blob: bb4694264dba6100e13d10aa2ed7cc00da16a792 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkInsetConvexPolygon.h"
#include "SkTemplates.h"
struct InsetSegment {
SkPoint fP0;
SkPoint fP1;
};
// Computes perpDot for point compared to segment.
// A positive value means the point is to the left of the segment,
// negative is to the right, 0 is collinear.
static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
SkVector v0 = s1 - s0;
SkVector v1 = p - s0;
SkScalar perpDot = v0.cross(v1);
if (!SkScalarNearlyZero(perpDot)) {
return ((perpDot > 0) ? 1 : -1);
}
return 0;
}
// returns 1 for ccw, -1 for cw and 0 if degenerate
static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
SkPoint p0 = polygonVerts[0];
SkPoint p1 = polygonVerts[1];
for (int i = 2; i < polygonSize; ++i) {
SkPoint p2 = polygonVerts[i];
// determine if cw or ccw
int side = compute_side(p0, p1, p2);
if (0 != side) {
return ((side > 0) ? 1 : -1);
}
// if nearly collinear, treat as straight line and continue
p1 = p2;
}
return 0;
}
// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
int side, SkPoint* offset0, SkPoint* offset1) {
SkASSERT(side == -1 || side == 1);
SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
if (SkScalarNearlyEqual(d0, d1)) {
// if distances are equal, can just outset by the perpendicular
perp.setLength(d0*side);
*offset0 = p0 + perp;
*offset1 = p1 + perp;
} else {
// Otherwise we need to compute the outer tangent.
// See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
if (d0 < d1) {
side = -side;
}
SkScalar dD = d0 - d1;
// if one circle is inside another, we can't compute an offset
if (dD*dD >= p0.distanceToSqd(p1)) {
return false;
}
SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
(p1.fY*d0 - p0.fY*d1) / dD);
SkScalar d0sq = d0*d0;
SkVector dP = outerTangentIntersect - p0;
SkScalar dPlenSq = dP.lengthSqd();
SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;
SkScalar d1sq = d1*d1;
dP = outerTangentIntersect - p1;
dPlenSq = dP.lengthSqd();
discrim = SkScalarSqrt(dPlenSq - d1sq);
offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
}
return true;
}
// Compute the intersection 'p' between segments s0 and s1, if any.
// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
// Returns false if there is no intersection.
static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1,
SkPoint* p, SkScalar* s, SkScalar* t) {
SkVector v0 = s0.fP1 - s0.fP0;
SkVector v1 = s1.fP1 - s1.fP0;
SkScalar perpDot = v0.cross(v1);
if (SkScalarNearlyZero(perpDot)) {
// segments are parallel
// check if endpoints are touching
if (s0.fP1.equalsWithinTolerance(s1.fP0)) {
*p = s0.fP1;
*s = SK_Scalar1;
*t = 0;
return true;
}
if (s1.fP1.equalsWithinTolerance(s0.fP0)) {
*p = s1.fP1;
*s = 0;
*t = SK_Scalar1;
return true;
}
return false;
}
SkVector d = s1.fP0 - s0.fP0;
SkScalar localS = d.cross(v1) / perpDot;
if (localS < 0 || localS > SK_Scalar1) {
return false;
}
SkScalar localT = d.cross(v0) / perpDot;
if (localT < 0 || localT > SK_Scalar1) {
return false;
}
v0 *= localS;
*p = s0.fP0 + v0;
*s = localS;
*t = localT;
return true;
}
#ifdef SK_DEBUG
static bool is_convex(const SkTDArray<SkPoint>& poly) {
if (poly.count() <= 3) {
return true;
}
SkVector v0 = poly[0] - poly[poly.count() - 1];
SkVector v1 = poly[1] - poly[poly.count() - 1];
SkScalar winding = v0.cross(v1);
for (int i = 0; i < poly.count() - 1; ++i) {
int j = i + 1;
int k = (i + 2) % poly.count();
SkVector v0 = poly[j] - poly[i];
SkVector v1 = poly[k] - poly[i];
SkScalar perpDot = v0.cross(v1);
if (winding*perpDot < 0) {
return false;
}
}
return true;
}
#endif
// The objective here is to inset all of the edges by the given distance, and then
// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
// we should only be making left-hand turns (for cw polygons, we use the winding
// parameter to reverse this). We detect this by checking whether the second intersection
// on an edge is closer to its tail than the first one.
//
// We might also have the case that there is no intersection between two neighboring inset edges.
// In this case, one edge will lie to the right of the other and should be discarded along with
// its previous intersection (if any).
//
// Note: the assumption is that inputPolygon is convex and has no coincident points.
//
bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
std::function<SkScalar(int index)> insetDistanceFunc,
SkTDArray<SkPoint>* insetPolygon) {
if (inputPolygonSize < 3) {
return false;
}
int winding = get_winding(inputPolygonVerts, inputPolygonSize);
if (0 == winding) {
return false;
}
// set up
struct EdgeData {
InsetSegment fInset;
SkPoint fIntersection;
SkScalar fTValue;
bool fValid;
};
SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
for (int i = 0; i < inputPolygonSize; ++i) {
int j = (i + 1) % inputPolygonSize;
SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
insetDistanceFunc(i), insetDistanceFunc(j),
winding,
&edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1);
edgeData[i].fIntersection = edgeData[i].fInset.fP0;
edgeData[i].fTValue = SK_ScalarMin;
edgeData[i].fValid = true;
}
int prevIndex = inputPolygonSize - 1;
int currIndex = 0;
int insetVertexCount = inputPolygonSize;
while (prevIndex != currIndex) {
if (!edgeData[prevIndex].fValid) {
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
continue;
}
SkScalar s, t;
SkPoint intersection;
if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < edgeData[prevIndex].fTValue) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
// we've already considered this intersection, we're done
} else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
intersection.equalsWithinTolerance(edgeData[currIndex].fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
edgeData[currIndex].fIntersection = intersection;
edgeData[currIndex].fTValue = t;
// go to next segment
prevIndex = currIndex;
currIndex = (currIndex + 1) % inputPolygonSize;
}
} else {
// if prev to right side of curr
int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP1);
if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
edgeData[currIndex].fInset.fP1,
edgeData[prevIndex].fInset.fP0)) {
// no point in considering this one again
edgeData[prevIndex].fValid = false;
--insetVertexCount;
// go back one segment
prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
} else {
// move to next segment
edgeData[currIndex].fValid = false;
--insetVertexCount;
currIndex = (currIndex + 1) % inputPolygonSize;
}
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
static constexpr SkScalar kCleanupTolerance = 0.01f;
insetPolygon->reset();
insetPolygon->setReserve(insetVertexCount);
currIndex = -1;
for (int i = 0; i < inputPolygonSize; ++i) {
if (edgeData[i].fValid && (currIndex == -1 ||
!edgeData[i].fIntersection.equalsWithinTolerance((*insetPolygon)[currIndex],
kCleanupTolerance))) {
*insetPolygon->push() = edgeData[i].fIntersection;
currIndex++;
}
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
(*insetPolygon)[0].equalsWithinTolerance((*insetPolygon)[currIndex],
kCleanupTolerance)) {
insetPolygon->pop();
}
SkASSERT(is_convex(*insetPolygon));
return (insetPolygon->count() >= 3);
}