| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Test.h" |
| #include "SkCanvas.h" |
| #include "SkPaint.h" |
| #include "SkPath.h" |
| #include "SkParse.h" |
| #include "SkParsePath.h" |
| #include "SkPathEffect.h" |
| #include "SkRandom.h" |
| #include "SkReader32.h" |
| #include "SkRRect.h" |
| #include "SkSize.h" |
| #include "SkSurface.h" |
| #include "SkTypes.h" |
| #include "SkWriter32.h" |
| |
| static void make_path0(SkPath* path) { |
| // from * https://code.google.com/p/skia/issues/detail?id=1706 |
| |
| path->moveTo(146.939f, 1012.84f); |
| path->lineTo(181.747f, 1009.18f); |
| path->lineTo(182.165f, 1013.16f); |
| path->lineTo(147.357f, 1016.82f); |
| path->lineTo(146.939f, 1012.84f); |
| path->close(); |
| } |
| |
| static void make_path1(SkPath* path) { |
| path->addRect(SkRect::MakeXYWH(10, 10, 10, 1)); |
| } |
| |
| typedef void (*PathProc)(SkPath*); |
| |
| /* |
| * Regression test: we used to crash (overwrite internal storage) during |
| * construction of the region when the path was INVERSE. That is now fixed, |
| * so test these regions (which used to assert/crash). |
| * |
| * https://code.google.com/p/skia/issues/detail?id=1706 |
| */ |
| static void test_path_to_region(skiatest::Reporter* reporter) { |
| PathProc procs[] = { |
| make_path0, |
| make_path1, |
| }; |
| |
| SkRegion clip; |
| clip.setRect(0, 0, 1255, 1925); |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) { |
| SkPath path; |
| procs[i](&path); |
| |
| SkRegion rgn; |
| rgn.setPath(path, clip); |
| path.toggleInverseFillType(); |
| rgn.setPath(path, clip); |
| } |
| } |
| |
| #if defined(WIN32) |
| #define SUPPRESS_VISIBILITY_WARNING |
| #else |
| #define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) |
| #endif |
| |
| static void test_path_close_issue1474(skiatest::Reporter* reporter) { |
| // This test checks that r{Line,Quad,Conic,Cubic}To following a close() |
| // are relative to the point we close to, not relative to the point we close from. |
| SkPath path; |
| SkPoint last; |
| |
| // Test rLineTo(). |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); // Returns us back to 0,0. |
| path.rLineTo(50, 50); // This should go to 50,50. |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 50 == last.fX); |
| REPORTER_ASSERT(reporter, 50 == last.fY); |
| |
| // Test rQuadTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rQuadTo(50, 50, 75, 75); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 75 == last.fX); |
| REPORTER_ASSERT(reporter, 75 == last.fY); |
| |
| // Test rConicTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rConicTo(50, 50, 85, 85, 2); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 85 == last.fX); |
| REPORTER_ASSERT(reporter, 85 == last.fY); |
| |
| // Test rCubicTo(). |
| path.rewind(); |
| path.rLineTo(0, 100); |
| path.rLineTo(100, 0); |
| path.close(); |
| path.rCubicTo(50, 50, 85, 85, 95, 95); |
| |
| path.getLastPt(&last); |
| REPORTER_ASSERT(reporter, 95 == last.fX); |
| REPORTER_ASSERT(reporter, 95 == last.fY); |
| } |
| |
| static void test_android_specific_behavior(skiatest::Reporter* reporter) { |
| #ifdef SK_BUILD_FOR_ANDROID |
| // Make sure we treat fGenerationID and fSourcePath correctly for each of |
| // copy, assign, rewind, reset, and swap. |
| SkPath original, source, anotherSource; |
| original.setSourcePath(&source); |
| original.moveTo(0, 0); |
| original.lineTo(1, 1); |
| REPORTER_ASSERT(reporter, original.getSourcePath() == &source); |
| |
| uint32_t copyID, assignID; |
| |
| // Test copy constructor. Copy generation ID, copy source path. |
| SkPath copy(original); |
| REPORTER_ASSERT(reporter, copy.getGenerationID() == original.getGenerationID()); |
| REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); |
| |
| // Test assigment operator. Change generation ID, copy source path. |
| SkPath assign; |
| assignID = assign.getGenerationID(); |
| assign = original; |
| REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); |
| REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath()); |
| |
| // Test rewind. Change generation ID, don't touch source path. |
| copyID = copy.getGenerationID(); |
| copy.rewind(); |
| REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID); |
| REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); |
| |
| // Test reset. Change generation ID, don't touch source path. |
| assignID = assign.getGenerationID(); |
| assign.reset(); |
| REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); |
| REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath()); |
| |
| // Test swap. Swap the generation IDs, swap source paths. |
| copy.reset(); |
| copy.moveTo(2, 2); |
| copy.setSourcePath(&anotherSource); |
| copyID = copy.getGenerationID(); |
| assign.moveTo(3, 3); |
| assignID = assign.getGenerationID(); |
| copy.swap(assign); |
| REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID); |
| REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID); |
| REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath()); |
| REPORTER_ASSERT(reporter, assign.getSourcePath() == &anotherSource); |
| #endif |
| } |
| |
| static void test_gen_id(skiatest::Reporter* reporter) { |
| SkPath a, b; |
| REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); |
| |
| a.moveTo(0, 0); |
| const uint32_t z = a.getGenerationID(); |
| REPORTER_ASSERT(reporter, z != b.getGenerationID()); |
| |
| a.reset(); |
| REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); |
| |
| a.moveTo(1, 1); |
| const uint32_t y = a.getGenerationID(); |
| REPORTER_ASSERT(reporter, z != y); |
| |
| b.moveTo(2, 2); |
| const uint32_t x = b.getGenerationID(); |
| REPORTER_ASSERT(reporter, x != y && x != z); |
| |
| a.swap(b); |
| REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x); |
| |
| b = a; |
| REPORTER_ASSERT(reporter, b.getGenerationID() == x); |
| |
| SkPath c(a); |
| REPORTER_ASSERT(reporter, c.getGenerationID() == x); |
| |
| c.lineTo(3, 3); |
| const uint32_t w = c.getGenerationID(); |
| REPORTER_ASSERT(reporter, b.getGenerationID() == x); |
| REPORTER_ASSERT(reporter, a.getGenerationID() == x); |
| REPORTER_ASSERT(reporter, w != x); |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| static bool kExpectGenIDToIgnoreFill = false; |
| #else |
| static bool kExpectGenIDToIgnoreFill = true; |
| #endif |
| |
| c.toggleInverseFillType(); |
| const uint32_t v = c.getGenerationID(); |
| REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill); |
| |
| c.rewind(); |
| REPORTER_ASSERT(reporter, v != c.getGenerationID()); |
| } |
| |
| // This used to assert in the debug build, as the edges did not all line-up. |
| static void test_bad_cubic_crbug234190() { |
| SkPath path; |
| path.moveTo(13.8509f, 3.16858f); |
| path.cubicTo(-2.35893e+08f, -4.21044e+08f, |
| -2.38991e+08f, -4.26573e+08f, |
| -2.41016e+08f, -4.30188e+08f); |
| |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(84, 88)); |
| surface->getCanvas()->drawPath(path, paint); |
| } |
| |
| static void test_bad_cubic_crbug229478() { |
| const SkPoint pts[] = { |
| { 4595.91064f, -11596.9873f }, |
| { 4597.2168f, -11595.9414f }, |
| { 4598.52344f, -11594.8955f }, |
| { 4599.83008f, -11593.8496f }, |
| }; |
| |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setStrokeWidth(20); |
| |
| SkPath dst; |
| // Before the fix, this would infinite-recurse, and run out of stack |
| // because we would keep trying to subdivide a degenerate cubic segment. |
| paint.getFillPath(path, &dst, NULL); |
| } |
| |
| static void build_path_170666(SkPath& path) { |
| path.moveTo(17.9459f, 21.6344f); |
| path.lineTo(139.545f, -47.8105f); |
| path.lineTo(139.545f, -47.8105f); |
| path.lineTo(131.07f, -47.3888f); |
| path.lineTo(131.07f, -47.3888f); |
| path.lineTo(122.586f, -46.9532f); |
| path.lineTo(122.586f, -46.9532f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18085.1f, 31390.5f); |
| path.lineTo(18085.1f, 31390.5f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(18076.6f, 31390.9f); |
| path.lineTo(17955, 31460.3f); |
| path.lineTo(17955, 31460.3f); |
| path.lineTo(17963.5f, 31459.9f); |
| path.lineTo(17963.5f, 31459.9f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17.9551f, 21.6205f); |
| path.lineTo(17.9551f, 21.6205f); |
| path.lineTo(9.47091f, 22.0561f); |
| path.lineTo(9.47091f, 22.0561f); |
| path.lineTo(17.9459f, 21.6344f); |
| path.lineTo(17.9459f, 21.6344f); |
| path.close();path.moveTo(0.995934f, 22.4779f); |
| path.lineTo(0.986725f, 22.4918f); |
| path.lineTo(0.986725f, 22.4918f); |
| path.lineTo(17955, 31460.4f); |
| path.lineTo(17955, 31460.4f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(17971.9f, 31459.5f); |
| path.lineTo(18093.6f, 31390.1f); |
| path.lineTo(18093.6f, 31390.1f); |
| path.lineTo(18093.6f, 31390); |
| path.lineTo(18093.6f, 31390); |
| path.lineTo(139.555f, -47.8244f); |
| path.lineTo(139.555f, -47.8244f); |
| path.lineTo(122.595f, -46.9671f); |
| path.lineTo(122.595f, -46.9671f); |
| path.lineTo(0.995934f, 22.4779f); |
| path.lineTo(0.995934f, 22.4779f); |
| path.close(); |
| path.moveTo(5.43941f, 25.5223f); |
| path.lineTo(798267, -28871.1f); |
| path.lineTo(798267, -28871.1f); |
| path.lineTo(3.12512e+06f, -113102); |
| path.lineTo(3.12512e+06f, -113102); |
| path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); |
| path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); |
| path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); |
| path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); |
| path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); |
| path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); |
| path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); |
| path.lineTo(2.78271e+08f, -1.00733e+07f); |
| path.lineTo(2.78271e+08f, -1.00733e+07f); |
| path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); |
| path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); |
| path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); |
| path.lineTo(2.77473e+08f, -1.00444e+07f); |
| path.lineTo(2.77473e+08f, -1.00444e+07f); |
| path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); |
| path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); |
| path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); |
| path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); |
| path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); |
| path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); |
| path.lineTo(798284, -28872); |
| path.lineTo(798284, -28872); |
| path.lineTo(22.4044f, 24.6677f); |
| path.lineTo(22.4044f, 24.6677f); |
| path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); |
| path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); |
| path.close(); |
| } |
| |
| static void build_path_simple_170666(SkPath& path) { |
| path.moveTo(126.677f, 24.1591f); |
| path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); |
| } |
| |
| // This used to assert in the SK_DEBUG build, as the clip step would fail with |
| // too-few interations in our cubic-line intersection code. That code now runs |
| // 24 interations (instead of 16). |
| static void test_crbug_170666() { |
| SkPath path; |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| |
| SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(1000, 1000)); |
| |
| build_path_simple_170666(path); |
| surface->getCanvas()->drawPath(path, paint); |
| |
| build_path_170666(path); |
| surface->getCanvas()->drawPath(path, paint); |
| } |
| |
| static void test_addrect(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.lineTo(0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isRect(NULL)); |
| |
| path.reset(); |
| path.lineTo(FLT_EPSILON, FLT_EPSILON); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(NULL)); |
| |
| path.reset(); |
| path.quadTo(0, 0, 0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(NULL)); |
| |
| path.reset(); |
| path.conicTo(0, 0, 0, 0, 0.5f); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(NULL)); |
| |
| path.reset(); |
| path.cubicTo(0, 0, 0, 0, 0, 0); |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isRect(NULL)); |
| } |
| |
| // Make sure we stay non-finite once we get there (unless we reset or rewind). |
| static void test_addrect_isfinite(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.moveTo(0, 0); |
| path.lineTo(SK_ScalarInfinity, 42); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.reset(); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.addRect(SkRect::MakeWH(50, 100)); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| } |
| |
| static void build_big_path(SkPath* path, bool reducedCase) { |
| if (reducedCase) { |
| path->moveTo(577330, 1971.72f); |
| path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); |
| } else { |
| path->moveTo(60.1631f, 7.70567f); |
| path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); |
| path->lineTo(577379, 1977.77f); |
| path->quadTo(577364, 1979.57f, 577325, 1980.26f); |
| path->quadTo(577286, 1980.95f, 577245, 1980.13f); |
| path->quadTo(577205, 1979.3f, 577187, 1977.45f); |
| path->quadTo(577168, 1975.6f, 577183, 1973.8f); |
| path->quadTo(577198, 1972, 577238, 1971.31f); |
| path->quadTo(577277, 1970.62f, 577317, 1971.45f); |
| path->quadTo(577330, 1971.72f, 577341, 1972.11f); |
| path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); |
| path->moveTo(306.718f, -32.912f); |
| path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); |
| } |
| } |
| |
| static void test_clipped_cubic() { |
| SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(640, 480)); |
| |
| // This path used to assert, because our cubic-chopping code incorrectly |
| // moved control points after the chop. This test should be run in SK_DEBUG |
| // mode to ensure that we no long assert. |
| SkPath path; |
| for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { |
| build_big_path(&path, SkToBool(doReducedCase)); |
| |
| SkPaint paint; |
| for (int doAA = 0; doAA <= 1; ++doAA) { |
| paint.setAntiAlias(SkToBool(doAA)); |
| surface->getCanvas()->drawPath(path, paint); |
| } |
| } |
| } |
| |
| // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ |
| // which triggered an assert, from a tricky cubic. This test replicates that |
| // example, so we can ensure that we handle it (in SkEdge.cpp), and don't |
| // assert in the SK_DEBUG build. |
| static void test_tricky_cubic() { |
| const SkPoint pts[] = { |
| { SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) }, |
| { SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) }, |
| { SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) }, |
| { SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) }, |
| }; |
| |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| |
| SkSurface* surface = SkSurface::NewRasterPMColor(19, 130); |
| surface->getCanvas()->drawPath(path, paint); |
| surface->unref(); |
| } |
| |
| // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 |
| // |
| static void test_isfinite_after_transform(skiatest::Reporter* reporter) { |
| SkPath path; |
| path.quadTo(157, 366, 286, 208); |
| path.arcTo(37, 442, 315, 163, 957494590897113.0f); |
| |
| SkMatrix matrix; |
| matrix.setScale(1000*1000, 1000*1000); |
| |
| // Be sure that path::transform correctly updates isFinite and the bounds |
| // if the transformation overflows. The previous bug was that isFinite was |
| // set to true in this case, but the bounds were not set to empty (which |
| // they should be). |
| while (path.isFinite()) { |
| REPORTER_ASSERT(reporter, path.getBounds().isFinite()); |
| REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); |
| path.transform(matrix); |
| } |
| REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); |
| |
| matrix.setTranslate(SK_Scalar1, SK_Scalar1); |
| path.transform(matrix); |
| // we need to still be non-finite |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); |
| } |
| |
| static void add_corner_arc(SkPath* path, const SkRect& rect, |
| SkScalar xIn, SkScalar yIn, |
| int startAngle) |
| { |
| |
| SkScalar rx = SkMinScalar(rect.width(), xIn); |
| SkScalar ry = SkMinScalar(rect.height(), yIn); |
| |
| SkRect arcRect; |
| arcRect.set(-rx, -ry, rx, ry); |
| switch (startAngle) { |
| case 0: |
| arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); |
| break; |
| case 90: |
| arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); |
| break; |
| case 180: |
| arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); |
| break; |
| case 270: |
| arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); |
| break; |
| default: |
| break; |
| } |
| |
| path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); |
| } |
| |
| static void make_arb_round_rect(SkPath* path, const SkRect& r, |
| SkScalar xCorner, SkScalar yCorner) { |
| // we are lazy here and use the same x & y for each corner |
| add_corner_arc(path, r, xCorner, yCorner, 270); |
| add_corner_arc(path, r, xCorner, yCorner, 0); |
| add_corner_arc(path, r, xCorner, yCorner, 90); |
| add_corner_arc(path, r, xCorner, yCorner, 180); |
| path->close(); |
| } |
| |
| // Chrome creates its own round rects with each corner possibly being different. |
| // Performance will suffer if they are not convex. |
| // Note: PathBench::ArbRoundRectBench performs almost exactly |
| // the same test (but with drawing) |
| static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| SkRect r; |
| |
| for (int i = 0; i < 5000; ++i) { |
| |
| SkScalar size = rand.nextUScalar1() * 30; |
| if (size < SK_Scalar1) { |
| continue; |
| } |
| r.fLeft = rand.nextUScalar1() * 300; |
| r.fTop = rand.nextUScalar1() * 300; |
| r.fRight = r.fLeft + 2 * size; |
| r.fBottom = r.fTop + 2 * size; |
| |
| SkPath temp; |
| |
| make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); |
| |
| REPORTER_ASSERT(reporter, temp.isConvex()); |
| } |
| } |
| |
| // Chrome will sometimes create a 0 radius round rect. The degenerate |
| // quads prevent the path from being converted to a rect |
| // Note: PathBench::ArbRoundRectBench performs almost exactly |
| // the same test (but with drawing) |
| static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { |
| SkRandom rand; |
| SkRect r; |
| |
| for (int i = 0; i < 5000; ++i) { |
| |
| SkScalar size = rand.nextUScalar1() * 30; |
| if (size < SK_Scalar1) { |
| continue; |
| } |
| r.fLeft = rand.nextUScalar1() * 300; |
| r.fTop = rand.nextUScalar1() * 300; |
| r.fRight = r.fLeft + 2 * size; |
| r.fBottom = r.fTop + 2 * size; |
| |
| SkPath temp; |
| |
| make_arb_round_rect(&temp, r, 0, 0); |
| |
| SkRect result; |
| REPORTER_ASSERT(reporter, temp.isRect(&result)); |
| REPORTER_ASSERT(reporter, r == result); |
| } |
| } |
| |
| static void test_rect_isfinite(skiatest::Reporter* reporter) { |
| const SkScalar inf = SK_ScalarInfinity; |
| const SkScalar negInf = SK_ScalarNegativeInfinity; |
| const SkScalar nan = SK_ScalarNaN; |
| |
| SkRect r; |
| r.setEmpty(); |
| REPORTER_ASSERT(reporter, r.isFinite()); |
| r.set(0, 0, inf, negInf); |
| REPORTER_ASSERT(reporter, !r.isFinite()); |
| r.set(0, 0, nan, 0); |
| REPORTER_ASSERT(reporter, !r.isFinite()); |
| |
| SkPoint pts[] = { |
| { 0, 0 }, |
| { SK_Scalar1, 0 }, |
| { 0, SK_Scalar1 }, |
| }; |
| |
| bool isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, isFine); |
| REPORTER_ASSERT(reporter, !r.isEmpty()); |
| |
| pts[1].set(inf, 0); |
| isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, !isFine); |
| REPORTER_ASSERT(reporter, r.isEmpty()); |
| |
| pts[1].set(nan, 0); |
| isFine = r.setBoundsCheck(pts, 3); |
| REPORTER_ASSERT(reporter, !isFine); |
| REPORTER_ASSERT(reporter, r.isEmpty()); |
| } |
| |
| static void test_path_isfinite(skiatest::Reporter* reporter) { |
| const SkScalar inf = SK_ScalarInfinity; |
| const SkScalar negInf = SK_ScalarNegativeInfinity; |
| const SkScalar nan = SK_ScalarNaN; |
| |
| SkPath path; |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(SK_Scalar1, 0); |
| REPORTER_ASSERT(reporter, path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(inf, negInf); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| |
| path.reset(); |
| path.moveTo(nan, 0); |
| REPORTER_ASSERT(reporter, !path.isFinite()); |
| } |
| |
| static void test_isfinite(skiatest::Reporter* reporter) { |
| test_rect_isfinite(reporter); |
| test_path_isfinite(reporter); |
| } |
| |
| // assert that we always |
| // start with a moveTo |
| // only have 1 moveTo |
| // only have Lines after that |
| // end with a single close |
| // only have (at most) 1 close |
| // |
| static void test_poly(skiatest::Reporter* reporter, const SkPath& path, |
| const SkPoint srcPts[], bool expectClose) { |
| SkPath::RawIter iter(path); |
| SkPoint pts[4]; |
| |
| bool firstTime = true; |
| bool foundClose = false; |
| for (;;) { |
| switch (iter.next(pts)) { |
| case SkPath::kMove_Verb: |
| REPORTER_ASSERT(reporter, firstTime); |
| REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); |
| srcPts++; |
| firstTime = false; |
| break; |
| case SkPath::kLine_Verb: |
| REPORTER_ASSERT(reporter, !firstTime); |
| REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); |
| srcPts++; |
| break; |
| case SkPath::kQuad_Verb: |
| REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected quad verb"); |
| break; |
| case SkPath::kConic_Verb: |
| REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected conic verb"); |
| break; |
| case SkPath::kCubic_Verb: |
| REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected cubic verb"); |
| break; |
| case SkPath::kClose_Verb: |
| REPORTER_ASSERT(reporter, !firstTime); |
| REPORTER_ASSERT(reporter, !foundClose); |
| REPORTER_ASSERT(reporter, expectClose); |
| foundClose = true; |
| break; |
| case SkPath::kDone_Verb: |
| goto DONE; |
| } |
| } |
| DONE: |
| REPORTER_ASSERT(reporter, foundClose == expectClose); |
| } |
| |
| static void test_addPoly(skiatest::Reporter* reporter) { |
| SkPoint pts[32]; |
| SkRandom rand; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { |
| pts[i].fX = rand.nextSScalar1(); |
| pts[i].fY = rand.nextSScalar1(); |
| } |
| |
| for (int doClose = 0; doClose <= 1; ++doClose) { |
| for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { |
| SkPath path; |
| path.addPoly(pts, count, SkToBool(doClose)); |
| test_poly(reporter, path, pts, SkToBool(doClose)); |
| } |
| } |
| } |
| |
| static void test_strokerec(skiatest::Reporter* reporter) { |
| SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); |
| REPORTER_ASSERT(reporter, rec.isFillStyle()); |
| |
| rec.setHairlineStyle(); |
| REPORTER_ASSERT(reporter, rec.isHairlineStyle()); |
| |
| rec.setStrokeStyle(SK_Scalar1, false); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(SK_Scalar1, true); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(0, false); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); |
| |
| rec.setStrokeStyle(0, true); |
| REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); |
| } |
| |
| // Set this for paths that don't have a consistent direction such as a bowtie. |
| // (cheapComputeDirection is not expected to catch these.) |
| static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1); |
| |
| static void check_direction(skiatest::Reporter* reporter, const SkPath& path, |
| SkPath::Direction expected) { |
| if (expected == kDontCheckDir) { |
| return; |
| } |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| |
| SkPath::Direction dir; |
| if (copy.cheapComputeDirection(&dir)) { |
| REPORTER_ASSERT(reporter, dir == expected); |
| } else { |
| REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected); |
| } |
| } |
| |
| static void test_direction(skiatest::Reporter* reporter) { |
| size_t i; |
| SkPath path; |
| REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); |
| REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction)); |
| REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction)); |
| REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction)); |
| |
| static const char* gDegen[] = { |
| "M 10 10", |
| "M 10 10 M 20 20", |
| "M 10 10 L 20 20", |
| "M 10 10 L 10 10 L 10 10", |
| "M 10 10 Q 10 10 10 10", |
| "M 10 10 C 10 10 10 10 10 10", |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gDegen[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); |
| } |
| |
| static const char* gCW[] = { |
| "M 10 10 L 10 10 Q 20 10 20 20", |
| "M 10 10 C 20 10 20 20 20 20", |
| "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max |
| // rect with top two corners replaced by cubics with identical middle |
| // control points |
| "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", |
| "M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gCW[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| check_direction(reporter, path, SkPath::kCW_Direction); |
| } |
| |
| static const char* gCCW[] = { |
| "M 10 10 L 10 10 Q 20 10 20 -20", |
| "M 10 10 C 20 10 20 -20 20 -20", |
| "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max |
| // rect with top two corners replaced by cubics with identical middle |
| // control points |
| "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", |
| "M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif |
| }; |
| for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { |
| path.reset(); |
| bool valid = SkParsePath::FromSVGString(gCCW[i], &path); |
| REPORTER_ASSERT(reporter, valid); |
| check_direction(reporter, path, SkPath::kCCW_Direction); |
| } |
| |
| // Test two donuts, each wound a different direction. Only the outer contour |
| // determines the cheap direction |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); |
| check_direction(reporter, path, SkPath::kCW_Direction); |
| |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); |
| check_direction(reporter, path, SkPath::kCCW_Direction); |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| // triangle with one point really far from the origin. |
| path.reset(); |
| // the first point is roughly 1.05e10, 1.05e10 |
| path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652)); |
| path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); |
| path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); |
| check_direction(reporter, path, SkPath::kCCW_Direction); |
| #endif |
| |
| path.reset(); |
| path.conicTo(20, 0, 20, 20, 0.5f); |
| path.close(); |
| check_direction(reporter, path, SkPath::kCW_Direction); |
| |
| path.reset(); |
| path.lineTo(1, 1e7f); |
| path.lineTo(1e7f, 2e7f); |
| path.close(); |
| REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity()); |
| check_direction(reporter, path, SkPath::kCCW_Direction); |
| } |
| |
| static void add_rect(SkPath* path, const SkRect& r) { |
| path->moveTo(r.fLeft, r.fTop); |
| path->lineTo(r.fRight, r.fTop); |
| path->lineTo(r.fRight, r.fBottom); |
| path->lineTo(r.fLeft, r.fBottom); |
| path->close(); |
| } |
| |
| static void test_bounds(skiatest::Reporter* reporter) { |
| static const SkRect rects[] = { |
| { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, |
| { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, |
| { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, |
| { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, |
| }; |
| |
| SkPath path0, path1; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { |
| path0.addRect(rects[i]); |
| add_rect(&path1, rects[i]); |
| } |
| |
| REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); |
| } |
| |
| static void stroke_cubic(const SkPoint pts[4]) { |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.cubicTo(pts[1], pts[2], pts[3]); |
| |
| SkPaint paint; |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setStrokeWidth(SK_Scalar1 * 2); |
| |
| SkPath fill; |
| paint.getFillPath(path, &fill); |
| } |
| |
| // just ensure this can run w/o any SkASSERTS firing in the debug build |
| // we used to assert due to differences in how we determine a degenerate vector |
| // but that was fixed with the introduction of SkPoint::CanNormalize |
| static void stroke_tiny_cubic() { |
| SkPoint p0[] = { |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| { 372.0f, 92.0f }, |
| }; |
| |
| stroke_cubic(p0); |
| |
| SkPoint p1[] = { |
| { 372.0f, 92.0f }, |
| { 372.0007f, 92.000755f }, |
| { 371.99927f, 92.003922f }, |
| { 371.99826f, 92.003899f }, |
| }; |
| |
| stroke_cubic(p1); |
| } |
| |
| static void check_close(skiatest::Reporter* reporter, const SkPath& path) { |
| for (int i = 0; i < 2; ++i) { |
| SkPath::Iter iter(path, SkToBool(i)); |
| SkPoint mv; |
| SkPoint pts[4]; |
| SkPath::Verb v; |
| int nMT = 0; |
| int nCL = 0; |
| mv.set(0, 0); |
| while (SkPath::kDone_Verb != (v = iter.next(pts))) { |
| switch (v) { |
| case SkPath::kMove_Verb: |
| mv = pts[0]; |
| ++nMT; |
| break; |
| case SkPath::kClose_Verb: |
| REPORTER_ASSERT(reporter, mv == pts[0]); |
| ++nCL; |
| break; |
| default: |
| break; |
| } |
| } |
| // if we force a close on the interator we should have a close |
| // for every moveTo |
| REPORTER_ASSERT(reporter, !i || nMT == nCL); |
| } |
| } |
| |
| static void test_close(skiatest::Reporter* reporter) { |
| SkPath closePt; |
| closePt.moveTo(0, 0); |
| closePt.close(); |
| check_close(reporter, closePt); |
| |
| SkPath openPt; |
| openPt.moveTo(0, 0); |
| check_close(reporter, openPt); |
| |
| SkPath empty; |
| check_close(reporter, empty); |
| empty.close(); |
| check_close(reporter, empty); |
| |
| SkPath rect; |
| rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, rect); |
| rect.close(); |
| check_close(reporter, rect); |
| |
| SkPath quad; |
| quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, quad); |
| quad.close(); |
| check_close(reporter, quad); |
| |
| SkPath cubic; |
| quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, |
| 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); |
| check_close(reporter, cubic); |
| cubic.close(); |
| check_close(reporter, cubic); |
| |
| SkPath line; |
| line.moveTo(SK_Scalar1, SK_Scalar1); |
| line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, line); |
| line.close(); |
| check_close(reporter, line); |
| |
| SkPath rect2; |
| rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| rect2.close(); |
| rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); |
| check_close(reporter, rect2); |
| rect2.close(); |
| check_close(reporter, rect2); |
| |
| SkPath oval3; |
| oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); |
| oval3.close(); |
| oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); |
| check_close(reporter, oval3); |
| oval3.close(); |
| check_close(reporter, oval3); |
| |
| SkPath moves; |
| moves.moveTo(SK_Scalar1, SK_Scalar1); |
| moves.moveTo(5 * SK_Scalar1, SK_Scalar1); |
| moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); |
| moves.moveTo(10 *SK_Scalar1, SK_Scalar1); |
| check_close(reporter, moves); |
| |
| stroke_tiny_cubic(); |
| } |
| |
| static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, |
| SkPath::Convexity expected) { |
| SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. |
| SkPath::Convexity c = copy.getConvexity(); |
| REPORTER_ASSERT(reporter, c == expected); |
| } |
| |
| static void test_convexity2(skiatest::Reporter* reporter) { |
| SkPath pt; |
| pt.moveTo(0, 0); |
| pt.close(); |
| check_convexity(reporter, pt, SkPath::kConvex_Convexity); |
| check_direction(reporter, pt, SkPath::kUnknown_Direction); |
| |
| SkPath line; |
| line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); |
| line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); |
| line.close(); |
| check_convexity(reporter, line, SkPath::kConvex_Convexity); |
| check_direction(reporter, line, SkPath::kUnknown_Direction); |
| |
| SkPath triLeft; |
| triLeft.moveTo(0, 0); |
| triLeft.lineTo(SK_Scalar1, 0); |
| triLeft.lineTo(SK_Scalar1, SK_Scalar1); |
| triLeft.close(); |
| check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); |
| check_direction(reporter, triLeft, SkPath::kCW_Direction); |
| |
| SkPath triRight; |
| triRight.moveTo(0, 0); |
| triRight.lineTo(-SK_Scalar1, 0); |
| triRight.lineTo(SK_Scalar1, SK_Scalar1); |
| triRight.close(); |
| check_convexity(reporter, triRight, SkPath::kConvex_Convexity); |
| check_direction(reporter, triRight, SkPath::kCCW_Direction); |
| |
| SkPath square; |
| square.moveTo(0, 0); |
| square.lineTo(SK_Scalar1, 0); |
| square.lineTo(SK_Scalar1, SK_Scalar1); |
| square.lineTo(0, SK_Scalar1); |
| square.close(); |
| check_convexity(reporter, square, SkPath::kConvex_Convexity); |
| check_direction(reporter, square, SkPath::kCW_Direction); |
| |
| SkPath redundantSquare; |
| redundantSquare.moveTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(0, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, 0); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.lineTo(0, SK_Scalar1); |
| redundantSquare.close(); |
| check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); |
| check_direction(reporter, redundantSquare, SkPath::kCW_Direction); |
| |
| SkPath bowTie; |
| bowTie.moveTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(0, 0); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, SK_Scalar1); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(SK_Scalar1, 0); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.lineTo(0, SK_Scalar1); |
| bowTie.close(); |
| check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); |
| check_direction(reporter, bowTie, kDontCheckDir); |
| |
| SkPath spiral; |
| spiral.moveTo(0, 0); |
| spiral.lineTo(100*SK_Scalar1, 0); |
| spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); |
| spiral.lineTo(0, 100*SK_Scalar1); |
| spiral.lineTo(0, 50*SK_Scalar1); |
| spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); |
| spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); |
| spiral.close(); |
| check_convexity(reporter, spiral, SkPath::kConcave_Convexity); |
| check_direction(reporter, spiral, kDontCheckDir); |
| |
| SkPath dent; |
| dent.moveTo(0, 0); |
| dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); |
| dent.lineTo(0, 100*SK_Scalar1); |
| dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); |
| dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); |
| dent.close(); |
| check_convexity(reporter, dent, SkPath::kConcave_Convexity); |
| check_direction(reporter, dent, SkPath::kCW_Direction); |
| } |
| |
| static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, |
| const SkRect& bounds) { |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getBounds() == bounds); |
| |
| SkPath p2(p); |
| REPORTER_ASSERT(reporter, p2.isConvex()); |
| REPORTER_ASSERT(reporter, p2.getBounds() == bounds); |
| |
| SkPath other; |
| other.swap(p2); |
| REPORTER_ASSERT(reporter, other.isConvex()); |
| REPORTER_ASSERT(reporter, other.getBounds() == bounds); |
| } |
| |
| static void setFromString(SkPath* path, const char str[]) { |
| bool first = true; |
| while (str) { |
| SkScalar x, y; |
| str = SkParse::FindScalar(str, &x); |
| if (NULL == str) { |
| break; |
| } |
| str = SkParse::FindScalar(str, &y); |
| SkASSERT(str); |
| if (first) { |
| path->moveTo(x, y); |
| first = false; |
| } else { |
| path->lineTo(x, y); |
| } |
| } |
| } |
| |
| static void test_convexity(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| path.addCircle(0, 0, SkIntToScalar(10)); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle |
| check_convexity(reporter, path, SkPath::kConcave_Convexity); |
| |
| path.reset(); |
| path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction)); |
| |
| path.reset(); |
| path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); |
| check_convexity(reporter, path, SkPath::kConvex_Convexity); |
| REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction)); |
| |
| static const struct { |
| const char* fPathStr; |
| SkPath::Convexity fExpectedConvexity; |
| SkPath::Direction fExpectedDirection; |
| } gRec[] = { |
| { "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, |
| { "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, |
| { "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction }, |
| { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction }, |
| { "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction }, |
| { "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction }, |
| { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir }, |
| { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction }, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { |
| SkPath path; |
| setFromString(&path, gRec[i].fPathStr); |
| check_convexity(reporter, path, gRec[i].fExpectedConvexity); |
| check_direction(reporter, path, gRec[i].fExpectedDirection); |
| // check after setting the initial convex and direction |
| if (kDontCheckDir != gRec[i].fExpectedDirection) { |
| SkPath copy(path); |
| SkPath::Direction dir; |
| bool foundDir = copy.cheapComputeDirection(&dir); |
| REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPath::kUnknown_Direction) |
| ^ foundDir); |
| REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir); |
| check_convexity(reporter, copy, gRec[i].fExpectedConvexity); |
| } |
| REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity()); |
| check_direction(reporter, path, gRec[i].fExpectedDirection); |
| } |
| } |
| |
| static void test_isLine(skiatest::Reporter* reporter) { |
| SkPath path; |
| SkPoint pts[2]; |
| const SkScalar value = SkIntToScalar(5); |
| |
| REPORTER_ASSERT(reporter, !path.isLine(NULL)); |
| |
| // set some non-zero values |
| pts[0].set(value, value); |
| pts[1].set(value, value); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| // check that pts was untouched |
| REPORTER_ASSERT(reporter, pts[0].equals(value, value)); |
| REPORTER_ASSERT(reporter, pts[1].equals(value, value)); |
| |
| const SkScalar moveX = SkIntToScalar(1); |
| const SkScalar moveY = SkIntToScalar(2); |
| REPORTER_ASSERT(reporter, value != moveX && value != moveY); |
| |
| path.moveTo(moveX, moveY); |
| REPORTER_ASSERT(reporter, !path.isLine(NULL)); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| // check that pts was untouched |
| REPORTER_ASSERT(reporter, pts[0].equals(value, value)); |
| REPORTER_ASSERT(reporter, pts[1].equals(value, value)); |
| |
| const SkScalar lineX = SkIntToScalar(2); |
| const SkScalar lineY = SkIntToScalar(2); |
| REPORTER_ASSERT(reporter, value != lineX && value != lineY); |
| |
| path.lineTo(lineX, lineY); |
| REPORTER_ASSERT(reporter, path.isLine(NULL)); |
| |
| REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); |
| REPORTER_ASSERT(reporter, path.isLine(pts)); |
| REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); |
| |
| path.lineTo(0, 0); // too many points/verbs |
| REPORTER_ASSERT(reporter, !path.isLine(NULL)); |
| REPORTER_ASSERT(reporter, !path.isLine(pts)); |
| REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); |
| REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); |
| |
| path.reset(); |
| path.quadTo(1, 1, 2, 2); |
| REPORTER_ASSERT(reporter, !path.isLine(NULL)); |
| } |
| |
| static void test_conservativelyContains(skiatest::Reporter* reporter) { |
| SkPath path; |
| |
| // kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. |
| static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); |
| |
| // A circle that bounds kBaseRect (with a significant amount of slop) |
| SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height()); |
| circleR = SkScalarMul(circleR, 1.75f) / 2; |
| static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; |
| |
| // round-rect radii |
| static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; |
| |
| static const struct SUPPRESS_VISIBILITY_WARNING { |
| SkRect fQueryRect; |
| bool fInRect; |
| bool fInCircle; |
| bool fInRR; |
| bool fInCubicRR; |
| } kQueries[] = { |
| {kBaseRect, true, true, false, false}, |
| |
| // rect well inside of kBaseRect |
| {SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(), |
| kBaseRect.fTop + 0.25f*kBaseRect.height(), |
| kBaseRect.fRight - 0.25f*kBaseRect.width(), |
| kBaseRect.fBottom - 0.25f*kBaseRect.height()), |
| true, true, true, true}, |
| |
| // rects with edges off by one from kBaseRect's edges |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width(), kBaseRect.height() + 1), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width() + 1, kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, |
| kBaseRect.width() + 1, kBaseRect.height() + 1), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, |
| kBaseRect.width(), kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, |
| kBaseRect.width(), kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, |
| kBaseRect.width() + 2, kBaseRect.height()), |
| false, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, |
| kBaseRect.width() + 2, kBaseRect.height()), |
| false, true, false, false}, |
| |
| // zero-w/h rects at each corner of kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false}, |
| {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true}, |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true}, |
| {SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true}, |
| |
| // far away rect |
| {SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, |
| SkIntToScalar(10), SkIntToScalar(10)), |
| false, false, false, false}, |
| |
| // very large rect containing kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), |
| kBaseRect.fTop - 5 * kBaseRect.height(), |
| 11 * kBaseRect.width(), 11 * kBaseRect.height()), |
| false, false, false, false}, |
| |
| // skinny rect that spans same y-range as kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, |
| SkIntToScalar(1), kBaseRect.height()), |
| true, true, true, true}, |
| |
| // short rect that spans same x-range as kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), |
| true, true, true, true}, |
| |
| // skinny rect that spans slightly larger y-range than kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, |
| SkIntToScalar(1), kBaseRect.height() + 1), |
| false, true, false, false}, |
| |
| // short rect that spans slightly larger x-range than kBaseRect |
| {SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), |
| kBaseRect.width() + 1, SkScalar(1)), |
| false, true, false, false}, |
| }; |
| |
| for (int inv = 0; inv < 4; ++inv) { |
| for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { |
| SkRect qRect = kQueries[q].fQueryRect; |
| if (inv & 0x1) { |
| SkTSwap(qRect.fLeft, qRect.fRight); |
| } |
| if (inv & 0x2) { |
| SkTSwap(qRect.fTop, qRect.fBottom); |
| } |
| for (int d = 0; d < 2; ++d) { |
| SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction; |
| path.reset(); |
| path.addRect(kBaseRect, dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInRect == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInCircle == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); |
| REPORTER_ASSERT(reporter, kQueries[q].fInRR == |
| path.conservativelyContainsRect(qRect)); |
| |
| path.reset(); |
| path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop); |
| path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop, |
| kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2, |
| kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]); |
| path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom); |
| path.lineTo(kBaseRect.fRight, kBaseRect.fBottom); |
| path.lineTo(kBaseRect.fRight, kBaseRect.fTop); |
| path.close(); |
| REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR == |
| path.conservativelyContainsRect(qRect)); |
| |
| } |
| // Slightly non-convex shape, shouldn't contain any rects. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(50), 0.05f); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); |
| path.lineTo(0, SkIntToScalar(100)); |
| path.close(); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); |
| } |
| } |
| |
| // make sure a minimal convex shape works, a right tri with edges along pos x and y axes. |
| path.reset(); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| |
| // inside, on along top edge |
| REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| // above |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( |
| SkRect::MakeXYWH(SkIntToScalar(50), |
| SkIntToScalar(-10), |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| // to the left |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), |
| SkIntToScalar(5), |
| SkIntToScalar(5), |
| SkIntToScalar(5)))); |
| |
| // outside the diagonal edge |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), |
| SkIntToScalar(200), |
| SkIntToScalar(20), |
| SkIntToScalar(5)))); |
| |
| // same as above path and first test but with an extra moveTo. |
| path.reset(); |
| path.moveTo(100, 100); |
| path.moveTo(0, 0); |
| path.lineTo(SkIntToScalar(100), 0); |
| path.lineTo(0, SkIntToScalar(100)); |
| |
| REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, |
| SkIntToScalar(10), |
| SkIntToScalar(10)))); |
| |
| path.reset(); |
| path.lineTo(100, 100); |
| REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1))); |
| } |
| |
| static void test_isRect_open_close(skiatest::Reporter* reporter) { |
| SkPath path; |
| bool isClosed; |
| |
| path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1); |
| |
| if (false) { |
| // I think these should pass, but isRect() doesn't behave |
| // this way... yet |
| REPORTER_ASSERT(reporter, path.isRect(NULL, NULL)); |
| REPORTER_ASSERT(reporter, path.isRect(&isClosed, NULL)); |
| REPORTER_ASSERT(reporter, !isClosed); |
| } |
| |
| path.close(); |
| REPORTER_ASSERT(reporter, path.isRect(NULL, NULL)); |
| REPORTER_ASSERT(reporter, path.isRect(&isClosed, NULL)); |
| REPORTER_ASSERT(reporter, isClosed); |
| } |
| |
| // Simple isRect test is inline TestPath, below. |
| // test_isRect provides more extensive testing. |
| static void test_isRect(skiatest::Reporter* reporter) { |
| test_isRect_open_close(reporter); |
| |
| // passing tests (all moveTo / lineTo... |
| SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; |
| SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; |
| SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; |
| SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; |
| SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; |
| SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; |
| SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; |
| SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; |
| SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; |
| SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; |
| |
| // failing tests |
| SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points |
| SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal |
| SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps |
| SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up |
| SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots |
| SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots |
| SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots |
| SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' |
| SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps |
| SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap |
| SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short |
| |
| // failing, no close |
| SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match |
| SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto |
| |
| struct IsRectTest { |
| SkPoint *fPoints; |
| size_t fPointCount; |
| bool fClose; |
| bool fIsRect; |
| } tests[] = { |
| { r1, SK_ARRAY_COUNT(r1), true, true }, |
| { r2, SK_ARRAY_COUNT(r2), true, true }, |
| { r3, SK_ARRAY_COUNT(r3), true, true }, |
| { r4, SK_ARRAY_COUNT(r4), true, true }, |
| { r5, SK_ARRAY_COUNT(r5), true, true }, |
| { r6, SK_ARRAY_COUNT(r6), true, true }, |
| { r7, SK_ARRAY_COUNT(r7), true, true }, |
| { r8, SK_ARRAY_COUNT(r8), true, true }, |
| { r9, SK_ARRAY_COUNT(r9), true, true }, |
| { ra, SK_ARRAY_COUNT(ra), true, true }, |
| { rb, SK_ARRAY_COUNT(rb), true, true }, |
| { rc, SK_ARRAY_COUNT(rc), true, true }, |
| { rd, SK_ARRAY_COUNT(rd), true, true }, |
| { re, SK_ARRAY_COUNT(re), true, true }, |
| { rf, SK_ARRAY_COUNT(rf), true, true }, |
| |
| { f1, SK_ARRAY_COUNT(f1), true, false }, |
| { f2, SK_ARRAY_COUNT(f2), true, false }, |
| { f3, SK_ARRAY_COUNT(f3), true, false }, |
| { f4, SK_ARRAY_COUNT(f4), true, false }, |
| { f5, SK_ARRAY_COUNT(f5), true, false }, |
| { f6, SK_ARRAY_COUNT(f6), true, false }, |
| { f7, SK_ARRAY_COUNT(f7), true, false }, |
| { f8, SK_ARRAY_COUNT(f8), true, false }, |
| { f9, SK_ARRAY_COUNT(f9), true, false }, |
| { fa, SK_ARRAY_COUNT(fa), true, false }, |
| { fb, SK_ARRAY_COUNT(fb), true, false }, |
| |
| { c1, SK_ARRAY_COUNT(c1), false, false }, |
| { c2, SK_ARRAY_COUNT(c2), false, false }, |
| }; |
| |
| const size_t testCount = SK_ARRAY_COUNT(tests); |
| size_t index; |
| for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { |
| SkPath path; |
| path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); |
| for (index = 1; index < tests[testIndex].fPointCount; ++index) { |
| path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); |
| } |
| if (tests[testIndex].fClose) { |
| path.close(); |
| } |
| REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL)); |
| REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL, NULL)); |
| |
| if (tests[testIndex].fIsRect) { |
| SkRect computed, expected; |
| expected.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); |
| REPORTER_ASSERT(reporter, path.isRect(&computed)); |
| REPORTER_ASSERT(reporter, expected == computed); |
| |
| bool isClosed; |
| SkPath::Direction direction, cheapDirection; |
| REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection)); |
| REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction)); |
| REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose); |
| REPORTER_ASSERT(reporter, direction == cheapDirection); |
| } else { |
| SkRect computed; |
| computed.set(123, 456, 789, 1011); |
| REPORTER_ASSERT(reporter, !path.isRect(&computed)); |
| REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); |
| REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); |
| |
| bool isClosed = (bool) -1; |
| SkPath::Direction direction = (SkPath::Direction) -1; |
| REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction)); |
| REPORTER_ASSERT(reporter, isClosed == (bool) -1); |
| REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1); |
| } |
| } |
| |
| // fail, close then line |
| SkPath path1; |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| path1.lineTo(1, 0); |
| REPORTER_ASSERT(reporter, !path1.isRect(NULL)); |
| |
| // fail, move in the middle |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.moveTo(1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(NULL)); |
| |
| // fail, move on the edge |
| path1.reset(); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(NULL)); |
| |
| // fail, quad |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.quadTo(1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(NULL)); |
| |
| // fail, cubic |
| path1.reset(); |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.cubicTo(1, .5f, 1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| REPORTER_ASSERT(reporter, !path1.isRect(NULL)); |
| } |
| |
| static void test_isNestedRects(skiatest::Reporter* reporter) { |
| // passing tests (all moveTo / lineTo... |
| SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW |
| SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; |
| SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; |
| SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; |
| SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW |
| SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; |
| SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; |
| SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; |
| SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW |
| SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW |
| SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW |
| SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW |
| SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW |
| |
| // failing tests |
| SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points |
| SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal |
| SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps |
| SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up |
| SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots |
| SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots |
| SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots |
| SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' |
| |
| // failing, no close |
| SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match |
| SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto |
| |
| struct IsNestedRectTest { |
| SkPoint *fPoints; |
| size_t fPointCount; |
| SkPath::Direction fDirection; |
| bool fClose; |
| bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2); |
| } tests[] = { |
| { r1, SK_ARRAY_COUNT(r1), SkPath::kCW_Direction , true, true }, |
| { r2, SK_ARRAY_COUNT(r2), SkPath::kCW_Direction , true, true }, |
| { r3, SK_ARRAY_COUNT(r3), SkPath::kCW_Direction , true, true }, |
| { r4, SK_ARRAY_COUNT(r4), SkPath::kCW_Direction , true, true }, |
| { r5, SK_ARRAY_COUNT(r5), SkPath::kCCW_Direction, true, true }, |
| { r6, SK_ARRAY_COUNT(r6), SkPath::kCCW_Direction, true, true }, |
| { r7, SK_ARRAY_COUNT(r7), SkPath::kCCW_Direction, true, true }, |
| { r8, SK_ARRAY_COUNT(r8), SkPath::kCCW_Direction, true, true }, |
| { r9, SK_ARRAY_COUNT(r9), SkPath::kCCW_Direction, true, true }, |
| { ra, SK_ARRAY_COUNT(ra), SkPath::kCCW_Direction, true, true }, |
| { rb, SK_ARRAY_COUNT(rb), SkPath::kCW_Direction, true, true }, |
| { rc, SK_ARRAY_COUNT(rc), SkPath::kCW_Direction, true, true }, |
| { rd, SK_ARRAY_COUNT(rd), SkPath::kCCW_Direction, true, true }, |
| { re, SK_ARRAY_COUNT(re), SkPath::kCW_Direction, true, true }, |
| |
| { f1, SK_ARRAY_COUNT(f1), SkPath::kUnknown_Direction, true, false }, |
| { f2, SK_ARRAY_COUNT(f2), SkPath::kUnknown_Direction, true, false }, |
| { f3, SK_ARRAY_COUNT(f3), SkPath::kUnknown_Direction, true, false }, |
| { f4, SK_ARRAY_COUNT(f4), SkPath::kUnknown_Direction, true, false }, |
| { f5, SK_ARRAY_COUNT(f5), SkPath::kUnknown_Direction, true, false }, |
| { f6, SK_ARRAY_COUNT(f6), SkPath::kUnknown_Direction, true, false }, |
| { f7, SK_ARRAY_COUNT(f7), SkPath::kUnknown_Direction, true, false }, |
| { f8, SK_ARRAY_COUNT(f8), SkPath::kUnknown_Direction, true, false }, |
| |
| { c1, SK_ARRAY_COUNT(c1), SkPath::kUnknown_Direction, false, false }, |
| { c2, SK_ARRAY_COUNT(c2), SkPath::kUnknown_Direction, false, false }, |
| }; |
| |
| const size_t testCount = SK_ARRAY_COUNT(tests); |
| size_t index; |
| for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { |
| for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { |
| SkPath path; |
| if (rectFirst) { |
| path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); |
| for (index = 1; index < tests[testIndex].fPointCount; ++index) { |
| path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); |
| } |
| if (tests[testIndex].fClose) { |
| path.close(); |
| } |
| if (!rectFirst) { |
| path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, tests[testIndex].fIsNestedRect == path.isNestedRects(NULL)); |
| if (tests[testIndex].fIsNestedRect) { |
| SkRect expected[2], computed[2]; |
| SkPath::Direction expectedDirs[2], computedDirs[2]; |
| SkRect testBounds; |
| testBounds.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); |
| expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); |
| expected[1] = testBounds; |
| if (rectFirst) { |
| expectedDirs[0] = SkPath::kCW_Direction; |
| } else { |
| expectedDirs[0] = SkPath::kCCW_Direction; |
| } |
| expectedDirs[1] = tests[testIndex].fDirection; |
| REPORTER_ASSERT(reporter, path.isNestedRects(computed, computedDirs)); |
| REPORTER_ASSERT(reporter, expected[0] == computed[0]); |
| REPORTER_ASSERT(reporter, expected[1] == computed[1]); |
| REPORTER_ASSERT(reporter, expectedDirs[0] == computedDirs[0]); |
| REPORTER_ASSERT(reporter, expectedDirs[1] == computedDirs[1]); |
| } |
| } |
| |
| // fail, close then line |
| SkPath path1; |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| path1.lineTo(1, 0); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| |
| // fail, move in the middle |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.moveTo(1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| |
| // fail, move on the edge |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| |
| // fail, quad |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.quadTo(1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| |
| // fail, cubic |
| path1.reset(); |
| if (rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); |
| } |
| path1.moveTo(r1[0].fX, r1[0].fY); |
| for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) { |
| if (index == 2) { |
| path1.cubicTo(1, .5f, 1, .5f, 1, .5f); |
| } |
| path1.lineTo(r1[index].fX, r1[index].fY); |
| } |
| path1.close(); |
| if (!rectFirst) { |
| path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); |
| } |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| |
| // fail, not nested |
| path1.reset(); |
| path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction); |
| path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL)); |
| } |
| |
| // pass, stroke rect |
| SkPath src, dst; |
| src.addRect(1, 1, 7, 7, SkPath::kCW_Direction); |
| SkPaint strokePaint; |
| strokePaint.setStyle(SkPaint::kStroke_Style); |
| strokePaint.setStrokeWidth(2); |
| strokePaint.getFillPath(src, &dst); |
| REPORTER_ASSERT(reporter, dst.isNestedRects(NULL)); |
| } |
| |
| static void write_and_read_back(skiatest::Reporter* reporter, |
| const SkPath& p) { |
| SkWriter32 writer(100); |
| writer.writePath(p); |
| size_t size = writer.bytesWritten(); |
| SkAutoMalloc storage(size); |
| writer.flatten(storage.get()); |
| SkReader32 reader(storage.get(), size); |
| |
| SkPath readBack; |
| REPORTER_ASSERT(reporter, readBack != p); |
| reader.readPath(&readBack); |
| REPORTER_ASSERT(reporter, readBack == p); |
| |
| REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == |
| p.getConvexityOrUnknown()); |
| |
| REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL)); |
| |
| const SkRect& origBounds = p.getBounds(); |
| const SkRect& readBackBounds = readBack.getBounds(); |
| |
| REPORTER_ASSERT(reporter, origBounds == readBackBounds); |
| } |
| |
| static void test_flattening(skiatest::Reporter* reporter) { |
| SkPath p; |
| |
| static const SkPoint pts[] = { |
| { 0, 0 }, |
| { SkIntToScalar(10), SkIntToScalar(10) }, |
| { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, |
| { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } |
| }; |
| p.moveTo(pts[0]); |
| p.lineTo(pts[1]); |
| p.quadTo(pts[2], pts[3]); |
| p.cubicTo(pts[4], pts[5], pts[6]); |
| |
| write_and_read_back(reporter, p); |
| |
| // create a buffer that should be much larger than the path so we don't |
| // kill our stack if writer goes too far. |
| char buffer[1024]; |
| size_t size1 = p.writeToMemory(NULL); |
| size_t size2 = p.writeToMemory(buffer); |
| REPORTER_ASSERT(reporter, size1 == size2); |
| |
| SkPath p2; |
| size_t size3 = p2.readFromMemory(buffer, 1024); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, p == p2); |
| |
| size3 = p2.readFromMemory(buffer, 0); |
| REPORTER_ASSERT(reporter, !size3); |
| |
| SkPath tooShort; |
| size3 = tooShort.readFromMemory(buffer, size1 - 1); |
| REPORTER_ASSERT(reporter, tooShort.isEmpty()); |
| |
| char buffer2[1024]; |
| size3 = p2.writeToMemory(buffer2); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); |
| |
| // test persistence of the oval flag & convexity |
| { |
| SkPath oval; |
| SkRect rect = SkRect::MakeWH(10, 10); |
| oval.addOval(rect); |
| |
| write_and_read_back(reporter, oval); |
| } |
| } |
| |
| static void test_transform(skiatest::Reporter* reporter) { |
| SkPath p; |
| |
| #define CONIC_PERSPECTIVE_BUG_FIXED 0 |
| static const SkPoint pts[] = { |
| { 0, 0 }, // move |
| { SkIntToScalar(10), SkIntToScalar(10) }, // line |
| { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad |
| { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic |
| #if CONIC_PERSPECTIVE_BUG_FIXED |
| { 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic |
| #endif |
| }; |
| const int kPtCount = SK_ARRAY_COUNT(pts); |
| |
| p.moveTo(pts[0]); |
| p.lineTo(pts[1]); |
| p.quadTo(pts[2], pts[3]); |
| p.cubicTo(pts[4], pts[5], pts[6]); |
| #if CONIC_PERSPECTIVE_BUG_FIXED |
| p.conicTo(pts[4], pts[5], 0.5f); |
| #endif |
| p.close(); |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| SkPath p1; |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, p == p1); |
| } |
| |
| |
| { |
| SkMatrix matrix; |
| matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); |
| |
| SkPath p1; // Leave p1 non-unique (i.e., the empty path) |
| |
| p.transform(matrix, &p1); |
| SkPoint pts1[kPtCount]; |
| int count = p1.getPoints(pts1, kPtCount); |
| REPORTER_ASSERT(reporter, kPtCount == count); |
| for (int i = 0; i < count; ++i) { |
| SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); |
| REPORTER_ASSERT(reporter, newPt == pts1[i]); |
| } |
| } |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.setPerspX(SkScalarToPersp(4)); |
| |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, matrix.invert(&matrix)); |
| p1.transform(matrix, NULL); |
| SkRect pBounds = p.getBounds(); |
| SkRect p1Bounds = p1.getBounds(); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom)); |
| } |
| |
| p.reset(); |
| p.addCircle(0, 0, 1, SkPath::kCW_Direction); |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCW_Direction)); |
| } |
| |
| |
| { |
| SkMatrix matrix; |
| matrix.reset(); |
| matrix.setScaleX(-1); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCCW_Direction)); |
| } |
| |
| { |
| SkMatrix matrix; |
| matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1); |
| SkPath p1; |
| p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) |
| |
| p.transform(matrix, &p1); |
| REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kUnknown_Direction)); |
| } |
| } |
| |
| static void test_zero_length_paths(skiatest::Reporter* reporter) { |
| SkPath p; |
| uint8_t verbs[32]; |
| |
| struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { |
| const char* testPath; |
| const size_t numResultPts; |
| const SkRect resultBound; |
| const SkPath::Verb* resultVerbs; |
| const size_t numResultVerbs; |
| }; |
| |
| static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; |
| static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; |
| static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; |
| static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; |
| static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs8[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb |
| }; |
| static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; |
| static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; |
| static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs12[] = { |
| SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb |
| }; |
| static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; |
| static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; |
| static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; |
| static const SkPath::Verb resultVerbs16[] = { |
| SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb |
| }; |
| static const struct zeroPathTestData gZeroLengthTests[] = { |
| { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, |
| { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, |
| { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, |
| { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, |
| { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, |
| { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, |
| { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, |
| { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, |
| { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, |
| { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, |
| { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, |
| { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, |
| { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, |
| SK_ARRAY_COUNT(resultVerbs14) |
| }, |
| { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, |
| { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, |
| SK_ARRAY_COUNT(resultVerbs16) |
| } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { |
| p.reset(); |
| bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); |
| REPORTER_ASSERT(reporter, valid); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); |
| for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { |
| REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); |
| } |
| } |
| } |
| |
| struct SegmentInfo { |
| SkPath fPath; |
| int fPointCount; |
| }; |
| |
| #define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) |
| |
| static void test_segment_masks(skiatest::Reporter* reporter) { |
| SkPath p, p2; |
| |
| p.moveTo(0, 0); |
| p.quadTo(100, 100, 200, 200); |
| REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| p.cubicTo(100, 100, 200, 200, 300, 300); |
| REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| |
| p.reset(); |
| p.moveTo(0, 0); |
| p.cubicTo(100, 100, 200, 200, 300, 300); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); |
| p2 = p; |
| REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); |
| |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| } |
| |
| static void test_iter(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pts[4]; |
| |
| // Test an iterator with no path |
| SkPath::Iter noPathIter; |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that setting an empty path works |
| noPathIter.setPath(p, false); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that close path makes no difference for an empty path |
| noPathIter.setPath(p, true); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test an iterator with an initial empty path |
| SkPath::Iter iter(p, false); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that close path makes no difference |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| |
| struct iterTestData { |
| const char* testPath; |
| const bool forceClose; |
| const bool consumeDegenerates; |
| const size_t* numResultPtsPerVerb; |
| const SkPoint* resultPts; |
| const SkPath::Verb* resultVerbs; |
| const size_t numResultVerbs; |
| }; |
| |
| static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; |
| static const SkPath::Verb resultVerbs2[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb |
| }; |
| static const SkPath::Verb resultVerbs3[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb |
| }; |
| static const SkPath::Verb resultVerbs4[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb |
| }; |
| static const SkPath::Verb resultVerbs5[] = { |
| SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb |
| }; |
| static const size_t resultPtsSizes1[] = { 0 }; |
| static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 }; |
| static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 }; |
| static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 }; |
| static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 }; |
| static const SkPoint* resultPts1 = 0; |
| static const SkPoint resultPts2[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 } |
| }; |
| static const SkPoint resultPts3[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }, |
| { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 } |
| }; |
| static const SkPoint resultPts4[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } |
| }; |
| static const SkPoint resultPts5[] = { |
| { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } |
| }; |
| static const struct iterTestData gIterTests[] = { |
| { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, |
| { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, |
| { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, |
| { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, |
| { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { |
| p.reset(); |
| bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); |
| REPORTER_ASSERT(reporter, valid); |
| iter.setPath(p, gIterTests[i].forceClose); |
| int j = 0, l = 0; |
| do { |
| REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]); |
| for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { |
| REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); |
| } |
| } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); |
| REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); |
| } |
| |
| p.reset(); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| p.lineTo(1, 1); |
| p.close(); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, iter.isClosedContour()); |
| p.reset(); |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| p.lineTo(1, 1); |
| iter.setPath(p, true); |
| REPORTER_ASSERT(reporter, iter.isClosedContour()); |
| p.moveTo(0, 0); |
| p.lineTo(2, 2); |
| iter.setPath(p, false); |
| REPORTER_ASSERT(reporter, !iter.isClosedContour()); |
| |
| // this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not |
| // check to see if the result is correct. |
| for (int setNaN = 0; setNaN < 4; ++setNaN) { |
| p.reset(); |
| p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0); |
| p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1); |
| iter.setPath(p, true); |
| iter.next(pts, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts, false)); |
| } |
| |
| p.reset(); |
| p.quadTo(0, 0, 0, 0); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts, false)); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); |
| |
| p.reset(); |
| p.conicTo(0, 0, 0, 0, 0.5f); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts, false)); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); |
| |
| p.reset(); |
| p.cubicTo(0, 0, 0, 0, 0, 0); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); |
| |
| p.moveTo(1, 1); // add a trailing moveto |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); |
| iter.setPath(p, false); |
| iter.next(pts, false); |
| REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); |
| |
| // The GM degeneratesegments.cpp test is more extensive |
| } |
| |
| static void test_raw_iter(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pts[4]; |
| |
| // Test an iterator with no path |
| SkPath::RawIter noPathIter; |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| // Test that setting an empty path works |
| noPathIter.setPath(p); |
| REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test an iterator with an initial empty path |
| SkPath::RawIter iter(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Test that a move-only path returns the move. |
| p.moveTo(SK_Scalar1, 0); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // No matter how many moves we add, we should get them all back |
| p.moveTo(SK_Scalar1*2, SK_Scalar1); |
| p.moveTo(SK_Scalar1*3, SK_Scalar1*2); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Initial close is never ever stored |
| p.reset(); |
| p.close(); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Move/close sequences |
| p.reset(); |
| p.close(); // Not stored, no purpose |
| p.moveTo(SK_Scalar1, 0); |
| p.close(); |
| p.close(); // Not stored, no purpose |
| p.moveTo(SK_Scalar1*2, SK_Scalar1); |
| p.close(); |
| p.moveTo(SK_Scalar1*3, SK_Scalar1*2); |
| p.moveTo(SK_Scalar1*4, SK_Scalar1*3); |
| p.close(); |
| iter.setPath(p); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); |
| REPORTER_ASSERT(reporter, pts[0].fY == 0); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); |
| REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); |
| |
| // Generate random paths and verify |
| SkPoint randomPts[25]; |
| for (int i = 0; i < 5; ++i) { |
| for (int j = 0; j < 5; ++j) { |
| randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); |
| } |
| } |
| |
| // Max of 10 segments, max 3 points per segment |
| SkRandom rand(9876543); |
| SkPoint expectedPts[31]; // May have leading moveTo |
| SkPath::Verb expectedVerbs[22]; // May have leading moveTo |
| SkPath::Verb nextVerb; |
| |
| for (int i = 0; i < 500; ++i) { |
| p.reset(); |
| bool lastWasClose = true; |
| bool haveMoveTo = false; |
| SkPoint lastMoveToPt = { 0, 0 }; |
| int numPoints = 0; |
| int numVerbs = (rand.nextU() >> 16) % 10; |
| int numIterVerbs = 0; |
| for (int j = 0; j < numVerbs; ++j) { |
| do { |
| nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb); |
| } while (lastWasClose && nextVerb == SkPath::kClose_Verb); |
| switch (nextVerb) { |
| case SkPath::kMove_Verb: |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.moveTo(expectedPts[numPoints]); |
| lastMoveToPt = expectedPts[numPoints]; |
| numPoints += 1; |
| lastWasClose = false; |
| haveMoveTo = true; |
| break; |
| case SkPath::kLine_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.lineTo(expectedPts[numPoints]); |
| numPoints += 1; |
| lastWasClose = false; |
| break; |
| case SkPath::kQuad_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); |
| numPoints += 2; |
| lastWasClose = false; |
| break; |
| case SkPath::kConic_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], |
| rand.nextUScalar1() * 4); |
| numPoints += 2; |
| lastWasClose = false; |
| break; |
| case SkPath::kCubic_Verb: |
| if (!haveMoveTo) { |
| expectedPts[numPoints++] = lastMoveToPt; |
| expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; |
| haveMoveTo = true; |
| } |
| expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; |
| expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; |
| p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], |
| expectedPts[numPoints + 2]); |
| numPoints += 3; |
| lastWasClose = false; |
| break; |
| case SkPath::kClose_Verb: |
| p.close(); |
| haveMoveTo = false; |
| lastWasClose = true; |
| break; |
| default: |
| SkDEBUGFAIL("unexpected verb"); |
| } |
| expectedVerbs[numIterVerbs++] = nextVerb; |
| } |
| |
| iter.setPath(p); |
| numVerbs = numIterVerbs; |
| numIterVerbs = 0; |
| int numIterPts = 0; |
| SkPoint lastMoveTo; |
| SkPoint lastPt; |
| lastMoveTo.set(0, 0); |
| lastPt.set(0, 0); |
| while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { |
| REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); |
| numIterVerbs++; |
| switch (nextVerb) { |
| case SkPath::kMove_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints); |
| REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); |
| lastPt = lastMoveTo = pts[0]; |
| numIterPts += 1; |
| break; |
| case SkPath::kLine_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| lastPt = pts[1]; |
| numIterPts += 1; |
| break; |
| case SkPath::kQuad_Verb: |
| case SkPath::kConic_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); |
| lastPt = pts[2]; |
| numIterPts += 2; |
| break; |
| case SkPath::kCubic_Verb: |
| REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); |
| REPORTER_ASSERT(reporter, pts[0] == lastPt); |
| REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); |
| REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); |
| REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); |
| lastPt = pts[3]; |
| numIterPts += 3; |
| break; |
| case SkPath::kClose_Verb: |
| REPORTER_ASSERT(reporter, pts[0] == lastMoveTo); |
| lastPt = lastMoveTo; |
| break; |
| default: |
| SkDEBUGFAIL("unexpected verb"); |
| } |
| } |
| REPORTER_ASSERT(reporter, numIterPts == numPoints); |
| REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); |
| } |
| } |
| |
| static void check_for_circle(skiatest::Reporter* reporter, |
| const SkPath& path, |
| bool expectedCircle, |
| SkPath::Direction expectedDir) { |
| SkRect rect = SkRect::MakeEmpty(); |
| REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); |
| REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir)); |
| |
| if (expectedCircle) { |
| REPORTER_ASSERT(reporter, rect.height() == rect.width()); |
| } |
| } |
| |
| static void test_circle_skew(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| SkPath tmp; |
| |
| SkMatrix m; |
| m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); |
| path.transform(m, &tmp); |
| // this matrix reverses the direction. |
| if (SkPath::kCCW_Direction == dir) { |
| dir = SkPath::kCW_Direction; |
| } else { |
| REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); |
| dir = SkPath::kCCW_Direction; |
| } |
| check_for_circle(reporter, tmp, false, dir); |
| } |
| |
| static void test_circle_translate(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| SkPath tmp; |
| |
| // translate at small offset |
| SkMatrix m; |
| m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); |
| path.transform(m, &tmp); |
| check_for_circle(reporter, tmp, true, dir); |
| |
| tmp.reset(); |
| m.reset(); |
| |
| // translate at a relatively big offset |
| m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); |
| path.transform(m, &tmp); |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_rotate(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| for (int angle = 0; angle < 360; ++angle) { |
| SkPath tmp; |
| SkMatrix m; |
| m.setRotate(SkIntToScalar(angle)); |
| path.transform(m, &tmp); |
| |
| // TODO: a rotated circle whose rotated angle is not a multiple of 90 |
| // degrees is not an oval anymore, this can be improved. we made this |
| // for the simplicity of our implementation. |
| if (angle % 90 == 0) { |
| check_for_circle(reporter, tmp, true, dir); |
| } else { |
| check_for_circle(reporter, tmp, false, dir); |
| } |
| } |
| } |
| |
| static void test_circle_mirror_x(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleX(-SK_Scalar1); |
| path.transform(m, &tmp); |
| |
| if (SkPath::kCW_Direction == dir) { |
| dir = SkPath::kCCW_Direction; |
| } else { |
| REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir); |
| dir = SkPath::kCW_Direction; |
| } |
| |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_mirror_y(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleY(-SK_Scalar1); |
| path.transform(m, &tmp); |
| |
| if (SkPath::kCW_Direction == dir) { |
| dir = SkPath::kCCW_Direction; |
| } else { |
| REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir); |
| dir = SkPath::kCW_Direction; |
| } |
| |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_mirror_xy(skiatest::Reporter* reporter, |
| const SkPath& path, |
| SkPath::Direction dir) { |
| SkPath tmp; |
| SkMatrix m; |
| m.reset(); |
| m.setScaleX(-SK_Scalar1); |
| m.setScaleY(-SK_Scalar1); |
| path.transform(m, &tmp); |
| |
| check_for_circle(reporter, tmp, true, dir); |
| } |
| |
| static void test_circle_with_direction(skiatest::Reporter* reporter, |
| SkPath::Direction dir) { |
| SkPath path; |
| |
| // circle at origin |
| path.addCircle(0, 0, SkIntToScalar(20), dir); |
| check_for_circle(reporter, path, true, dir); |
| test_circle_rotate(reporter, path, dir); |
| test_circle_translate(reporter, path, dir); |
| test_circle_skew(reporter, path, dir); |
| |
| // circle at an offset at (10, 10) |
| path.reset(); |
| path.addCircle(SkIntToScalar(10), SkIntToScalar(10), |
| SkIntToScalar(20), dir); |
| check_for_circle(reporter, path, true, dir); |
| test_circle_rotate(reporter, path, dir); |
| test_circle_translate(reporter, path, dir); |
| test_circle_skew(reporter, path, dir); |
| test_circle_mirror_x(reporter, path, dir); |
| test_circle_mirror_y(reporter, path, dir); |
| test_circle_mirror_xy(reporter, path, dir); |
| } |
| |
| static void test_circle_with_add_paths(skiatest::Reporter* reporter) { |
| SkPath path; |
| SkPath circle; |
| SkPath rect; |
| SkPath empty; |
| |
| static const SkPath::Direction kCircleDir = SkPath::kCW_Direction; |
| static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction; |
| |
| circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); |
| rect.addRect(SkIntToScalar(5), SkIntToScalar(5), |
| SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); |
| |
| SkMatrix translate; |
| translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); |
| |
| // For simplicity, all the path concatenation related operations |
| // would mark it non-circle, though in theory it's still a circle. |
| |
| // empty + circle (translate) |
| path = empty; |
| path.addPath(circle, translate); |
| check_for_circle(reporter, path, false, kCircleDir); |
| |
| // circle + empty (translate) |
| path = circle; |
| path.addPath(empty, translate); |
| check_for_circle(reporter, path, false, kCircleDir); |
| |
| // test reverseAddPath |
| path = circle; |
| path.reverseAddPath(rect); |
| check_for_circle(reporter, path, false, kCircleDirOpposite); |
| } |
| |
| static void test_circle(skiatest::Reporter* reporter) { |
| test_circle_with_direction(reporter, SkPath::kCW_Direction); |
| test_circle_with_direction(reporter, SkPath::kCCW_Direction); |
| |
| // multiple addCircle() |
| SkPath path; |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); |
| check_for_circle(reporter, path, false, SkPath::kCW_Direction); |
| |
| // some extra lineTo() would make isOval() fail |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.lineTo(0, 0); |
| check_for_circle(reporter, path, false, SkPath::kCW_Direction); |
| |
| // not back to the original point |
| path.reset(); |
| path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); |
| path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); |
| check_for_circle(reporter, path, false, SkPath::kCW_Direction); |
| |
| test_circle_with_add_paths(reporter); |
| |
| // test negative radius |
| path.reset(); |
| path.addCircle(0, 0, -1, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, path.isEmpty()); |
| } |
| |
| static void test_oval(skiatest::Reporter* reporter) { |
| SkRect rect; |
| SkMatrix m; |
| SkPath path; |
| |
| rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); |
| path.addOval(rect); |
| |
| REPORTER_ASSERT(reporter, path.isOval(NULL)); |
| |
| m.setRotate(SkIntToScalar(90)); |
| SkPath tmp; |
| path.transform(m, &tmp); |
| // an oval rotated 90 degrees is still an oval. |
| REPORTER_ASSERT(reporter, tmp.isOval(NULL)); |
| |
| m.reset(); |
| m.setRotate(SkIntToScalar(30)); |
| tmp.reset(); |
| path.transform(m, &tmp); |
| // an oval rotated 30 degrees is not an oval anymore. |
| REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); |
| |
| // since empty path being transformed. |
| path.reset(); |
| tmp.reset(); |
| m.reset(); |
| path.transform(m, &tmp); |
| REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); |
| |
| // empty path is not an oval |
| tmp.reset(); |
| REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); |
| |
| // only has moveTo()s |
| tmp.reset(); |
| tmp.moveTo(0, 0); |
| tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); |
| REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); |
| |
| // mimic WebKit's calling convention, |
| // call moveTo() first and then call addOval() |
| path.reset(); |
| path.moveTo(0, 0); |
| path.addOval(rect); |
| REPORTER_ASSERT(reporter, path.isOval(NULL)); |
| |
| // copy path |
| path.reset(); |
| tmp.reset(); |
| tmp.addOval(rect); |
| path = tmp; |
| REPORTER_ASSERT(reporter, path.isOval(NULL)); |
| } |
| |
| static void test_empty(skiatest::Reporter* reporter, const SkPath& p) { |
| SkPath empty; |
| |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| REPORTER_ASSERT(reporter, 0 == p.countPoints()); |
| REPORTER_ASSERT(reporter, 0 == p.countVerbs()); |
| REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); |
| REPORTER_ASSERT(reporter, !p.isInverseFillType()); |
| REPORTER_ASSERT(reporter, p == empty); |
| REPORTER_ASSERT(reporter, !(p != empty)); |
| } |
| |
| static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path, |
| SkPath::Direction dir) { |
| REPORTER_ASSERT(reporter, path->isConvex()); |
| REPORTER_ASSERT(reporter, path->cheapIsDirection(dir)); |
| path->setConvexity(SkPath::kUnknown_Convexity); |
| REPORTER_ASSERT(reporter, path->isConvex()); |
| path->reset(); |
| } |
| |
| static void test_rrect(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkRRect rr; |
| SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; |
| SkRect r = {10, 20, 30, 40}; |
| rr.setRectRadii(r, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| p.addRoundRect(r, &radii[0].fX); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| p.addRoundRect(r, radii[1].fX, radii[1].fY); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction); |
| test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) { |
| SkVector save = radii[i]; |
| radii[i].set(0, 0); |
| rr.setRectRadii(r, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| radii[i] = save; |
| } |
| p.addRoundRect(r, 0, 0); |
| SkRect returnedRect; |
| REPORTER_ASSERT(reporter, p.isRect(&returnedRect)); |
| REPORTER_ASSERT(reporter, returnedRect == r); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; |
| rr.setRectRadii(r, zeroRadii); |
| p.addRRect(rr); |
| bool closed; |
| SkPath::Direction dir; |
| REPORTER_ASSERT(reporter, p.isRect(&closed, &dir)); |
| REPORTER_ASSERT(reporter, closed); |
| REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCW_Direction); |
| p.addRRect(rr, SkPath::kCW_Direction); |
| REPORTER_ASSERT(reporter, !p.isConvex()); |
| p.reset(); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| p.addRRect(rr, SkPath::kCCW_Direction); |
| REPORTER_ASSERT(reporter, !p.isConvex()); |
| p.reset(); |
| SkRect emptyR = {10, 20, 10, 30}; |
| rr.setRectRadii(emptyR, radii); |
| p.addRRect(rr); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax}; |
| rr.setRectRadii(largeR, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity}; |
| rr.setRectRadii(infR, radii); |
| p.addRRect(rr); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| SkRect tinyR = {0, 0, 1e-9f, 1e-9f}; |
| p.addRoundRect(tinyR, 5e-11f, 5e-11f); |
| test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); |
| } |
| |
| static void test_arc(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkRect emptyOval = {10, 20, 30, 20}; |
| REPORTER_ASSERT(reporter, emptyOval.isEmpty()); |
| p.addArc(emptyOval, 1, 2); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| p.reset(); |
| SkRect oval = {10, 20, 30, 40}; |
| p.addArc(oval, 1, 0); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| p.reset(); |
| SkPath cwOval; |
| cwOval.addOval(oval); |
| p.addArc(oval, 1, 360); |
| REPORTER_ASSERT(reporter, p == cwOval); |
| p.reset(); |
| SkPath ccwOval; |
| ccwOval.addOval(oval, SkPath::kCCW_Direction); |
| p.addArc(oval, 1, -360); |
| REPORTER_ASSERT(reporter, p == ccwOval); |
| p.reset(); |
| p.addArc(oval, 1, 180); |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| REPORTER_ASSERT(reporter, p.cheapIsDirection(SkPath::kCW_Direction)); |
| p.setConvexity(SkPath::kUnknown_Convexity); |
| REPORTER_ASSERT(reporter, p.isConvex()); |
| } |
| |
| static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x0, SkScalar y0) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb); |
| REPORTER_ASSERT(reporter, pts[0].fX == x0); |
| REPORTER_ASSERT(reporter, pts[0].fY == y0); |
| } |
| |
| static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x1, SkScalar y1) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb); |
| REPORTER_ASSERT(reporter, pts[1].fX == x1); |
| REPORTER_ASSERT(reporter, pts[1].fY == y1); |
| } |
| |
| static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb); |
| REPORTER_ASSERT(reporter, pts[1].fX == x1); |
| REPORTER_ASSERT(reporter, pts[1].fY == y1); |
| REPORTER_ASSERT(reporter, pts[2].fX == x2); |
| REPORTER_ASSERT(reporter, pts[2].fY == y2); |
| } |
| |
| static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { |
| SkPoint pts[4]; |
| SkPath::Verb v = iter->next(pts); |
| REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb); |
| } |
| |
| static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { |
| check_done(reporter, p, iter); |
| p->reset(); |
| } |
| |
| static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x0, SkScalar y0) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, x0, y0); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_done(reporter, p, &iter); |
| } |
| |
| static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_line(reporter, &iter, x1, y1); |
| check_line(reporter, &iter, x2, y2); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p, |
| SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPath::RawIter iter(*p); |
| check_move(reporter, &iter, 0, 0); |
| check_quad(reporter, &iter, x1, y1, x2, y2); |
| check_done_and_reset(reporter, p, &iter); |
| } |
| |
| static void test_arcTo(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.arcTo(0, 0, 1, 2, 1); |
| check_path_is_line_and_reset(reporter, &p, 0, 0); |
| p.arcTo(1, 2, 1, 2, 1); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 2, 3, 4, 0); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 2, 0, 0, 1); |
| check_path_is_line_and_reset(reporter, &p, 1, 2); |
| p.arcTo(1, 0, 1, 1, 1); |
| SkPoint pt; |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1); |
| p.reset(); |
| p.arcTo(1, 0, 1, -1, 1); |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1); |
| p.reset(); |
| SkRect oval = {1, 2, 3, 4}; |
| p.arcTo(oval, 0, 0, true); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 0, 0, false); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 360, 0, true); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| p.arcTo(oval, 360, 0, false); |
| check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); |
| for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) { |
| p.arcTo(oval, 0, sweep, false); |
| REPORTER_ASSERT(reporter, p.getBounds() == oval); |
| sweep += delta; |
| delta /= 2; |
| } |
| for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) { |
| p.arcTo(oval, 0, sweep, false); |
| REPORTER_ASSERT(reporter, p.getBounds() == oval); |
| sweep -= delta; |
| delta /= 2; |
| } |
| SkRect noOvalWidth = {1, 2, 0, 3}; |
| p.reset(); |
| p.arcTo(noOvalWidth, 0, 360, false); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| |
| SkRect noOvalHeight = {1, 2, 3, 1}; |
| p.reset(); |
| p.arcTo(noOvalHeight, 0, 360, false); |
| REPORTER_ASSERT(reporter, p.isEmpty()); |
| } |
| |
| static void test_addPath(skiatest::Reporter* reporter) { |
| SkPath p, q; |
| p.lineTo(1, 2); |
| q.moveTo(4, 4); |
| q.lineTo(7, 8); |
| q.conicTo(8, 7, 6, 5, 0.5f); |
| q.quadTo(6, 7, 8, 6); |
| q.cubicTo(5, 6, 7, 8, 7, 5); |
| q.close(); |
| p.addPath(q, -4, -4); |
| SkRect expected = {0, 0, 4, 4}; |
| REPORTER_ASSERT(reporter, p.getBounds() == expected); |
| p.reset(); |
| p.reverseAddPath(q); |
| SkRect reverseExpected = {4, 4, 8, 8}; |
| REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); |
| } |
| |
| static void test_conicTo_special_case(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.conicTo(1, 2, 3, 4, -1); |
| check_path_is_line_and_reset(reporter, &p, 3, 4); |
| p.conicTo(1, 2, 3, 4, SK_ScalarInfinity); |
| check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4); |
| p.conicTo(1, 2, 3, 4, 1); |
| check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4); |
| } |
| |
| static void test_get_point(skiatest::Reporter* reporter) { |
| SkPath p; |
| SkPoint pt = p.getPoint(0); |
| REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0)); |
| REPORTER_ASSERT(reporter, !p.getLastPt(NULL)); |
| REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0)); |
| p.setLastPt(10, 10); |
| pt = p.getPoint(0); |
| REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10)); |
| REPORTER_ASSERT(reporter, p.getLastPt(NULL)); |
| p.rMoveTo(10, 10); |
| REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20)); |
| } |
| |
| static void test_contains(skiatest::Reporter* reporter) { |
| SkPath p; |
| p.setFillType(SkPath::kInverseWinding_FillType); |
| REPORTER_ASSERT(reporter, p.contains(0, 0)); |
| p.setFillType(SkPath::kWinding_FillType); |
| REPORTER_ASSERT(reporter, !p.contains(0, 0)); |
| p.moveTo(4, 4); |
| p.lineTo(6, 8); |
| p.lineTo(8, 4); |
| // test quick reject |
| REPORTER_ASSERT(reporter, !p.contains(4, 0)); |
| REPORTER_ASSERT(reporter, !p.contains(0, 4)); |
| REPORTER_ASSERT(reporter, !p.contains(4, 10)); |
| REPORTER_ASSERT(reporter, !p.contains(10, 4)); |
| // test various crossings in x |
| REPORTER_ASSERT(reporter, !p.contains(5, 7)); |
| REPORTER_ASSERT(reporter, p.contains(6, 7)); |
| REPORTER_ASSERT(reporter, !p.contains(7, 7)); |
| p.reset(); |
| p.moveTo(4, 4); |
| p.lineTo(8, 6); |
| p.lineTo(4, 8); |
| // test various crossings in y |
| REPORTER_ASSERT(reporter, !p.contains(7, 5)); |
| REPORTER_ASSERT(reporter, p.contains(7, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(7, 7)); |
| // test quads |
| p.reset(); |
| p.moveTo(4, 4); |
| p.quadTo(6, 6, 8, 8); |
| p.quadTo(6, 8, 4, 8); |
| p.quadTo(4, 6, 4, 4); |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| |
| p.reset(); |
| p.moveTo(6, 6); |
| p.quadTo(8, 8, 6, 8); |
| p.quadTo(4, 8, 4, 6); |
| p.quadTo(4, 4, 6, 6); |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| |
| #define CONIC_CONTAINS_BUG_FIXED 0 |
| #if CONIC_CONTAINS_BUG_FIXED |
| p.reset(); |
| p.moveTo(4, 4); |
| p.conicTo(6, 6, 8, 8, 0.5f); |
| p.conicTo(6, 8, 4, 8, 0.5f); |
| p.conicTo(4, 6, 4, 4, 0.5f); |
| REPORTER_ASSERT(reporter, p.contains(5, 6)); |
| REPORTER_ASSERT(reporter, !p.contains(6, 5)); |
| #endif |
| |
| // test cubics |
| SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}}; |
| for (int i = 0; i < 3; ++i) { |
| p.reset(); |
| p.setFillType(SkPath::kEvenOdd_FillType); |
| p.moveTo(pts[i].fX, pts[i].fY); |
| p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY); |
| p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY); |
| p.close(); |
| REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f)); |
| REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f)); |
| } |
| } |
| |
| static void test_operatorEqual(skiatest::Reporter* reporter) { |
| SkPath a; |
| SkPath b; |
| REPORTER_ASSERT(reporter, a == a); |
| REPORTER_ASSERT(reporter, a == b); |
| a.setFillType(SkPath::kInverseWinding_FillType); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| REPORTER_ASSERT(reporter, a == b); |
| a.lineTo(1, 1); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| REPORTER_ASSERT(reporter, a == b); |
| a.lineTo(1, 1); |
| b.lineTo(1, 2); |
| REPORTER_ASSERT(reporter, a != b); |
| a.reset(); |
| a.lineTo(1, 2); |
| REPORTER_ASSERT(reporter, a == b); |
| } |
| |
| class PathTest_Private { |
| public: |
| static void TestPathTo(skiatest::Reporter* reporter) { |
| SkPath p, q; |
| p.lineTo(4, 4); |
| p.reversePathTo(q); |
| check_path_is_line(reporter, &p, 4, 4); |
| q.moveTo(-4, -4); |
| p.reversePathTo(q); |
| check_path_is_line(reporter, &p, 4, 4); |
| q.lineTo(7, 8); |
| q.conicTo(8, 7, 6, 5, 0.5f); |
| q.quadTo(6, 7, 8, 6); |
| q.cubicTo(5, 6, 7, 8, 7, 5); |
| q.close(); |
| p.reversePathTo(q); |
| SkRect reverseExpected = {-4, -4, 8, 8}; |
| REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); |
| } |
| }; |
| |
| static void TestPath(skiatest::Reporter* reporter) { |
| SkTSize<SkScalar>::Make(3,4); |
| |
| SkPath p, empty; |
| SkRect bounds, bounds2; |
| test_empty(reporter, p); |
| |
| REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); |
| |
| // this triggers a code path in SkPath::operator= which is otherwise unexercised |
| SkPath& self = p; |
| p = self; |
| |
| // this triggers a code path in SkPath::swap which is otherwise unexercised |
| p.swap(self); |
| |
| bounds.set(0, 0, SK_Scalar1, SK_Scalar1); |
| |
| p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); |
| check_convex_bounds(reporter, p, bounds); |
| // we have quads or cubics |
| REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| p.reset(); |
| test_empty(reporter, p); |
| |
| p.addOval(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| p.rewind(); |
| test_empty(reporter, p); |
| |
| p.addRect(bounds); |
| check_convex_bounds(reporter, p, bounds); |
| // we have only lines |
| REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); |
| REPORTER_ASSERT(reporter, !p.isEmpty()); |
| |
| REPORTER_ASSERT(reporter, p != empty); |
| REPORTER_ASSERT(reporter, !(p == empty)); |
| |
| // do getPoints and getVerbs return the right result |
| REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4); |
| REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5); |
| SkPoint pts[4]; |
| int count = p.getPoints(pts, 4); |
| REPORTER_ASSERT(reporter, count == 4); |
| uint8_t verbs[6]; |
| verbs[5] = 0xff; |
| p.getVerbs(verbs, 5); |
| REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); |
| REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); |
| REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); |
| REPORTER_ASSERT(reporter, 0xff == verbs[5]); |
| bounds2.set(pts, 4); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| bounds.offset(SK_Scalar1*3, SK_Scalar1*4); |
| p.offset(SK_Scalar1*3, SK_Scalar1*4); |
| REPORTER_ASSERT(reporter, bounds == p.getBounds()); |
| |
| REPORTER_ASSERT(reporter, p.isRect(NULL)); |
| bounds2.setEmpty(); |
| REPORTER_ASSERT(reporter, p.isRect(&bounds2)); |
| REPORTER_ASSERT(reporter, bounds == bounds2); |
| |
| // now force p to not be a rect |
| bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); |
| p.addRect(bounds); |
| REPORTER_ASSERT(reporter, !p.isRect(NULL)); |
| |
| test_operatorEqual(reporter); |
| test_isLine(reporter); |
| test_isRect(reporter); |
| test_isNestedRects(reporter); |
| test_zero_length_paths(reporter); |
| test_direction(reporter); |
| test_convexity(reporter); |
| test_convexity2(reporter); |
| test_conservativelyContains(reporter); |
| test_close(reporter); |
| test_segment_masks(reporter); |
| test_flattening(reporter); |
| test_transform(reporter); |
| test_bounds(reporter); |
| test_iter(reporter); |
| test_raw_iter(reporter); |
| test_circle(reporter); |
| test_oval(reporter); |
| test_strokerec(reporter); |
| test_addPoly(reporter); |
| test_isfinite(reporter); |
| test_isfinite_after_transform(reporter); |
| test_arb_round_rect_is_convex(reporter); |
| test_arb_zero_rad_round_rect_is_rect(reporter); |
| test_addrect(reporter); |
| test_addrect_isfinite(reporter); |
| test_tricky_cubic(); |
| test_clipped_cubic(); |
| test_crbug_170666(); |
| test_bad_cubic_crbug229478(); |
| test_bad_cubic_crbug234190(); |
| test_android_specific_behavior(reporter); |
| test_gen_id(reporter); |
| test_path_close_issue1474(reporter); |
| test_path_to_region(reporter); |
| test_rrect(reporter); |
| test_arc(reporter); |
| test_arcTo(reporter); |
| test_addPath(reporter); |
| test_conicTo_special_case(reporter); |
| test_get_point(reporter); |
| test_contains(reporter); |
| PathTest_Private::TestPathTo(reporter); |
| } |
| |
| #include "TestClassDef.h" |
| DEFINE_TESTCLASS("Path", PathTestClass, TestPath) |