| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkIntersections.h" |
| #include "SkPathOpsConic.h" |
| #include "SkPathOpsLine.h" |
| |
| class LineConicIntersections { |
| public: |
| enum PinTPoint { |
| kPointUninitialized, |
| kPointInitialized |
| }; |
| |
| LineConicIntersections(const SkDConic& c, const SkDLine& l, SkIntersections* i) |
| : fConic(c) |
| , fLine(&l) |
| , fIntersections(i) |
| , fAllowNear(true) { |
| i->setMax(3); // allow short partial coincidence plus discrete intersection |
| } |
| |
| LineConicIntersections(const SkDConic& c) |
| : fConic(c) |
| SkDEBUGPARAMS(fLine(NULL)) |
| SkDEBUGPARAMS(fIntersections(NULL)) |
| SkDEBUGPARAMS(fAllowNear(false)) { |
| } |
| |
| void allowNear(bool allow) { |
| fAllowNear = allow; |
| } |
| |
| void checkCoincident() { |
| int last = fIntersections->used() - 1; |
| for (int index = 0; index < last; ) { |
| double conicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; |
| SkDPoint conicMidPt = fConic.ptAtT(conicMidT); |
| double t = fLine->nearPoint(conicMidPt, NULL); |
| if (t < 0) { |
| ++index; |
| continue; |
| } |
| if (fIntersections->isCoincident(index)) { |
| fIntersections->removeOne(index); |
| --last; |
| } else if (fIntersections->isCoincident(index + 1)) { |
| fIntersections->removeOne(index + 1); |
| --last; |
| } else { |
| fIntersections->setCoincident(index++); |
| } |
| fIntersections->setCoincident(index); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| static bool close_to(double a, double b, const double c[3]) { |
| double max = SkTMax(-SkTMin(SkTMin(c[0], c[1]), c[2]), SkTMax(SkTMax(c[0], c[1]), c[2])); |
| return approximately_zero_when_compared_to(a - b, max); |
| } |
| #endif |
| int horizontalIntersect(double axisIntercept, double roots[2]) { |
| double conicVals[] = { fConic[0].fY, fConic[1].fY, fConic[2].fY }; |
| return this->validT(conicVals, axisIntercept, roots); |
| } |
| |
| int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
| this->addExactHorizontalEndPoints(left, right, axisIntercept); |
| if (fAllowNear) { |
| this->addNearHorizontalEndPoints(left, right, axisIntercept); |
| } |
| double roots[2]; |
| int count = this->horizontalIntersect(axisIntercept, roots); |
| for (int index = 0; index < count; ++index) { |
| double conicT = roots[index]; |
| SkDPoint pt = fConic.ptAtT(conicT); |
| SkDEBUGCODE_(double conicVals[] = { fConic[0].fY, fConic[1].fY, fConic[2].fY }); |
| SkASSERT(close_to(pt.fY, axisIntercept, conicVals)); |
| double lineT = (pt.fX - left) / (right - left); |
| if (this->pinTs(&conicT, &lineT, &pt, kPointInitialized) |
| && this->uniqueAnswer(conicT, pt)) { |
| fIntersections->insert(conicT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| fIntersections->flip(); |
| } |
| this->checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| int intersect() { |
| this->addExactEndPoints(); |
| if (fAllowNear) { |
| this->addNearEndPoints(); |
| } |
| double rootVals[2]; |
| int roots = this->intersectRay(rootVals); |
| for (int index = 0; index < roots; ++index) { |
| double conicT = rootVals[index]; |
| double lineT = this->findLineT(conicT); |
| SkDEBUGCODE(SkDPoint conicPt = fConic.ptAtT(conicT)); |
| SkDEBUGCODE(SkDPoint linePt = fLine->ptAtT(lineT)); |
| SkASSERT(conicPt.approximatelyEqual(linePt)); |
| SkDPoint pt; |
| if (this->pinTs(&conicT, &lineT, &pt, kPointUninitialized) |
| && this->uniqueAnswer(conicT, pt)) { |
| fIntersections->insert(conicT, lineT, pt); |
| } |
| } |
| this->checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| int intersectRay(double roots[2]) { |
| double adj = (*fLine)[1].fX - (*fLine)[0].fX; |
| double opp = (*fLine)[1].fY - (*fLine)[0].fY; |
| double r[3]; |
| for (int n = 0; n < 3; ++n) { |
| r[n] = (fConic[n].fY - (*fLine)[0].fY) * adj - (fConic[n].fX - (*fLine)[0].fX) * opp; |
| } |
| return this->validT(r, 0, roots); |
| } |
| |
| int validT(double r[3], double axisIntercept, double roots[2]) { |
| double A = r[2]; |
| double B = r[1] * fConic.fWeight - axisIntercept * fConic.fWeight + axisIntercept; |
| double C = r[0]; |
| A += C - 2 * B; // A = a + c - 2*(b*w - xCept*w + xCept) |
| B -= C; // B = b*w - w * xCept + xCept - a |
| C -= axisIntercept; |
| return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
| } |
| |
| int verticalIntersect(double axisIntercept, double roots[2]) { |
| double conicVals[] = { fConic[0].fX, fConic[1].fX, fConic[2].fX }; |
| return this->validT(conicVals, axisIntercept, roots); |
| } |
| |
| int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
| this->addExactVerticalEndPoints(top, bottom, axisIntercept); |
| if (fAllowNear) { |
| this->addNearVerticalEndPoints(top, bottom, axisIntercept); |
| } |
| double roots[2]; |
| int count = this->verticalIntersect(axisIntercept, roots); |
| for (int index = 0; index < count; ++index) { |
| double conicT = roots[index]; |
| SkDPoint pt = fConic.ptAtT(conicT); |
| SkDEBUGCODE_(double conicVals[] = { fConic[0].fX, fConic[1].fX, fConic[2].fX }); |
| SkASSERT(close_to(pt.fX, axisIntercept, conicVals)); |
| double lineT = (pt.fY - top) / (bottom - top); |
| if (this->pinTs(&conicT, &lineT, &pt, kPointInitialized) |
| && this->uniqueAnswer(conicT, pt)) { |
| fIntersections->insert(conicT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| fIntersections->flip(); |
| } |
| this->checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| protected: |
| // OPTIMIZE: Functions of the form add .. points are indentical to the conic routines. |
| // add endpoints first to get zero and one t values exactly |
| void addExactEndPoints() { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double lineT = fLine->exactPoint(fConic[cIndex]); |
| if (lineT < 0) { |
| continue; |
| } |
| double conicT = (double) (cIndex >> 1); |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| } |
| |
| void addNearEndPoints() { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double conicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(conicT)) { |
| continue; |
| } |
| double lineT = fLine->nearPoint(fConic[cIndex], NULL); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| // FIXME: see if line end is nearly on conic |
| } |
| |
| void addExactHorizontalEndPoints(double left, double right, double y) { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double lineT = SkDLine::ExactPointH(fConic[cIndex], left, right, y); |
| if (lineT < 0) { |
| continue; |
| } |
| double conicT = (double) (cIndex >> 1); |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| } |
| |
| void addNearHorizontalEndPoints(double left, double right, double y) { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double conicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(conicT)) { |
| continue; |
| } |
| double lineT = SkDLine::NearPointH(fConic[cIndex], left, right, y); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| // FIXME: see if line end is nearly on conic |
| } |
| |
| void addExactVerticalEndPoints(double top, double bottom, double x) { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double lineT = SkDLine::ExactPointV(fConic[cIndex], top, bottom, x); |
| if (lineT < 0) { |
| continue; |
| } |
| double conicT = (double) (cIndex >> 1); |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| } |
| |
| void addNearVerticalEndPoints(double top, double bottom, double x) { |
| for (int cIndex = 0; cIndex < SkDConic::kPointCount; cIndex += SkDConic::kPointLast) { |
| double conicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(conicT)) { |
| continue; |
| } |
| double lineT = SkDLine::NearPointV(fConic[cIndex], top, bottom, x); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(conicT, lineT, fConic[cIndex]); |
| } |
| // FIXME: see if line end is nearly on conic |
| } |
| |
| double findLineT(double t) { |
| SkDPoint xy = fConic.ptAtT(t); |
| double dx = (*fLine)[1].fX - (*fLine)[0].fX; |
| double dy = (*fLine)[1].fY - (*fLine)[0].fY; |
| if (fabs(dx) > fabs(dy)) { |
| return (xy.fX - (*fLine)[0].fX) / dx; |
| } |
| return (xy.fY - (*fLine)[0].fY) / dy; |
| } |
| |
| bool pinTs(double* conicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
| if (!approximately_one_or_less_double(*lineT)) { |
| return false; |
| } |
| if (!approximately_zero_or_more_double(*lineT)) { |
| return false; |
| } |
| double qT = *conicT = SkPinT(*conicT); |
| double lT = *lineT = SkPinT(*lineT); |
| if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) { |
| *pt = (*fLine).ptAtT(lT); |
| } else if (ptSet == kPointUninitialized) { |
| *pt = fConic.ptAtT(qT); |
| } |
| SkPoint gridPt = pt->asSkPoint(); |
| if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) { |
| *pt = (*fLine)[0]; |
| *lineT = 0; |
| } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) { |
| *pt = (*fLine)[1]; |
| *lineT = 1; |
| } |
| if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) { |
| return false; |
| } |
| if (gridPt == fConic[0].asSkPoint()) { |
| *pt = fConic[0]; |
| *conicT = 0; |
| } else if (gridPt == fConic[2].asSkPoint()) { |
| *pt = fConic[2]; |
| *conicT = 1; |
| } |
| return true; |
| } |
| |
| bool uniqueAnswer(double conicT, const SkDPoint& pt) { |
| for (int inner = 0; inner < fIntersections->used(); ++inner) { |
| if (fIntersections->pt(inner) != pt) { |
| continue; |
| } |
| double existingConicT = (*fIntersections)[0][inner]; |
| if (conicT == existingConicT) { |
| return false; |
| } |
| // check if midway on conic is also same point. If so, discard this |
| double conicMidT = (existingConicT + conicT) / 2; |
| SkDPoint conicMidPt = fConic.ptAtT(conicMidT); |
| if (conicMidPt.approximatelyEqual(pt)) { |
| return false; |
| } |
| } |
| #if ONE_OFF_DEBUG |
| SkDPoint qPt = fConic.ptAtT(conicT); |
| SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, |
| qPt.fX, qPt.fY); |
| #endif |
| return true; |
| } |
| |
| private: |
| const SkDConic& fConic; |
| const SkDLine* fLine; |
| SkIntersections* fIntersections; |
| bool fAllowNear; |
| }; |
| |
| int SkIntersections::horizontal(const SkDConic& conic, double left, double right, double y, |
| bool flipped) { |
| SkDLine line = {{{ left, y }, { right, y }}}; |
| LineConicIntersections c(conic, line, this); |
| return c.horizontalIntersect(y, left, right, flipped); |
| } |
| |
| int SkIntersections::vertical(const SkDConic& conic, double top, double bottom, double x, |
| bool flipped) { |
| SkDLine line = {{{ x, top }, { x, bottom }}}; |
| LineConicIntersections c(conic, line, this); |
| return c.verticalIntersect(x, top, bottom, flipped); |
| } |
| |
| int SkIntersections::intersect(const SkDConic& conic, const SkDLine& line) { |
| LineConicIntersections c(conic, line, this); |
| c.allowNear(fAllowNear); |
| return c.intersect(); |
| } |
| |
| int SkIntersections::intersectRay(const SkDConic& conic, const SkDLine& line) { |
| LineConicIntersections c(conic, line, this); |
| fUsed = c.intersectRay(fT[0]); |
| for (int index = 0; index < fUsed; ++index) { |
| fPt[index] = conic.ptAtT(fT[0][index]); |
| } |
| return fUsed; |
| } |
| |
| int SkIntersections::HorizontalIntercept(const SkDConic& conic, SkScalar y, double* roots) { |
| LineConicIntersections c(conic); |
| return c.horizontalIntersect(y, roots); |
| } |
| |
| int SkIntersections::VerticalIntercept(const SkDConic& conic, SkScalar x, double* roots) { |
| LineConicIntersections c(conic); |
| return c.verticalIntersect(x, roots); |
| } |