr if compatible sb could not be created, otherwise the caller owns the ref on
// the GrStencilAttachment.
virtual GrStencilAttachment* createStencilAttachmentForRenderTarget(const GrRenderTarget*,
int width,
int height) = 0;
// clears target's entire stencil buffer to 0
virtual void clearStencil(GrRenderTarget* target, int clearValue) = 0;
// Determines whether a texture will need to be rescaled in order to be used with the
// GrSamplerState.
static bool IsACopyNeededForTextureParams(const GrCaps*, GrTextureProxy* texProxy,
int width, int height,
const GrSamplerState&, GrTextureProducer::CopyParams*,
SkScalar scaleAdjust[2]);
void handleDirtyContext() {
if (fResetBits) {
this->resetContext();
}
}
protected:
static void ElevateDrawPreference(GrGpu::DrawPreference* preference,
GrGpu::DrawPreference elevation) {
GR_STATIC_ASSERT(GrGpu::kCallerPrefersDraw_DrawPreference > GrGpu::kNoDraw_DrawPreference);
GR_STATIC_ASSERT(GrGpu::kGpuPrefersDraw_DrawPreference >
GrGpu::kCallerPrefersDraw_DrawPreference);
GR_STATIC_ASSERT(GrGpu::kRequireDraw_DrawPreference >
GrGpu::kGpuPrefersDraw_DrawPreference);
*preference = SkTMax(*preference, elevation);
}
// Handles cases where a surface will be updated without a call to flushRenderTarget.
void didWriteToSurface(GrSurface* surface, GrSurfaceOrigin origin, const SkIRect* bounds,
uint32_t mipLevels = 1) const;
Stats fStats;
std::unique_ptr<GrPathRendering> fPathRendering;
// Subclass must initialize this in its constructor.
sk_sp<const GrCaps> fCaps;
typedef SkTArray<SkPoint, true> SamplePattern;
private:
// called when the 3D context state is unknown. Subclass should emit any
// assumed 3D context state and dirty any state cache.
virtual void onResetContext(uint32_t resetBits) = 0;
// Called before certain draws in order to guarantee coherent results from dst reads.
virtual void xferBarrier(GrRenderTarget*, GrXferBarrierType) = 0;
// overridden by backend-specific derived class to create objects.
// Texture size and sample size will have already been validated in base class before
// onCreateTexture is called.
virtual sk_sp<GrTexture> onCreateTexture(const GrSurfaceDesc&, SkBudgeted,
const GrMipLevel texels[], int mipLevelCount) = 0;
virtual sk_sp<GrTexture> onWrapBackendTexture(const GrBackendTexture&, GrWrapOwnership) = 0;
virtual sk_sp<GrTexture> onWrapRenderableBackendTexture(const GrBackendTexture&,
int sampleCnt,
GrWrapOwnership) = 0;
virtual sk_sp<GrRenderTarget> onWrapBackendRenderTarget(const GrBackendRenderTarget&) = 0;
virtual sk_sp<GrRenderTarget> onWrapBackendTextureAsRenderTarget(const GrBackendTexture&,
int sampleCnt) = 0;
virtual GrBuffer* onCreateBuffer(size_t size, GrBufferType intendedType, GrAccessPattern,
const void* data) = 0;
virtual bool onGetReadPixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height,
size_t rowBytes, GrColorType, DrawPreference*,
ReadPixelTempDrawInfo*) = 0;
virtual bool onGetWritePixelsInfo(GrSurface*, GrSurfaceOrigin, int width, int height,
GrColorType, DrawPreference*, WritePixelTempDrawInfo*) = 0;
// overridden by backend-specific derived class to perform the surface read
virtual bool onReadPixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width, int height,
GrColorType, void* buffer, size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the surface write
virtual bool onWritePixels(GrSurface*, GrSurfaceOrigin, int left, int top, int width,
int height, GrColorType, const GrMipLevel texels[],
int mipLevelCount) = 0;
// overridden by backend-specific derived class to perform the texture transfer
virtual bool onTransferPixels(GrTexture*, int left, int top, int width, int height,
GrColorType colorType, GrBuffer* transferBuffer, size_t offset,
size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the resolve
virtual void onResolveRenderTarget(GrRenderTarget* target) = 0;
// overridden by backend specific derived class to perform the copy surface
virtual bool onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint,
bool canDiscardOutsideDstRect) = 0;
virtual void onFinishFlush(bool insertedSemaphores) = 0;
virtual void onDumpJSON(SkJSONWriter*) const {}
void resetContext() {
this->onResetContext(fResetBits);
fResetBits = 0;
++fResetTimestamp;
}
ResetTimestamp fResetTimestamp;
uint32_t fResetBits;
// The context owns us, not vice-versa, so this ptr is not ref'ed by Gpu.
GrContext* fContext;
friend class GrPathRendering;
typedef SkRefCnt INHERITED;
};
#endif