| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "CubicUtilities.h" |
| #include "QuadraticUtilities.h" |
| #include "TriangleUtilities.h" |
| |
| // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html |
| double nearestT(const Quadratic& quad, const _Point& pt) { |
| _Point pos = quad[0] - pt; |
| // search points P of bezier curve with PM.(dP / dt) = 0 |
| // a calculus leads to a 3d degree equation : |
| _Point A = quad[1] - quad[0]; |
| _Point B = quad[2] - quad[1]; |
| B -= A; |
| double a = B.dot(B); |
| double b = 3 * A.dot(B); |
| double c = 2 * A.dot(A) + pos.dot(B); |
| double d = pos.dot(A); |
| double ts[3]; |
| int roots = cubicRootsValidT(a, b, c, d, ts); |
| double d0 = pt.distanceSquared(quad[0]); |
| double d2 = pt.distanceSquared(quad[2]); |
| double distMin = SkTMin(d0, d2); |
| int bestIndex = -1; |
| for (int index = 0; index < roots; ++index) { |
| _Point onQuad; |
| xy_at_t(quad, ts[index], onQuad.x, onQuad.y); |
| double dist = pt.distanceSquared(onQuad); |
| if (distMin > dist) { |
| distMin = dist; |
| bestIndex = index; |
| } |
| } |
| if (bestIndex >= 0) { |
| return ts[bestIndex]; |
| } |
| return d0 < d2 ? 0 : 1; |
| } |
| |
| bool point_in_hull(const Quadratic& quad, const _Point& pt) { |
| return pointInTriangle((const Triangle&) quad, pt); |
| } |
| |
| /* |
| Numeric Solutions (5.6) suggests to solve the quadratic by computing |
| Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
| and using the roots |
| t1 = Q / A |
| t2 = C / Q |
| */ |
| int add_valid_ts(double s[], int realRoots, double* t) { |
| int foundRoots = 0; |
| for (int index = 0; index < realRoots; ++index) { |
| double tValue = s[index]; |
| if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
| if (approximately_less_than_zero(tValue)) { |
| tValue = 0; |
| } else if (approximately_greater_than_one(tValue)) { |
| tValue = 1; |
| } |
| for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
| if (approximately_equal(t[idx2], tValue)) { |
| goto nextRoot; |
| } |
| } |
| t[foundRoots++] = tValue; |
| } |
| nextRoot: |
| ; |
| } |
| return foundRoots; |
| } |
| |
| // note: caller expects multiple results to be sorted smaller first |
| // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
| // analysis of the quadratic equation, suggesting why the following looks at |
| // the sign of B -- and further suggesting that the greatest loss of precision |
| // is in b squared less two a c |
| int quadraticRootsValidT(double A, double B, double C, double t[2]) { |
| #if 0 |
| B *= 2; |
| double square = B * B - 4 * A * C; |
| if (approximately_negative(square)) { |
| if (!approximately_positive(square)) { |
| return 0; |
| } |
| square = 0; |
| } |
| double squareRt = sqrt(square); |
| double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2; |
| int foundRoots = 0; |
| double ratio = Q / A; |
| if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
| if (approximately_less_than_zero(ratio)) { |
| ratio = 0; |
| } else if (approximately_greater_than_one(ratio)) { |
| ratio = 1; |
| } |
| t[0] = ratio; |
| ++foundRoots; |
| } |
| ratio = C / Q; |
| if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { |
| if (approximately_less_than_zero(ratio)) { |
| ratio = 0; |
| } else if (approximately_greater_than_one(ratio)) { |
| ratio = 1; |
| } |
| if (foundRoots == 0 || !approximately_negative(ratio - t[0])) { |
| t[foundRoots++] = ratio; |
| } else if (!approximately_negative(t[0] - ratio)) { |
| t[foundRoots++] = t[0]; |
| t[0] = ratio; |
| } |
| } |
| #else |
| double s[2]; |
| int realRoots = quadraticRootsReal(A, B, C, s); |
| int foundRoots = add_valid_ts(s, realRoots, t); |
| #endif |
| return foundRoots; |
| } |
| |
| // unlike quadratic roots, this does not discard real roots <= 0 or >= 1 |
| int quadraticRootsReal(const double A, const double B, const double C, double s[2]) { |
| const double p = B / (2 * A); |
| const double q = C / A; |
| if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { |
| if (approximately_zero(B)) { |
| s[0] = 0; |
| return C == 0; |
| } |
| s[0] = -C / B; |
| return 1; |
| } |
| /* normal form: x^2 + px + q = 0 */ |
| const double p2 = p * p; |
| #if 0 |
| double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q; |
| if (D <= 0) { |
| if (D < 0) { |
| return 0; |
| } |
| s[0] = -p; |
| SkDebugf("[%d] %1.9g\n", 1, s[0]); |
| return 1; |
| } |
| double sqrt_D = sqrt(D); |
| s[0] = sqrt_D - p; |
| s[1] = -sqrt_D - p; |
| SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); |
| return 2; |
| #else |
| if (!AlmostEqualUlps(p2, q) && p2 < q) { |
| return 0; |
| } |
| double sqrt_D = 0; |
| if (p2 > q) { |
| sqrt_D = sqrt(p2 - q); |
| } |
| s[0] = sqrt_D - p; |
| s[1] = -sqrt_D - p; |
| #if 0 |
| if (AlmostEqualUlps(s[0], s[1])) { |
| SkDebugf("[%d] %1.9g\n", 1, s[0]); |
| } else { |
| SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); |
| } |
| #endif |
| return 1 + !AlmostEqualUlps(s[0], s[1]); |
| #endif |
| } |
| |
| static double derivativeAtT(const double* quad, double t) { |
| double a = t - 1; |
| double b = 1 - 2 * t; |
| double c = t; |
| return a * quad[0] + b * quad[2] + c * quad[4]; |
| } |
| |
| double dx_at_t(const Quadratic& quad, double t) { |
| return derivativeAtT(&quad[0].x, t); |
| } |
| |
| double dy_at_t(const Quadratic& quad, double t) { |
| return derivativeAtT(&quad[0].y, t); |
| } |
| |
| void dxdy_at_t(const Quadratic& quad, double t, _Point& dxy) { |
| double a = t - 1; |
| double b = 1 - 2 * t; |
| double c = t; |
| dxy.x = a * quad[0].x + b * quad[1].x + c * quad[2].x; |
| dxy.y = a * quad[0].y + b * quad[1].y + c * quad[2].y; |
| } |
| |
| void xy_at_t(const Quadratic& quad, double t, double& x, double& y) { |
| double one_t = 1 - t; |
| double a = one_t * one_t; |
| double b = 2 * one_t * t; |
| double c = t * t; |
| if (&x) { |
| x = a * quad[0].x + b * quad[1].x + c * quad[2].x; |
| } |
| if (&y) { |
| y = a * quad[0].y + b * quad[1].y + c * quad[2].y; |
| } |
| } |