blob: c5b45633a77a6277776e7928fcb0201123f18b9c [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrPaint_DEFINED
#define GrPaint_DEFINED
#include "GrColor.h"
#include "GrFragmentProcessor.h"
#include "SkBlendMode.h"
#include "SkRefCnt.h"
#include "SkRegion.h"
#include "SkTLazy.h"
class GrTextureProxy;
class GrXPFactory;
/**
* The paint describes how color and coverage are computed at each pixel by GrContext draw
* functions and the how color is blended with the destination pixel.
*
* The paint allows installation of custom color and coverage stages. New types of stages are
* created by subclassing GrProcessor.
*
* The primitive color computation starts with the color specified by setColor(). This color is the
* input to the first color stage. Each color stage feeds its output to the next color stage.
*
* Fractional pixel coverage follows a similar flow. The GrGeometryProcessor (specified elsewhere)
* provides the initial coverage which is passed to the first coverage fragment processor, which
* feeds its output to next coverage fragment processor.
*
* setXPFactory is used to control blending between the output color and dest. It also implements
* the application of fractional coverage from the coverage pipeline.
*/
class GrPaint {
public:
GrPaint() = default;
~GrPaint() = default;
static GrPaint Clone(const GrPaint& src) { return GrPaint(src); }
/**
* The initial color of the drawn primitive. Defaults to solid white.
*/
void setColor4f(const GrColor4f& color) { fColor = color; }
const GrColor4f& getColor4f() const { return fColor; }
/**
* Legacy getter, until all code handles 4f directly.
*/
GrColor getColor() const { return fColor.toGrColor(); }
/**
* Should shader output conversion from linear to sRGB be disabled.
* Only relevant if the destination is sRGB. Defaults to false.
*/
void setDisableOutputConversionToSRGB(bool srgb) { fDisableOutputConversionToSRGB = srgb; }
bool getDisableOutputConversionToSRGB() const { return fDisableOutputConversionToSRGB; }
/**
* Should sRGB inputs be allowed to perform sRGB to linear conversion. With this flag
* set to false, sRGB textures will be treated as linear (including filtering).
*/
void setAllowSRGBInputs(bool allowSRGBInputs) { fAllowSRGBInputs = allowSRGBInputs; }
bool getAllowSRGBInputs() const { return fAllowSRGBInputs; }
/**
* Should rendering be gamma-correct, end-to-end. Causes sRGB render targets to behave
* as such (with linear blending), and sRGB inputs to be filtered and decoded correctly.
*/
void setGammaCorrect(bool gammaCorrect) {
this->setDisableOutputConversionToSRGB(!gammaCorrect);
this->setAllowSRGBInputs(gammaCorrect);
}
void setXPFactory(const GrXPFactory* xpFactory) {
fXPFactory = xpFactory;
fTrivial &= !SkToBool(xpFactory);
}
void setPorterDuffXPFactory(SkBlendMode mode);
void setCoverageSetOpXPFactory(SkRegion::Op, bool invertCoverage = false);
/**
* Appends an additional color processor to the color computation.
*/
void addColorFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp) {
SkASSERT(fp);
fColorFragmentProcessors.push_back(std::move(fp));
fTrivial = false;
}
/**
* Appends an additional coverage processor to the coverage computation.
*/
void addCoverageFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp) {
SkASSERT(fp);
fCoverageFragmentProcessors.push_back(std::move(fp));
fTrivial = false;
}
/**
* Helpers for adding color or coverage effects that sample a texture. The matrix is applied
* to the src space position to compute texture coordinates.
*/
void addColorTextureProcessor(sk_sp<GrTextureProxy>, const SkMatrix&);
void addColorTextureProcessor(sk_sp<GrTextureProxy>, const SkMatrix&, const GrSamplerState&);
void addCoverageTextureProcessor(sk_sp<GrTextureProxy>, const SkMatrix&);
void addCoverageTextureProcessor(sk_sp<GrTextureProxy>, const SkMatrix&, const GrSamplerState&);
int numColorFragmentProcessors() const { return fColorFragmentProcessors.count(); }
int numCoverageFragmentProcessors() const { return fCoverageFragmentProcessors.count(); }
int numTotalFragmentProcessors() const { return this->numColorFragmentProcessors() +
this->numCoverageFragmentProcessors(); }
const GrXPFactory* getXPFactory() const { return fXPFactory; }
GrFragmentProcessor* getColorFragmentProcessor(int i) const {
return fColorFragmentProcessors[i].get();
}
GrFragmentProcessor* getCoverageFragmentProcessor(int i) const {
return fCoverageFragmentProcessors[i].get();
}
/**
* Returns true if the paint's output color will be constant after blending. If the result is
* true, constantColor will be updated to contain the constant color. Note that we can conflate
* coverage and color, so the actual values written to pixels with partial coverage may still
* not seem constant, even if this function returns true.
*/
bool isConstantBlendedColor(GrColor* constantColor) const;
/**
* A trivial paint is one that uses src-over and has no fragment processors.
* It may have variable sRGB settings.
**/
bool isTrivial() const { return fTrivial; }
private:
// Since paint copying is expensive if there are fragment processors, we require going through
// the Clone() method.
GrPaint(const GrPaint&);
GrPaint& operator=(const GrPaint&) = delete;
friend class GrProcessorSet;
const GrXPFactory* fXPFactory = nullptr;
SkSTArray<4, std::unique_ptr<GrFragmentProcessor>> fColorFragmentProcessors;
SkSTArray<2, std::unique_ptr<GrFragmentProcessor>> fCoverageFragmentProcessors;
bool fDisableOutputConversionToSRGB = false;
bool fAllowSRGBInputs = false;
bool fTrivial = true;
GrColor4f fColor = GrColor4f::OpaqueWhite();
};
#endif