blob: 2a29648a251fd8d676516199114f8565c547359a [file] [log] [blame]
#include "EdgeWalker_Test.h"
#include "Intersection_Tests.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include <algorithm>
#undef SkASSERT
#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
static bool gShowPath = false;
static bool gComparePaths = true;
//static bool gDrawLastAsciiPaths = true;
static bool gDrawAllAsciiPaths = false;
static bool gShowAsciiPaths = false;
static bool gComparePathsAssert = true;
void showPath(const SkPath& path, const char* str) {
SkDebugf("%s\n", !str ? "original:" : str);
SkPath::Iter iter(path, true);
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf("path.moveTo(%1.9g, %1.9g);\n", pts[0].fX, pts[0].fY);
continue;
case SkPath::kLine_Verb:
SkDebugf("path.lineTo(%1.9g, %1.9g);\n", pts[1].fX, pts[1].fY);
break;
case SkPath::kQuad_Verb:
SkDebugf("path.quadTo(%1.9g, %1.9g, %1.9g, %1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
break;
case SkPath::kCubic_Verb:
SkDebugf("path.cubicTo(%1.9g, %1.9g, %1.9g, %1.9g);\n",
pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY,
pts[3].fX, pts[3].fY);
break;
case SkPath::kClose_Verb:
SkDebugf("path.close();\n");
continue;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static int pathsDrawTheSame(const SkPath& one, const SkPath& two,
SkBitmap& bits, SkCanvas* c) {
SkCanvas* canvasPtr = c;
if (!c) {
canvasPtr = new SkCanvas(bits);
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
int bitWidth = SkScalarCeil(larger.width()) + 2;
int bitHeight = SkScalarCeil(larger.height()) + 2;
if (bits.width() < bitWidth * 2 || bits.height() < bitHeight) {
if (bits.width() >= 200) {
SkDebugf("%s bitWidth=%d bitHeight=%d\n", __FUNCTION__, bitWidth, bitHeight);
}
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
canvasPtr->setBitmapDevice(bits);
}
SkCanvas& canvas = *canvasPtr;
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
int errors = 0;
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
uint32_t* addr2 = bits.getAddr32(bitWidth, y);
for (int x = 0; x < bitWidth; ++x) {
errors += addr1[x] != addr2[x];
}
}
if (!c) {
delete canvasPtr;
}
return errors;
}
bool drawAsciiPaths(const SkPath& one, const SkPath& two,
bool drawPaths) {
if (!drawPaths) {
return true;
}
if (gShowAsciiPaths) {
showPath(one, "one:");
showPath(two, "two:");
}
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
char out[256];
int bitWidth = SkScalarCeil(larger.width()) + 2;
if (bitWidth * 2 + 1 >= (int) sizeof(out)) {
return false;
}
int bitHeight = SkScalarCeil(larger.height()) + 2;
if (bitHeight >= (int) sizeof(out)) {
return false;
}
bits.setConfig(SkBitmap::kARGB_8888_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint32_t* addr1 = bits.getAddr32(0, y);
int x;
char* outPtr = out;
for (x = 0; x < bitWidth; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '|';
for (x = bitWidth; x < bitWidth * 2; ++x) {
*outPtr++ = addr1[x] == (uint32_t) -1 ? '_' : 'x';
}
*outPtr++ = '\0';
SkDebugf("%s\n", out);
}
return true;
}
static int scaledDrawTheSame(const SkPath& one, const SkPath& two,
SkScalar a, SkScalar b, bool drawPaths, SkBitmap& bitmap,
SkCanvas* canvas) {
SkMatrix scale;
scale.reset();
float aScale = 1.21f;
float bScale = 1.11f;
scale.preScale(a * aScale, b * bScale);
SkPath scaledOne, scaledTwo;
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
int errors = pathsDrawTheSame(scaledOne, scaledTwo, bitmap, canvas);
if (errors == 0) {
return 0;
}
while (!drawAsciiPaths(scaledOne, scaledTwo, drawPaths)) {
scale.reset();
aScale *= 0.5f;
bScale *= 0.5f;
scale.preScale(a * aScale, b * bScale);
one.transform(scale, &scaledOne);
two.transform(scale, &scaledTwo);
}
return errors;
}
static int max = 0;
int comparePaths(const SkPath& one, const SkPath& two, SkBitmap& bitmap,
SkCanvas* canvas) {
int errors = pathsDrawTheSame(one, two, bitmap, canvas);
if (errors == 0) {
return 0;
}
drawAsciiPaths(one, two, gDrawAllAsciiPaths);
for (int x = 9; x <= 33; ++x) {
errors = scaledDrawTheSame(one, two, x, x - (x >> 2), gDrawAllAsciiPaths,
bitmap, canvas);
if (errors == 0) {
return 0;
}
}
if (!gDrawAllAsciiPaths) {
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkScalar xScale = std::max(80.0f / larger.width(), 1.0f);
SkScalar yScale = std::max(60.0f / larger.height(), 1.0f);
errors = scaledDrawTheSame(one, two, xScale, yScale, false, bitmap, canvas);
if (errors > 50) {
scaledDrawTheSame(one, two, xScale, yScale, true, bitmap, canvas);
}
}
if (errors > max) {
SkDebugf("\n%s errors=%d\n", __FUNCTION__, errors);
max = errors;
}
const int MAX_ERRORS = 100;
if (errors > MAX_ERRORS) SkDebugf("\n%s errors=%d\n", __FUNCTION__, errors);
if (errors > MAX_ERRORS && gComparePathsAssert) {
showPath(one);
showPath(two, "simplified:");
SkASSERT(0);
}
return errors > MAX_ERRORS ? errors : 0;
}
// doesn't work yet
void comparePathsTiny(const SkPath& one, const SkPath& two) {
const SkRect& bounds1 = one.getBounds();
const SkRect& bounds2 = two.getBounds();
SkRect larger = bounds1;
larger.join(bounds2);
SkBitmap bits;
int bitWidth = SkScalarCeil(larger.width()) + 2;
int bitHeight = SkScalarCeil(larger.height()) + 2;
bits.setConfig(SkBitmap::kA1_Config, bitWidth * 2, bitHeight);
bits.allocPixels();
SkCanvas canvas(bits);
canvas.drawColor(SK_ColorWHITE);
SkPaint paint;
canvas.save();
canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1);
canvas.drawPath(one, paint);
canvas.restore();
canvas.save();
canvas.translate(-bounds2.fLeft + 1, -bounds2.fTop + 1);
canvas.drawPath(two, paint);
canvas.restore();
for (int y = 0; y < bitHeight; ++y) {
uint8_t* addr1 = bits.getAddr1(0, y);
uint8_t* addr2 = bits.getAddr1(bitWidth, y);
for (int x = 0; x < bits.rowBytes(); ++x) {
SkASSERT(addr1[x] == addr2[x]);
}
}
}
bool testSimplify(const SkPath& path, bool fill, SkPath& out, SkBitmap& bitmap,
SkCanvas* canvas) {
if (gShowPath) {
showPath(path);
}
simplify(path, fill, out);
if (!gComparePaths) {
return true;
}
return comparePaths(path, out, bitmap, canvas) == 0;
}
State4::State4() {
bitmap.setConfig(SkBitmap::kARGB_8888_Config, 150 * 2, 100);
bitmap.allocPixels();
canvas = new SkCanvas(bitmap);
}
void createThread(State4* statePtr, void* (*test)(void* )) {
int threadError = pthread_create(&statePtr->threadID, NULL, test,
(void*) statePtr);
SkASSERT(!threadError);
}
void waitForCompletion(State4 threadState[], int& threadIndex) {
for (int index = 0; index < threadIndex; ++index) {
pthread_join(threadState[index].threadID, NULL);
}
SkDebugf(".");
threadIndex = 0;
}