| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // It is important _not_ to put header guards here. |
| // This file will be intentionally included three times. |
| |
| #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
| |
| #if defined(SK2X_PREAMBLE) |
| #include <arm_neon.h> |
| #include <math.h> |
| template <typename T> struct SkScalarToSIMD; |
| template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
| #if defined(SK_CPU_ARM64) |
| template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; |
| #else |
| template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
| #endif |
| |
| |
| #elif defined(SK2X_PRIVATE) |
| typename SkScalarToSIMD<T>::Type fVec; |
| /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec; } |
| |
| #else |
| |
| #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: |
| |
| M() Sk2x() {} |
| M() Sk2x(float val) { fVec = vdup_n_f32(val); } |
| M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } |
| M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
| |
| M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
| M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
| |
| M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
| M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
| M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
| |
| M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
| M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
| |
| M(Sk2f) rsqrt() const { |
| float32x2_t est0 = vrsqrte_f32(fVec), |
| est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
| return est1; |
| } |
| M(Sk2f) sqrt() const { |
| float32x2_t est1 = this->rsqrt().fVec, |
| // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
| est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
| return vmul_f32(fVec, est2); |
| } |
| |
| #undef M |
| |
| #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
| |
| #if defined(SK_CPU_ARM64) |
| M() Sk2x() {} |
| M() Sk2x(double val) { fVec = vdupq_n_f64(val); } |
| M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } |
| M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } |
| |
| M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } |
| M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } |
| |
| M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
| M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
| M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
| |
| M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); } |
| M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); } |
| |
| M(Sk2d) rsqrt() const { |
| float64x2_t est0 = vrsqrteq_f64(fVec), |
| est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); |
| return est1; |
| } |
| M(Sk2d) sqrt() const { |
| float64x2_t est1 = this->rsqrt().fVec, |
| // Two extra steps of Newton's method to refine the estimate of 1/sqrt(this). |
| est2 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1), |
| est3 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est2, est2)), est2); |
| return vmulq_f64(fVec, est3); |
| } |
| |
| #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
| M() Sk2x() {} |
| M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
| M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
| M(Sk2d&) operator=(const Sk2d& o) { |
| fVec[0] = o.fVec[0]; |
| fVec[1] = o.fVec[1]; |
| return *this; |
| } |
| |
| M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
| M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
| |
| M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
| M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
| M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
| |
| M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
| return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
| } |
| M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
| return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
| } |
| |
| M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
| M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
| #endif |
| |
| #undef M |
| |
| #endif |