| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrShape.h" |
| |
| GrShape& GrShape::operator=(const GrShape& that) { |
| fStyle = that.fStyle; |
| this->changeType(that.fType, Type::kPath == that.fType ? &that.path() : nullptr); |
| switch (fType) { |
| case Type::kEmpty: |
| break; |
| case Type::kRRect: |
| fRRectData = that.fRRectData; |
| break; |
| case Type::kLine: |
| fLineData = that.fLineData; |
| break; |
| case Type::kPath: |
| fPathData.fGenID = that.fPathData.fGenID; |
| break; |
| } |
| fInheritedKey.reset(that.fInheritedKey.count()); |
| sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), |
| sizeof(uint32_t) * fInheritedKey.count()); |
| return *this; |
| } |
| |
| SkRect GrShape::bounds() const { |
| // Bounds where left == bottom or top == right can indicate a line or point shape. We return |
| // inverted bounds for a truly empty shape. |
| static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1); |
| switch (fType) { |
| case Type::kEmpty: |
| return kInverted; |
| case Type::kLine: { |
| SkRect bounds; |
| if (fLineData.fPts[0].fX < fLineData.fPts[1].fX) { |
| bounds.fLeft = fLineData.fPts[0].fX; |
| bounds.fRight = fLineData.fPts[1].fX; |
| } else { |
| bounds.fLeft = fLineData.fPts[1].fX; |
| bounds.fRight = fLineData.fPts[0].fX; |
| } |
| if (fLineData.fPts[0].fY < fLineData.fPts[1].fY) { |
| bounds.fTop = fLineData.fPts[0].fY; |
| bounds.fBottom = fLineData.fPts[1].fY; |
| } else { |
| bounds.fTop = fLineData.fPts[1].fY; |
| bounds.fBottom = fLineData.fPts[0].fY; |
| } |
| return bounds; |
| } |
| case Type::kRRect: |
| return fRRectData.fRRect.getBounds(); |
| case Type::kPath: |
| return this->path().getBounds(); |
| } |
| SkFAIL("Unknown shape type"); |
| return kInverted; |
| } |
| |
| SkRect GrShape::styledBounds() const { |
| if (Type::kEmpty == fType && !fStyle.hasNonDashPathEffect()) { |
| return SkRect::MakeEmpty(); |
| } |
| SkRect bounds; |
| fStyle.adjustBounds(&bounds, this->bounds()); |
| return bounds; |
| } |
| |
| // If the path is small enough to be keyed from its data this returns key length, otherwise -1. |
| static int path_key_from_data_size(const SkPath& path) { |
| const int verbCnt = path.countVerbs(); |
| if (verbCnt > GrShape::kMaxKeyFromDataVerbCnt) { |
| return -1; |
| } |
| const int pointCnt = path.countPoints(); |
| const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); |
| |
| GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); |
| GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); |
| // 2 is for the verb cnt and a fill type. Each verb is a byte but we'll pad the verb data out to |
| // a uint32_t length. |
| return 2 + (SkAlign4(verbCnt) >> 2) + 2 * pointCnt + conicWeightCnt; |
| } |
| |
| // Writes the path data key into the passed pointer. |
| static void write_path_key_from_data(const SkPath& path, uint32_t* origKey) { |
| uint32_t* key = origKey; |
| // The check below should take care of negative values casted positive. |
| const int verbCnt = path.countVerbs(); |
| const int pointCnt = path.countPoints(); |
| const int conicWeightCnt = SkPathPriv::ConicWeightCnt(path); |
| SkASSERT(verbCnt <= GrShape::kMaxKeyFromDataVerbCnt); |
| SkASSERT(pointCnt && verbCnt); |
| *key++ = path.getFillType(); |
| *key++ = verbCnt; |
| memcpy(key, SkPathPriv::VerbData(path), verbCnt * sizeof(uint8_t)); |
| int verbKeySize = SkAlign4(verbCnt); |
| // pad out to uint32_t alignment using value that will stand out when debugging. |
| uint8_t* pad = reinterpret_cast<uint8_t*>(key)+ verbCnt; |
| memset(pad, 0xDE, verbKeySize - verbCnt); |
| key += verbKeySize >> 2; |
| |
| memcpy(key, SkPathPriv::PointData(path), sizeof(SkPoint) * pointCnt); |
| GR_STATIC_ASSERT(sizeof(SkPoint) == 2 * sizeof(uint32_t)); |
| key += 2 * pointCnt; |
| sk_careful_memcpy(key, SkPathPriv::ConicWeightData(path), sizeof(SkScalar) * conicWeightCnt); |
| GR_STATIC_ASSERT(sizeof(SkScalar) == sizeof(uint32_t)); |
| SkDEBUGCODE(key += conicWeightCnt); |
| SkASSERT(key - origKey == path_key_from_data_size(path)); |
| } |
| |
| int GrShape::unstyledKeySize() const { |
| if (fInheritedKey.count()) { |
| return fInheritedKey.count(); |
| } |
| switch (fType) { |
| case Type::kEmpty: |
| return 1; |
| case Type::kRRect: |
| SkASSERT(!fInheritedKey.count()); |
| SkASSERT(0 == SkRRect::kSizeInMemory % sizeof(uint32_t)); |
| // + 1 for the direction, start index, and inverseness. |
| return SkRRect::kSizeInMemory / sizeof(uint32_t) + 1; |
| case Type::kLine: |
| GR_STATIC_ASSERT(2 * sizeof(uint32_t) == sizeof(SkPoint)); |
| // 4 for the end points and 1 for the inverseness |
| return 5; |
| case Type::kPath: { |
| if (0 == fPathData.fGenID) { |
| return -1; |
| } |
| int dataKeySize = path_key_from_data_size(fPathData.fPath); |
| if (dataKeySize >= 0) { |
| return dataKeySize; |
| } |
| // The key is the path ID and fill type. |
| return 2; |
| } |
| } |
| SkFAIL("Should never get here."); |
| return 0; |
| } |
| |
| void GrShape::writeUnstyledKey(uint32_t* key) const { |
| SkASSERT(this->unstyledKeySize()); |
| SkDEBUGCODE(uint32_t* origKey = key;) |
| if (fInheritedKey.count()) { |
| memcpy(key, fInheritedKey.get(), sizeof(uint32_t) * fInheritedKey.count()); |
| SkDEBUGCODE(key += fInheritedKey.count();) |
| } else { |
| switch (fType) { |
| case Type::kEmpty: |
| *key++ = 1; |
| break; |
| case Type::kRRect: |
| fRRectData.fRRect.writeToMemory(key); |
| key += SkRRect::kSizeInMemory / sizeof(uint32_t); |
| *key = (fRRectData.fDir == SkPath::kCCW_Direction) ? (1 << 31) : 0; |
| *key |= fRRectData.fInverted ? (1 << 30) : 0; |
| *key++ |= fRRectData.fStart; |
| SkASSERT(fRRectData.fStart < 8); |
| break; |
| case Type::kLine: |
| memcpy(key, fLineData.fPts, 2 * sizeof(SkPoint)); |
| key += 4; |
| *key++ = fLineData.fInverted ? 1 : 0; |
| break; |
| case Type::kPath: { |
| SkASSERT(fPathData.fGenID); |
| int dataKeySize = path_key_from_data_size(fPathData.fPath); |
| if (dataKeySize >= 0) { |
| write_path_key_from_data(fPathData.fPath, key); |
| return; |
| } |
| *key++ = fPathData.fGenID; |
| // We could canonicalize the fill rule for paths that don't differentiate between |
| // even/odd or winding fill (e.g. convex). |
| *key++ = this->path().getFillType(); |
| break; |
| } |
| } |
| } |
| SkASSERT(key - origKey == this->unstyledKeySize()); |
| } |
| |
| void GrShape::setInheritedKey(const GrShape &parent, GrStyle::Apply apply, SkScalar scale) { |
| SkASSERT(!fInheritedKey.count()); |
| // If the output shape turns out to be simple, then we will just use its geometric key |
| if (Type::kPath == fType) { |
| // We want ApplyFullStyle(ApplyPathEffect(shape)) to have the same key as |
| // ApplyFullStyle(shape). |
| // The full key is structured as (geo,path_effect,stroke). |
| // If we do ApplyPathEffect we get get,path_effect as the inherited key. If we then |
| // do ApplyFullStyle we'll memcpy geo,path_effect into the new inherited key |
| // and then append the style key (which should now be stroke only) at the end. |
| int parentCnt = parent.fInheritedKey.count(); |
| bool useParentGeoKey = !parentCnt; |
| if (useParentGeoKey) { |
| parentCnt = parent.unstyledKeySize(); |
| if (parentCnt < 0) { |
| // The parent's geometry has no key so we will have no key. |
| fPathData.fGenID = 0; |
| return; |
| } |
| } |
| uint32_t styleKeyFlags = 0; |
| if (parent.knownToBeClosed()) { |
| styleKeyFlags |= GrStyle::kClosed_KeyFlag; |
| } |
| if (parent.asLine(nullptr, nullptr)) { |
| styleKeyFlags |= GrStyle::kNoJoins_KeyFlag; |
| } |
| int styleCnt = GrStyle::KeySize(parent.fStyle, apply, styleKeyFlags); |
| if (styleCnt < 0) { |
| // The style doesn't allow a key, set the path gen ID to 0 so that we fail when |
| // we try to get a key for the shape. |
| fPathData.fGenID = 0; |
| return; |
| } |
| fInheritedKey.reset(parentCnt + styleCnt); |
| if (useParentGeoKey) { |
| // This will be the geo key. |
| parent.writeUnstyledKey(fInheritedKey.get()); |
| } else { |
| // This should be (geo,path_effect). |
| memcpy(fInheritedKey.get(), parent.fInheritedKey.get(), |
| parentCnt * sizeof(uint32_t)); |
| } |
| // Now turn (geo,path_effect) or (geo) into (geo,path_effect,stroke) |
| GrStyle::WriteKey(fInheritedKey.get() + parentCnt, parent.fStyle, apply, scale, |
| styleKeyFlags); |
| } |
| } |
| |
| GrShape::GrShape(const GrShape& that) : fStyle(that.fStyle) { |
| const SkPath* thatPath = Type::kPath == that.fType ? &that.fPathData.fPath : nullptr; |
| this->initType(that.fType, thatPath); |
| switch (fType) { |
| case Type::kEmpty: |
| break; |
| case Type::kRRect: |
| fRRectData = that.fRRectData; |
| break; |
| case Type::kLine: |
| fLineData = that.fLineData; |
| break; |
| case Type::kPath: |
| fPathData.fGenID = that.fPathData.fGenID; |
| break; |
| } |
| fInheritedKey.reset(that.fInheritedKey.count()); |
| sk_careful_memcpy(fInheritedKey.get(), that.fInheritedKey.get(), |
| sizeof(uint32_t) * fInheritedKey.count()); |
| } |
| |
| GrShape::GrShape(const GrShape& parent, GrStyle::Apply apply, SkScalar scale) { |
| // TODO: Add some quantization of scale for better cache performance here or leave that up |
| // to caller? |
| // TODO: For certain shapes and stroke params we could ignore the scale. (e.g. miter or bevel |
| // stroke of a rect). |
| if (!parent.style().applies() || |
| (GrStyle::Apply::kPathEffectOnly == apply && !parent.style().pathEffect())) { |
| this->initType(Type::kEmpty); |
| *this = parent; |
| return; |
| } |
| |
| SkPathEffect* pe = parent.fStyle.pathEffect(); |
| SkTLazy<SkPath> tmpPath; |
| const GrShape* parentForKey = &parent; |
| SkTLazy<GrShape> tmpParent; |
| this->initType(Type::kPath); |
| fPathData.fGenID = 0; |
| if (pe) { |
| const SkPath* srcForPathEffect; |
| if (parent.fType == Type::kPath) { |
| srcForPathEffect = &parent.path(); |
| } else { |
| srcForPathEffect = tmpPath.init(); |
| parent.asPath(tmpPath.get()); |
| } |
| // Should we consider bounds? Would have to include in key, but it'd be nice to know |
| // if the bounds actually modified anything before including in key. |
| SkStrokeRec strokeRec = parent.fStyle.strokeRec(); |
| if (!parent.fStyle.applyPathEffectToPath(&this->path(), &strokeRec, *srcForPathEffect, |
| scale)) { |
| tmpParent.init(*srcForPathEffect, GrStyle(strokeRec, nullptr)); |
| *this = tmpParent.get()->applyStyle(apply, scale); |
| return; |
| } |
| // A path effect has access to change the res scale but we aren't expecting it to and it |
| // would mess up our key computation. |
| SkASSERT(scale == strokeRec.getResScale()); |
| if (GrStyle::Apply::kPathEffectAndStrokeRec == apply && strokeRec.needToApply()) { |
| // The intermediate shape may not be a general path. If we we're just applying |
| // the path effect then attemptToReduceFromPath would catch it. This means that |
| // when we subsequently applied the remaining strokeRec we would have a non-path |
| // parent shape that would be used to determine the the stroked path's key. |
| // We detect that case here and change parentForKey to a temporary that represents |
| // the simpler shape so that applying both path effect and the strokerec all at |
| // once produces the same key. |
| tmpParent.init(this->path(), GrStyle(strokeRec, nullptr)); |
| tmpParent.get()->setInheritedKey(parent, GrStyle::Apply::kPathEffectOnly, scale); |
| if (!tmpPath.isValid()) { |
| tmpPath.init(); |
| } |
| tmpParent.get()->asPath(tmpPath.get()); |
| SkStrokeRec::InitStyle fillOrHairline; |
| // The parent shape may have simplified away the strokeRec, check for that here. |
| if (tmpParent.get()->style().applies()) { |
| SkAssertResult(tmpParent.get()->style().applyToPath(&this->path(), &fillOrHairline, |
| *tmpPath.get(), scale)); |
| } else if (tmpParent.get()->style().isSimpleFill()) { |
| fillOrHairline = SkStrokeRec::kFill_InitStyle; |
| } else { |
| SkASSERT(tmpParent.get()->style().isSimpleHairline()); |
| fillOrHairline = SkStrokeRec::kHairline_InitStyle; |
| } |
| fStyle.resetToInitStyle(fillOrHairline); |
| parentForKey = tmpParent.get(); |
| } else { |
| fStyle = GrStyle(strokeRec, nullptr); |
| } |
| } else { |
| const SkPath* srcForParentStyle; |
| if (parent.fType == Type::kPath) { |
| srcForParentStyle = &parent.path(); |
| } else { |
| srcForParentStyle = tmpPath.init(); |
| parent.asPath(tmpPath.get()); |
| } |
| SkStrokeRec::InitStyle fillOrHairline; |
| SkASSERT(parent.fStyle.applies()); |
| SkASSERT(!parent.fStyle.pathEffect()); |
| SkAssertResult(parent.fStyle.applyToPath(&this->path(), &fillOrHairline, *srcForParentStyle, |
| scale)); |
| fStyle.resetToInitStyle(fillOrHairline); |
| } |
| this->attemptToSimplifyPath(); |
| this->setInheritedKey(*parentForKey, apply, scale); |
| } |
| |
| void GrShape::attemptToSimplifyPath() { |
| SkRect rect; |
| SkRRect rrect; |
| SkPath::Direction rrectDir; |
| unsigned rrectStart; |
| bool inverted = this->path().isInverseFillType(); |
| SkPoint pts[2]; |
| if (this->path().isEmpty()) { |
| this->changeType(Type::kEmpty); |
| } else if (this->path().isLine(pts)) { |
| this->changeType(Type::kLine); |
| fLineData.fPts[0] = pts[0]; |
| fLineData.fPts[1] = pts[1]; |
| fLineData.fInverted = inverted; |
| } else if (this->path().isRRect(&rrect, &rrectDir, &rrectStart)) { |
| this->changeType(Type::kRRect); |
| fRRectData.fRRect = rrect; |
| fRRectData.fDir = rrectDir; |
| fRRectData.fStart = rrectStart; |
| fRRectData.fInverted = inverted; |
| // Currently SkPath does not acknowledge that empty, rect, or oval subtypes as rrects. |
| SkASSERT(!fRRectData.fRRect.isEmpty()); |
| SkASSERT(fRRectData.fRRect.getType() != SkRRect::kRect_Type); |
| SkASSERT(fRRectData.fRRect.getType() != SkRRect::kOval_Type); |
| } else if (this->path().isOval(&rect, &rrectDir, &rrectStart)) { |
| this->changeType(Type::kRRect); |
| fRRectData.fRRect.setOval(rect); |
| fRRectData.fDir = rrectDir; |
| fRRectData.fInverted = inverted; |
| // convert from oval indexing to rrect indexiing. |
| fRRectData.fStart = 2 * rrectStart; |
| } else if (SkPathPriv::IsSimpleClosedRect(this->path(), &rect, &rrectDir, &rrectStart)) { |
| this->changeType(Type::kRRect); |
| // When there is a path effect we restrict rect detection to the narrower API that |
| // gives us the starting position. Otherwise, we will retry with the more aggressive |
| // isRect(). |
| fRRectData.fRRect.setRect(rect); |
| fRRectData.fInverted = inverted; |
| fRRectData.fDir = rrectDir; |
| // convert from rect indexing to rrect indexiing. |
| fRRectData.fStart = 2 * rrectStart; |
| } else if (!this->style().hasPathEffect()) { |
| bool closed; |
| if (this->path().isRect(&rect, &closed, nullptr)) { |
| if (closed || this->style().isSimpleFill()) { |
| this->changeType(Type::kRRect); |
| fRRectData.fRRect.setRect(rect); |
| // Since there is no path effect the dir and start index is immaterial. |
| fRRectData.fDir = kDefaultRRectDir; |
| fRRectData.fStart = kDefaultRRectStart; |
| // There isn't dashing so we will have to preserver inverseness. |
| fRRectData.fInverted = inverted; |
| } |
| } |
| } |
| if (Type::kPath != fType) { |
| fInheritedKey.reset(0); |
| if (Type::kRRect == fType) { |
| this->attemptToSimplifyRRect(); |
| } else if (Type::kLine == fType) { |
| this->attemptToSimplifyLine(); |
| } |
| } else { |
| if (fInheritedKey.count() || this->path().isVolatile()) { |
| fPathData.fGenID = 0; |
| } else { |
| fPathData.fGenID = this->path().getGenerationID(); |
| } |
| if (!this->style().hasNonDashPathEffect()) { |
| if (this->style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style || |
| this->style().strokeRec().getStyle() == SkStrokeRec::kHairline_Style) { |
| // Stroke styles don't differentiate between winding and even/odd. |
| // Moreover, dashing ignores inverseness (skbug.com/5421) |
| bool inverse = !this->style().isDashed() && this->path().isInverseFillType(); |
| if (inverse) { |
| this->path().setFillType(kDefaultPathInverseFillType); |
| } else { |
| this->path().setFillType(kDefaultPathFillType); |
| } |
| } else if (this->path().isConvex()) { |
| // There is no distinction between even/odd and non-zero winding count for convex |
| // paths. |
| if (this->path().isInverseFillType()) { |
| this->path().setFillType(kDefaultPathInverseFillType); |
| } else { |
| this->path().setFillType(kDefaultPathFillType); |
| } |
| } |
| } |
| } |
| } |
| |
| void GrShape::attemptToSimplifyRRect() { |
| SkASSERT(Type::kRRect == fType); |
| SkASSERT(!fInheritedKey.count()); |
| if (fRRectData.fRRect.isEmpty()) { |
| fType = Type::kEmpty; |
| return; |
| } |
| if (!this->style().hasPathEffect()) { |
| fRRectData.fDir = kDefaultRRectDir; |
| fRRectData.fStart = kDefaultRRectStart; |
| } else if (fStyle.isDashed()) { |
| // Dashing ignores the inverseness (currently). skbug.com/5421 |
| fRRectData.fInverted = false; |
| } |
| // Turn a stroke-and-filled miter rect into a filled rect. TODO: more rrect stroke shortcuts. |
| if (!fStyle.hasPathEffect() && |
| fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style && |
| fStyle.strokeRec().getJoin() == SkPaint::kMiter_Join && |
| fStyle.strokeRec().getMiter() >= SK_ScalarSqrt2 && |
| fRRectData.fRRect.isRect()) { |
| SkScalar r = fStyle.strokeRec().getWidth() / 2; |
| fRRectData.fRRect = SkRRect::MakeRect(fRRectData.fRRect.rect().makeOutset(r, r)); |
| fStyle = GrStyle::SimpleFill(); |
| } |
| } |
| |
| void GrShape::attemptToSimplifyLine() { |
| SkASSERT(Type::kLine == fType); |
| SkASSERT(!fInheritedKey.count()); |
| if (fStyle.isDashed()) { |
| // Dashing ignores inverseness. |
| fLineData.fInverted = false; |
| return; |
| } else if (fStyle.hasPathEffect()) { |
| return; |
| } |
| if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStrokeAndFill_Style) { |
| // Make stroke + fill be stroke since the fill is empty. |
| SkStrokeRec rec = fStyle.strokeRec(); |
| rec.setStrokeStyle(fStyle.strokeRec().getWidth(), false); |
| fStyle = GrStyle(rec, nullptr); |
| } |
| if (fStyle.isSimpleFill() && !fLineData.fInverted) { |
| this->changeType(Type::kEmpty); |
| return; |
| } |
| SkPoint* pts = fLineData.fPts; |
| if (fStyle.strokeRec().getStyle() == SkStrokeRec::kStroke_Style) { |
| // If it is horizontal or vertical we will turn it into a filled rrect. |
| SkRect rect; |
| rect.fLeft = SkTMin(pts[0].fX, pts[1].fX); |
| rect.fRight = SkTMax(pts[0].fX, pts[1].fX); |
| rect.fTop = SkTMin(pts[0].fY, pts[1].fY); |
| rect.fBottom = SkTMax(pts[0].fY, pts[1].fY); |
| bool eqX = rect.fLeft == rect.fRight; |
| bool eqY = rect.fTop == rect.fBottom; |
| if (eqX || eqY) { |
| SkScalar r = fStyle.strokeRec().getWidth() / 2; |
| bool inverted = fLineData.fInverted; |
| this->changeType(Type::kRRect); |
| switch (fStyle.strokeRec().getCap()) { |
| case SkPaint::kButt_Cap: |
| if (eqX && eqY) { |
| this->changeType(Type::kEmpty); |
| return; |
| } |
| if (eqX) { |
| rect.outset(r, 0); |
| } else { |
| rect.outset(0, r); |
| } |
| fRRectData.fRRect = SkRRect::MakeRect(rect); |
| break; |
| case SkPaint::kSquare_Cap: |
| rect.outset(r, r); |
| fRRectData.fRRect = SkRRect::MakeRect(rect); |
| break; |
| case SkPaint::kRound_Cap: |
| rect.outset(r, r); |
| fRRectData.fRRect = SkRRect::MakeRectXY(rect, r, r); |
| break; |
| } |
| fRRectData.fInverted = inverted; |
| fRRectData.fDir = kDefaultRRectDir; |
| fRRectData.fStart = kDefaultRRectStart; |
| if (fRRectData.fRRect.isEmpty()) { |
| // This can happen when r is very small relative to the rect edges. |
| this->changeType(Type::kEmpty); |
| return; |
| } |
| fStyle = GrStyle::SimpleFill(); |
| return; |
| } |
| } |
| // Only path effects could care about the order of the points. Otherwise canonicalize |
| // the point order. |
| if (pts[1].fY < pts[0].fY || (pts[1].fY == pts[0].fY && pts[1].fX < pts[0].fX)) { |
| SkTSwap(pts[0], pts[1]); |
| } |
| } |