blob: 63f9733b11f6b1e96a4f11cdc02a838b7cf7e213 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGL.h"
#include "SkColorPriv.h"
#include "SkGeometry.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkTemplates.h"
#include "SkXfermode.h"
//#define TRACE_TEXTURE_CREATION
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_GL_HAS_COLOR4UB
static inline void gl_pmcolor(U8CPU r, U8CPU g, U8CPU b, U8CPU a) {
glColor4ub(r, g, b, a);
}
void SkGL::SetAlpha(U8CPU alpha) {
glColor4ub(alpha, alpha, alpha, alpha);
}
#else
static inline SkFixed byte2fixed(U8CPU value) {
return (value + (value >> 7)) << 8;
}
static inline void gl_pmcolor(U8CPU r, U8CPU g, U8CPU b, U8CPU a) {
glColor4x(byte2fixed(r), byte2fixed(g), byte2fixed(b), byte2fixed(a));
}
void SkGL::SetAlpha(U8CPU alpha) {
SkFixed fa = byte2fixed(alpha);
glColor4x(fa, fa, fa, fa);
}
#endif
void SkGL::SetColor(SkColor c) {
SkPMColor pm = SkPreMultiplyColor(c);
gl_pmcolor(SkGetPackedR32(pm),
SkGetPackedG32(pm),
SkGetPackedB32(pm),
SkGetPackedA32(pm));
}
static const GLenum gXfermodeCoeff2Blend[] = {
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
};
void SkGL::SetPaint(const SkPaint& paint, bool isPremul, bool justAlpha) {
if (justAlpha) {
SkGL::SetAlpha(paint.getAlpha());
} else {
SkGL::SetColor(paint.getColor());
}
GLenum sm = GL_ONE;
GLenum dm = GL_ONE_MINUS_SRC_ALPHA;
SkXfermode* mode = paint.getXfermode();
SkXfermode::Coeff sc, dc;
if (mode && mode->asCoeff(&sc, &dc)) {
sm = gXfermodeCoeff2Blend[sc];
dm = gXfermodeCoeff2Blend[dc];
}
// hack for text, which is not-premul (afaik)
if (!isPremul) {
if (GL_ONE == sm) {
sm = GL_SRC_ALPHA;
}
}
glEnable(GL_BLEND);
glBlendFunc(sm, dm);
if (paint.isDither()) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGL::DumpError(const char caller[]) {
GLenum err = glGetError();
if (err) {
SkDebugf("---- glGetError(%s) %d\n", caller, err);
}
}
void SkGL::SetRGBA(uint8_t rgba[], const SkColor src[], int count) {
for (int i = 0; i < count; i++) {
SkPMColor c = SkPreMultiplyColor(*src++);
*rgba++ = SkGetPackedR32(c);
*rgba++ = SkGetPackedG32(c);
*rgba++ = SkGetPackedB32(c);
*rgba++ = SkGetPackedA32(c);
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGL::Scissor(const SkIRect& r, int viewportHeight) {
glScissor(r.fLeft, viewportHeight - r.fBottom, r.width(), r.height());
}
///////////////////////////////////////////////////////////////////////////////
void SkGL::Ortho(float left, float right, float bottom, float top,
float near, float far) {
float mat[16];
sk_bzero(mat, sizeof(mat));
mat[0] = 2 / (right - left);
mat[5] = 2 / (top - bottom);
mat[10] = 2 / (near - far);
mat[15] = 1;
mat[12] = (right + left) / (left - right);
mat[13] = (top + bottom) / (bottom - top);
mat[14] = (far + near) / (near - far);
glMultMatrixf(mat);
}
///////////////////////////////////////////////////////////////////////////////
static bool canBeTexture(const SkBitmap& bm, GLenum* format, GLenum* type) {
switch (bm.config()) {
case SkBitmap::kARGB_8888_Config:
*format = GL_RGBA;
*type = GL_UNSIGNED_BYTE;
break;
case SkBitmap::kRGB_565_Config:
*format = GL_RGB;
*type = GL_UNSIGNED_SHORT_5_6_5;
break;
case SkBitmap::kARGB_4444_Config:
*format = GL_RGBA;
*type = GL_UNSIGNED_SHORT_4_4_4_4;
break;
case SkBitmap::kIndex8_Config:
#ifdef SK_GL_SUPPORT_COMPRESSEDTEXIMAGE2D
*format = GL_PALETTE8_RGBA8_OES;
*type = GL_UNSIGNED_BYTE; // unused I think
#else
// we promote index to argb32
*format = GL_RGBA;
*type = GL_UNSIGNED_BYTE;
#endif
break;
case SkBitmap::kA8_Config:
*format = GL_ALPHA;
*type = GL_UNSIGNED_BYTE;
break;
default:
return false;
}
return true;
}
#define SK_GL_SIZE_OF_PALETTE (256 * sizeof(SkPMColor))
size_t SkGL::ComputeTextureMemorySize(const SkBitmap& bitmap) {
int shift = 0;
size_t adder = 0;
switch (bitmap.config()) {
case SkBitmap::kARGB_8888_Config:
case SkBitmap::kRGB_565_Config:
case SkBitmap::kARGB_4444_Config:
case SkBitmap::kA8_Config:
// we're good as is
break;
case SkBitmap::kIndex8_Config:
#ifdef SK_GL_SUPPORT_COMPRESSEDTEXIMAGE2D
// account for the colortable
adder = SK_GL_SIZE_OF_PALETTE;
#else
// we promote index to argb32
shift = 2;
#endif
break;
default:
return 0;
}
return (bitmap.getSize() << shift) + adder;
}
#ifdef SK_GL_SUPPORT_COMPRESSEDTEXIMAGE2D
/* Fill out buffer with the compressed format GL expects from a colortable
based bitmap. [palette (colortable) + indices].
At the moment I always take the 8bit version, since that's what my data
is. I could detect that the colortable.count is <= 16, and then repack the
indices as nibbles to save RAM, but it would take more time (i.e. a lot
slower than memcpy), so I'm skipping that for now.
GL wants a full 256 palette entry, even though my ctable is only as big
as the colortable.count says it is. I presume it is OK to leave any
trailing entries uninitialized, since none of my indices should exceed
ctable->count().
*/
static void build_compressed_data(void* buffer, const SkBitmap& bitmap) {
SkASSERT(SkBitmap::kIndex8_Config == bitmap.config());
SkColorTable* ctable = bitmap.getColorTable();
uint8_t* dst = (uint8_t*)buffer;
memcpy(dst, ctable->lockColors(), ctable->count() * sizeof(SkPMColor));
ctable->unlockColors(false);
// always skip a full 256 number of entries, even if we memcpy'd fewer
dst += SK_GL_SIZE_OF_PALETTE;
memcpy(dst, bitmap.getPixels(), bitmap.getSafeSize()); // Just copy what we need.
}
#endif
/* Return true if the bitmap cannot be supported in its current config as a
texture, and it needs to be promoted to ARGB32.
*/
static bool needToPromoteTo32bit(const SkBitmap& bitmap) {
if (bitmap.config() == SkBitmap::kIndex8_Config) {
#ifdef SK_GL_SUPPORT_COMPRESSEDTEXIMAGE2D
const int w = bitmap.width();
const int h = bitmap.height();
if (SkNextPow2(w) == w && SkNextPow2(h) == h) {
// we can handle Indx8 if we're a POW2
return false;
}
#endif
return true; // must promote to ARGB32
}
return false;
}
GLuint SkGL::BindNewTexture(const SkBitmap& origBitmap, SkPoint* max) {
SkBitmap tmpBitmap;
const SkBitmap* bitmap = &origBitmap;
if (needToPromoteTo32bit(origBitmap)) {
origBitmap.copyTo(&tmpBitmap, SkBitmap::kARGB_8888_Config);
// now bitmap points to our temp, which has been promoted to 32bits
bitmap = &tmpBitmap;
}
GLenum format, type;
if (!canBeTexture(*bitmap, &format, &type)) {
return 0;
}
SkAutoLockPixels alp(*bitmap);
if (!bitmap->readyToDraw()) {
return 0;
}
GLuint textureName;
glGenTextures(1, &textureName);
glBindTexture(GL_TEXTURE_2D, textureName);
// express rowbytes as a number of pixels for ow
int ow = bitmap->rowBytesAsPixels();
int oh = bitmap->height();
int nw = SkNextPow2(ow);
int nh = SkNextPow2(oh);
glPixelStorei(GL_UNPACK_ALIGNMENT, bitmap->bytesPerPixel());
// check if we need to scale to create power-of-2 dimensions
#ifdef SK_GL_SUPPORT_COMPRESSEDTEXIMAGE2D
if (SkBitmap::kIndex8_Config == bitmap->config()) {
size_t imagesize = bitmap->getSize() + SK_GL_SIZE_OF_PALETTE;
SkAutoMalloc storage(imagesize);
build_compressed_data(storage.get(), *bitmap);
// we only support POW2 here (GLES 1.0 restriction)
SkASSERT(ow == nw);
SkASSERT(oh == nh);
glCompressedTexImage2D(GL_TEXTURE_2D, 0, format, ow, oh, 0,
imagesize, storage.get());
} else // fall through to non-compressed logic
#endif
{
if (ow != nw || oh != nh) {
glTexImage2D(GL_TEXTURE_2D, 0, format, nw, nh, 0,
format, type, NULL);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, ow, oh,
format, type, bitmap->getPixels());
} else {
// easy case, the bitmap is already pow2
glTexImage2D(GL_TEXTURE_2D, 0, format, ow, oh, 0,
format, type, bitmap->getPixels());
}
}
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new texture [%d] size=(%d %d) bpp=%d\n", textureName, ow, oh,
bitmap->bytesPerPixel());
#endif
if (max) {
max->fX = SkFixedToScalar(bitmap->width() << (16 - SkNextLog2(nw)));
max->fY = SkFixedToScalar(oh << (16 - SkNextLog2(nh)));
}
return textureName;
}
static const GLenum gTileMode2GLWrap[] = {
GL_CLAMP_TO_EDGE,
GL_REPEAT,
#if GL_VERSION_ES_CM_1_0
GL_REPEAT // GLES doesn't support MIRROR
#else
GL_MIRRORED_REPEAT
#endif
};
void SkGL::SetTexParams(bool doFilter,
SkShader::TileMode tx, SkShader::TileMode ty) {
SkASSERT((unsigned)tx < SK_ARRAY_COUNT(gTileMode2GLWrap));
SkASSERT((unsigned)ty < SK_ARRAY_COUNT(gTileMode2GLWrap));
GLenum filter = doFilter ? GL_LINEAR : GL_NEAREST;
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, gTileMode2GLWrap[tx]);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, gTileMode2GLWrap[ty]);
}
void SkGL::SetTexParamsClamp(bool doFilter) {
GLenum filter = doFilter ? GL_LINEAR : GL_NEAREST;
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
SK_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
///////////////////////////////////////////////////////////////////////////////
void SkGL::DrawVertices(int count, GLenum mode,
const SkGLVertex* SK_RESTRICT vertex,
const SkGLVertex* SK_RESTRICT texCoords,
const uint8_t* SK_RESTRICT colorArray,
const uint16_t* SK_RESTRICT indexArray,
SkGLClipIter* iter) {
SkASSERT(NULL != vertex);
if (NULL != texCoords) {
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, SK_GLType, 0, texCoords);
} else {
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if (NULL != colorArray) {
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, colorArray);
glShadeModel(GL_SMOOTH);
} else {
glDisableClientState(GL_COLOR_ARRAY);
glShadeModel(GL_FLAT);
}
glVertexPointer(2, SK_GLType, 0, vertex);
if (NULL != indexArray) {
if (iter) {
while (!iter->done()) {
iter->scissor();
glDrawElements(mode, count, GL_UNSIGNED_SHORT, indexArray);
iter->next();
}
} else {
glDrawElements(mode, count, GL_UNSIGNED_SHORT, indexArray);
}
} else {
if (iter) {
while (!iter->done()) {
iter->scissor();
glDrawArrays(mode, 0, count);
iter->next();
}
} else {
glDrawArrays(mode, 0, count);
}
}
}
void SkGL::PrepareForFillPath(SkPaint* paint) {
if (paint->getStrokeWidth() <= 0) {
paint->setStrokeWidth(SK_Scalar1);
}
}
void SkGL::FillPath(const SkPath& path, const SkPaint& paint, bool useTex,
SkGLClipIter* iter) {
SkPaint p(paint);
SkPath fillPath;
SkGL::PrepareForFillPath(&p);
p.getFillPath(path, &fillPath);
SkGL::DrawPath(fillPath, useTex, iter);
}
// should return max of all contours, rather than the sum (to save temp RAM)
static int worst_case_edge_count(const SkPath& path) {
int edgeCount = 0;
SkPath::Iter iter(path, true);
SkPath::Verb verb;
while ((verb = iter.next(NULL)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
edgeCount += 1;
break;
case SkPath::kQuad_Verb:
edgeCount += 8;
break;
case SkPath::kCubic_Verb:
edgeCount += 16;
break;
default:
break;
}
}
return edgeCount;
}
void SkGL::DrawPath(const SkPath& path, bool useTex, SkGLClipIter* clipIter) {
const SkRect& bounds = path.getBounds();
if (bounds.isEmpty()) {
return;
}
int maxPts = worst_case_edge_count(path);
// add 1 for center of fan, and 1 for closing edge
SkAutoSTMalloc<32, SkGLVertex> storage(maxPts + 2);
SkGLVertex* base = storage.get();
SkGLVertex* vert = base;
SkGLVertex* texs = useTex ? base : NULL;
SkPath::Iter pathIter(path, true);
SkPoint pts[4];
bool needEnd = false;
for (;;) {
switch (pathIter.next(pts)) {
case SkPath::kMove_Verb:
if (needEnd) {
SkGL::DrawVertices(vert - base, GL_TRIANGLE_FAN,
base, texs, NULL, NULL, clipIter);
clipIter->safeRewind();
vert = base;
}
needEnd = true;
// center of the FAN
vert->setScalars(bounds.centerX(), bounds.centerY());
vert++;
// add first edge point
vert->setPoint(pts[0]);
vert++;
break;
case SkPath::kLine_Verb:
vert->setPoint(pts[1]);
vert++;
break;
case SkPath::kQuad_Verb: {
const int n = 8;
const SkScalar dt = SK_Scalar1 / n;
SkScalar t = dt;
for (int i = 1; i < n; i++) {
SkPoint loc;
SkEvalQuadAt(pts, t, &loc, NULL);
t += dt;
vert->setPoint(loc);
vert++;
}
vert->setPoint(pts[2]);
vert++;
break;
}
case SkPath::kCubic_Verb: {
const int n = 16;
const SkScalar dt = SK_Scalar1 / n;
SkScalar t = dt;
for (int i = 1; i < n; i++) {
SkPoint loc;
SkEvalCubicAt(pts, t, &loc, NULL, NULL);
t += dt;
vert->setPoint(loc);
vert++;
}
vert->setPoint(pts[3]);
vert++;
break;
}
case SkPath::kClose_Verb:
break;
case SkPath::kDone_Verb:
goto FINISHED;
}
}
FINISHED:
if (needEnd) {
SkGL::DrawVertices(vert - base, GL_TRIANGLE_FAN, base, texs,
NULL, NULL, clipIter);
}
}