blob: 7adcf0295dfd0c2a81f44001524d70790bfd7427 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapDevice.h"
#include "SkCanvas.h"
#include "SkColorPriv.h"
#include "SkMathPriv.h"
#include "SkRegion.h"
#include "Test.h"
#include "sk_tool_utils.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
#include "SkGpuDevice.h"
#else
class GrContext;
class GrContextFactory;
#endif
static const int DEV_W = 100, DEV_H = 100;
static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H);
static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1,
DEV_H * SK_Scalar1);
static const U8CPU DEV_PAD = 0xee;
static SkPMColor getCanvasColor(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0x0;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 3:
a = 0x00;
break;
case 4:
a = 0x01;
break;
}
return SkPremultiplyARGBInline(a, r, g, b);
}
static bool config8888IsPremul(SkCanvas::Config8888 config8888) {
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
case SkCanvas::kBGRA_Premul_Config8888:
case SkCanvas::kRGBA_Premul_Config8888:
return true;
case SkCanvas::kNative_Unpremul_Config8888:
case SkCanvas::kBGRA_Unpremul_Config8888:
case SkCanvas::kRGBA_Unpremul_Config8888:
return false;
default:
SkASSERT(0);
return false;
}
}
// assumes any premu/.unpremul has been applied
static uint32_t packConfig8888(SkCanvas::Config8888 config8888,
U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
uint32_t r32;
uint8_t* result = reinterpret_cast<uint8_t*>(&r32);
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
case SkCanvas::kNative_Unpremul_Config8888:
r32 = SkPackARGB32NoCheck(a, r, g, b);
break;
case SkCanvas::kBGRA_Premul_Config8888:
case SkCanvas::kBGRA_Unpremul_Config8888:
result[0] = b;
result[1] = g;
result[2] = r;
result[3] = a;
break;
case SkCanvas::kRGBA_Premul_Config8888:
case SkCanvas::kRGBA_Unpremul_Config8888:
result[0] = r;
result[1] = g;
result[2] = b;
result[3] = a;
break;
default:
SkASSERT(0);
return 0;
}
return r32;
}
static uint32_t getBitmapColor(int x, int y, int w, SkCanvas::Config8888 config8888) {
int n = y * w + x;
U8CPU b = n & 0xff;
U8CPU g = (n >> 8) & 0xff;
U8CPU r = (n >> 16) & 0xff;
U8CPU a = 0;
switch ((x+y) % 5) {
case 4:
a = 0xff;
break;
case 3:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 1:
a = 0x01;
break;
case 0:
a = 0x00;
break;
}
if (config8888IsPremul(config8888)) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return packConfig8888(config8888, a, r, g , b);
}
static void fillCanvas(SkCanvas* canvas) {
SkBitmap bmp;
if (bmp.isNull()) {
SkDEBUGCODE(bool alloc = ) bmp.allocN32Pixels(DEV_W, DEV_H);
SkASSERT(alloc);
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
*bmp.getAddr32(x, y) = getCanvasColor(x, y);
}
}
}
canvas->save();
canvas->setMatrix(SkMatrix::I());
canvas->clipRect(DEV_RECT_S, SkRegion::kReplace_Op);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas->drawBitmap(bmp, 0, 0, &paint);
canvas->restore();
}
static SkPMColor convertConfig8888ToPMColor(SkCanvas::Config8888 config8888,
uint32_t color,
bool* premul) {
const uint8_t* c = reinterpret_cast<uint8_t*>(&color);
U8CPU a,r,g,b;
*premul = false;
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
return color;
case SkCanvas::kNative_Unpremul_Config8888:
*premul = true;
a = SkGetPackedA32(color);
r = SkGetPackedR32(color);
g = SkGetPackedG32(color);
b = SkGetPackedB32(color);
break;
case SkCanvas::kBGRA_Unpremul_Config8888:
*premul = true; // fallthru
case SkCanvas::kBGRA_Premul_Config8888:
a = static_cast<U8CPU>(c[3]);
r = static_cast<U8CPU>(c[2]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[0]);
break;
case SkCanvas::kRGBA_Unpremul_Config8888:
*premul = true; // fallthru
case SkCanvas::kRGBA_Premul_Config8888:
a = static_cast<U8CPU>(c[3]);
r = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[2]);
break;
default:
SkDEBUGFAIL("Unexpected Config8888");
return 0;
}
if (*premul) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return SkPackARGB32(a, r, g, b);
}
static bool checkPixel(SkPMColor a, SkPMColor b, bool didPremulConversion) {
if (!didPremulConversion) {
return a == b;
}
int32_t aA = static_cast<int32_t>(SkGetPackedA32(a));
int32_t aR = static_cast<int32_t>(SkGetPackedR32(a));
int32_t aG = static_cast<int32_t>(SkGetPackedG32(a));
int32_t aB = SkGetPackedB32(a);
int32_t bA = static_cast<int32_t>(SkGetPackedA32(b));
int32_t bR = static_cast<int32_t>(SkGetPackedR32(b));
int32_t bG = static_cast<int32_t>(SkGetPackedG32(b));
int32_t bB = static_cast<int32_t>(SkGetPackedB32(b));
return aA == bA &&
SkAbs32(aR - bR) <= 1 &&
SkAbs32(aG - bG) <= 1 &&
SkAbs32(aB - bB) <= 1;
}
static bool checkWrite(skiatest::Reporter* reporter,
SkCanvas* canvas,
const SkBitmap& bitmap,
int writeX, int writeY,
SkCanvas::Config8888 config8888) {
SkBaseDevice* dev = canvas->getDevice();
if (!dev) {
return false;
}
SkBitmap devBmp = dev->accessBitmap(false);
if (devBmp.width() != DEV_W ||
devBmp.height() != DEV_H ||
devBmp.config() != SkBitmap::kARGB_8888_Config ||
devBmp.isNull()) {
return false;
}
SkAutoLockPixels alp(devBmp);
intptr_t canvasPixels = reinterpret_cast<intptr_t>(devBmp.getPixels());
size_t canvasRowBytes = devBmp.rowBytes();
SkIRect writeRect = SkIRect::MakeXYWH(writeX, writeY, bitmap.width(), bitmap.height());
for (int cy = 0; cy < DEV_H; ++cy) {
const SkPMColor* canvasRow = reinterpret_cast<const SkPMColor*>(canvasPixels);
for (int cx = 0; cx < DEV_W; ++cx) {
SkPMColor canvasPixel = canvasRow[cx];
if (writeRect.contains(cx, cy)) {
int bx = cx - writeX;
int by = cy - writeY;
uint32_t bmpColor8888 = getBitmapColor(bx, by, bitmap.width(), config8888);
bool mul;
SkPMColor bmpPMColor = convertConfig8888ToPMColor(config8888, bmpColor8888, &mul);
bool check;
REPORTER_ASSERT(reporter, check = checkPixel(bmpPMColor, canvasPixel, mul));
if (!check) {
return false;
}
} else {
bool check;
SkPMColor testColor = getCanvasColor(cx, cy);
REPORTER_ASSERT(reporter, check = (canvasPixel == testColor));
if (!check) {
return false;
}
}
}
if (cy != DEV_H -1) {
const char* pad = reinterpret_cast<const char*>(canvasPixels + 4 * DEV_W);
for (size_t px = 0; px < canvasRowBytes - 4 * DEV_W; ++px) {
bool check;
REPORTER_ASSERT(reporter, check = (pad[px] == static_cast<char>(DEV_PAD)));
if (!check) {
return false;
}
}
}
canvasPixels += canvasRowBytes;
}
return true;
}
enum DevType {
kRaster_DevType,
#if SK_SUPPORT_GPU
kGpu_BottomLeft_DevType,
kGpu_TopLeft_DevType,
#endif
};
struct CanvasConfig {
DevType fDevType;
bool fTightRowBytes;
};
static const CanvasConfig gCanvasConfigs[] = {
{kRaster_DevType, true},
{kRaster_DevType, false},
#if SK_SUPPORT_GPU
{kGpu_BottomLeft_DevType, true}, // row bytes has no meaning on gpu devices
{kGpu_TopLeft_DevType, true}, // row bytes has no meaning on gpu devices
#endif
};
#include "SkMallocPixelRef.h"
// This is a tricky pattern, because we have to setConfig+rowBytes AND specify
// a custom pixelRef (which also has to specify its rowBytes), so we have to be
// sure that the two rowBytes match (and the infos match).
//
static bool allocRowBytes(SkBitmap* bm, const SkImageInfo& info, size_t rowBytes) {
if (!bm->setConfig(info, rowBytes)) {
return false;
}
SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, rowBytes, NULL);
bm->setPixelRef(pr)->unref();
return true;
}
static SkBaseDevice* createDevice(const CanvasConfig& c, GrContext* grCtx) {
switch (c.fDevType) {
case kRaster_DevType: {
SkBitmap bmp;
size_t rowBytes = c.fTightRowBytes ? 0 : 4 * DEV_W + 100;
SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H);
if (!allocRowBytes(&bmp, info, rowBytes)) {
sk_throw();
return NULL;
}
// if rowBytes isn't tight then set the padding to a known value
if (rowBytes) {
SkAutoLockPixels alp(bmp);
memset(bmp.getPixels(), DEV_PAD, bmp.getSafeSize());
}
return new SkBitmapDevice(bmp);
}
#if SK_SUPPORT_GPU
case kGpu_BottomLeft_DevType:
case kGpu_TopLeft_DevType:
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = DEV_W;
desc.fHeight = DEV_H;
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fOrigin = kGpu_TopLeft_DevType == c.fDevType ?
kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin;
GrAutoScratchTexture ast(grCtx, desc, GrContext::kExact_ScratchTexMatch);
SkAutoTUnref<GrTexture> tex(ast.detach());
return new SkGpuDevice(grCtx, tex);
#endif
}
return NULL;
}
static bool setupBitmap(SkBitmap* bitmap,
SkCanvas::Config8888 config8888,
int w, int h,
bool tightRowBytes) {
size_t rowBytes = tightRowBytes ? 0 : 4 * w + 60;
SkImageInfo info = SkImageInfo::MakeN32Premul(w, h);
if (!allocRowBytes(bitmap, info, rowBytes)) {
return false;
}
SkAutoLockPixels alp(*bitmap);
intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels());
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t* pixel = reinterpret_cast<uint32_t*>(pixels + y * bitmap->rowBytes() + x * 4);
*pixel = getBitmapColor(x, y, w, config8888);
}
}
return true;
}
DEF_GPUTEST(WritePixels, reporter, factory) {
SkCanvas canvas;
const SkIRect testRects[] = {
// entire thing
DEV_RECT,
// larger on all sides
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10),
// fully contained
SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4),
// outside top right corner
SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10),
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gCanvasConfigs); ++i) {
int glCtxTypeCnt = 1;
#if SK_SUPPORT_GPU
bool isGPUDevice = kGpu_TopLeft_DevType == gCanvasConfigs[i].fDevType ||
kGpu_BottomLeft_DevType == gCanvasConfigs[i].fDevType;
if (isGPUDevice) {
glCtxTypeCnt = GrContextFactory::kGLContextTypeCnt;
}
#endif
for (int glCtxType = 0; glCtxType < glCtxTypeCnt; ++glCtxType) {
GrContext* context = NULL;
#if SK_SUPPORT_GPU
if (isGPUDevice) {
GrContextFactory::GLContextType type =
static_cast<GrContextFactory::GLContextType>(glCtxType);
if (!GrContextFactory::IsRenderingGLContext(type)) {
continue;
}
context = factory->get(type);
if (NULL == context) {
continue;
}
}
#endif
SkAutoTUnref<SkBaseDevice> device(createDevice(gCanvasConfigs[i], context));
SkCanvas canvas(device);
static const SkCanvas::Config8888 gSrcConfigs[] = {
SkCanvas::kNative_Premul_Config8888,
SkCanvas::kNative_Unpremul_Config8888,
SkCanvas::kBGRA_Premul_Config8888,
SkCanvas::kBGRA_Unpremul_Config8888,
SkCanvas::kRGBA_Premul_Config8888,
SkCanvas::kRGBA_Unpremul_Config8888,
};
for (size_t r = 0; r < SK_ARRAY_COUNT(testRects); ++r) {
const SkIRect& rect = testRects[r];
for (int tightBmp = 0; tightBmp < 2; ++tightBmp) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gSrcConfigs); ++c) {
fillCanvas(&canvas);
SkCanvas::Config8888 config8888 = gSrcConfigs[c];
SkBitmap bmp;
REPORTER_ASSERT(reporter, setupBitmap(&bmp, config8888, rect.width(), rect.height(), SkToBool(tightBmp)));
uint32_t idBefore = canvas.getDevice()->accessBitmap(false).getGenerationID();
SkColorType ct;
SkAlphaType at;
sk_tool_utils::config8888_to_imagetypes(config8888, &ct, &at);
sk_tool_utils::write_pixels(&canvas, bmp, rect.fLeft, rect.fTop, ct, at);
uint32_t idAfter = canvas.getDevice()->accessBitmap(false).getGenerationID();
REPORTER_ASSERT(reporter, checkWrite(reporter, &canvas, bmp, rect.fLeft, rect.fTop, config8888));
// we should change the genID iff pixels were actually written.
SkIRect canvasRect = SkIRect::MakeSize(canvas.getDeviceSize());
SkIRect writeRect = SkIRect::MakeXYWH(rect.fLeft, rect.fTop,
bmp.width(), bmp.height());
bool intersects = SkIRect::Intersects(canvasRect, writeRect) ;
REPORTER_ASSERT(reporter, intersects == (idBefore != idAfter));
}
}
}
}
}
}