| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Test.h" |
| #include "SkMath.h" |
| #include "SkMatrix.h" |
| #include "SkMatrixUtils.h" |
| #include "SkRandom.h" |
| |
| static bool nearly_equal_scalar(SkScalar a, SkScalar b) { |
| const SkScalar tolerance = SK_Scalar1 / 200000; |
| return SkScalarAbs(a - b) <= tolerance; |
| } |
| |
| static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) { |
| for (int i = 0; i < 9; i++) { |
| if (!nearly_equal_scalar(a[i], b[i])) { |
| SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool are_equal(skiatest::Reporter* reporter, |
| const SkMatrix& a, |
| const SkMatrix& b) { |
| bool equal = a == b; |
| bool cheapEqual = a.cheapEqualTo(b); |
| if (equal != cheapEqual) { |
| if (equal) { |
| bool foundZeroSignDiff = false; |
| for (int i = 0; i < 9; ++i) { |
| float aVal = a.get(i); |
| float bVal = b.get(i); |
| int aValI = *SkTCast<int*>(&aVal); |
| int bValI = *SkTCast<int*>(&bVal); |
| if (0 == aVal && 0 == bVal && aValI != bValI) { |
| foundZeroSignDiff = true; |
| } else { |
| REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI); |
| } |
| } |
| REPORTER_ASSERT(reporter, foundZeroSignDiff); |
| } else { |
| bool foundNaN = false; |
| for (int i = 0; i < 9; ++i) { |
| float aVal = a.get(i); |
| float bVal = b.get(i); |
| int aValI = *SkTCast<int*>(&aVal); |
| int bValI = *SkTCast<int*>(&bVal); |
| if (sk_float_isnan(aVal) && aValI == bValI) { |
| foundNaN = true; |
| } else { |
| REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI); |
| } |
| } |
| REPORTER_ASSERT(reporter, foundNaN); |
| } |
| } |
| return equal; |
| } |
| |
| static bool is_identity(const SkMatrix& m) { |
| SkMatrix identity; |
| identity.reset(); |
| return nearly_equal(m, identity); |
| } |
| |
| static void test_matrix_recttorect(skiatest::Reporter* reporter) { |
| SkRect src, dst; |
| SkMatrix matrix; |
| |
| src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10); |
| dst = src; |
| matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); |
| REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst.offset(SK_Scalar1, SK_Scalar1); |
| matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); |
| REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst.fRight += SK_Scalar1; |
| matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); |
| REPORTER_ASSERT(reporter, |
| (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| |
| dst = src; |
| dst.fRight = src.fRight * 2; |
| matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit); |
| REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType()); |
| REPORTER_ASSERT(reporter, matrix.rectStaysRect()); |
| } |
| |
| static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) { |
| // add 100 in case we have a bug, I don't want to kill my stack in the test |
| static const size_t kBufferSize = SkMatrix::kMaxFlattenSize + 100; |
| char buffer[kBufferSize]; |
| size_t size1 = m.writeToMemory(NULL); |
| size_t size2 = m.writeToMemory(buffer); |
| REPORTER_ASSERT(reporter, size1 == size2); |
| REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize); |
| |
| SkMatrix m2; |
| size_t size3 = m2.readFromMemory(buffer, kBufferSize); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, are_equal(reporter, m, m2)); |
| |
| char buffer2[kBufferSize]; |
| size3 = m2.writeToMemory(buffer2); |
| REPORTER_ASSERT(reporter, size1 == size3); |
| REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); |
| } |
| |
| static void test_matrix_min_max_stretch(skiatest::Reporter* reporter) { |
| SkMatrix identity; |
| identity.reset(); |
| REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinStretch()); |
| REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxStretch()); |
| |
| SkMatrix scale; |
| scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); |
| REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinStretch()); |
| REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxStretch()); |
| |
| SkMatrix rot90Scale; |
| rot90Scale.setRotate(90 * SK_Scalar1); |
| rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); |
| REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinStretch()); |
| REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxStretch()); |
| |
| SkMatrix rotate; |
| rotate.setRotate(128 * SK_Scalar1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinStretch() ,SK_ScalarNearlyZero)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxStretch(), SK_ScalarNearlyZero)); |
| |
| SkMatrix translate; |
| translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); |
| REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinStretch()); |
| REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxStretch()); |
| |
| SkMatrix perspX; |
| perspX.reset(); |
| perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000)); |
| REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinStretch()); |
| REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxStretch()); |
| |
| SkMatrix perspY; |
| perspY.reset(); |
| perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500)); |
| REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinStretch()); |
| REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxStretch()); |
| |
| SkMatrix baseMats[] = {scale, rot90Scale, rotate, |
| translate, perspX, perspY}; |
| SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { |
| mats[i] = baseMats[i]; |
| bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); |
| REPORTER_ASSERT(reporter, invertable); |
| } |
| SkRandom rand; |
| for (int m = 0; m < 1000; ++m) { |
| SkMatrix mat; |
| mat.reset(); |
| for (int i = 0; i < 4; ++i) { |
| int x = rand.nextU() % SK_ARRAY_COUNT(mats); |
| mat.postConcat(mats[x]); |
| } |
| |
| SkScalar minStretch = mat.getMinStretch(); |
| SkScalar maxStretch = mat.getMaxStretch(); |
| REPORTER_ASSERT(reporter, (minStretch < 0) == (maxStretch < 0)); |
| REPORTER_ASSERT(reporter, (maxStretch < 0) == mat.hasPerspective()); |
| |
| if (mat.hasPerspective()) { |
| m -= 1; // try another non-persp matrix |
| continue; |
| } |
| |
| // test a bunch of vectors. All should be scaled by between minStretch and maxStretch |
| // (modulo some error) and we should find a vector that is scaled by almost each. |
| static const SkScalar gVectorStretchTol = (105 * SK_Scalar1) / 100; |
| static const SkScalar gClosestStretchTol = (97 * SK_Scalar1) / 100; |
| SkScalar max = 0, min = SK_ScalarMax; |
| SkVector vectors[1000]; |
| for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { |
| vectors[i].fX = rand.nextSScalar1(); |
| vectors[i].fY = rand.nextSScalar1(); |
| if (!vectors[i].normalize()) { |
| i -= 1; |
| continue; |
| } |
| } |
| mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { |
| SkScalar d = vectors[i].length(); |
| REPORTER_ASSERT(reporter, SkScalarDiv(d, maxStretch) < gVectorStretchTol); |
| REPORTER_ASSERT(reporter, SkScalarDiv(minStretch, d) < gVectorStretchTol); |
| if (max < d) { |
| max = d; |
| } |
| if (min > d) { |
| min = d; |
| } |
| } |
| REPORTER_ASSERT(reporter, SkScalarDiv(max, maxStretch) >= gClosestStretchTol); |
| REPORTER_ASSERT(reporter, SkScalarDiv(minStretch, min) >= gClosestStretchTol); |
| } |
| } |
| |
| static void test_matrix_is_similarity(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| |
| // identity |
| mat.setIdentity(); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // translation only |
| mat.reset(); |
| mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // scale with same size |
| mat.reset(); |
| mat.setScale(SkIntToScalar(15), SkIntToScalar(15)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // scale with one negative |
| mat.reset(); |
| mat.setScale(SkIntToScalar(-15), SkIntToScalar(15)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // scale with different size |
| mat.reset(); |
| mat.setScale(SkIntToScalar(15), SkIntToScalar(20)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // scale with same size at a pivot point |
| mat.reset(); |
| mat.setScale(SkIntToScalar(15), SkIntToScalar(15), |
| SkIntToScalar(2), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // scale with different size at a pivot point |
| mat.reset(); |
| mat.setScale(SkIntToScalar(15), SkIntToScalar(20), |
| SkIntToScalar(2), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // skew with same size |
| mat.reset(); |
| mat.setSkew(SkIntToScalar(15), SkIntToScalar(15)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // skew with different size |
| mat.reset(); |
| mat.setSkew(SkIntToScalar(15), SkIntToScalar(20)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // skew with same size at a pivot point |
| mat.reset(); |
| mat.setSkew(SkIntToScalar(15), SkIntToScalar(15), |
| SkIntToScalar(2), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // skew with different size at a pivot point |
| mat.reset(); |
| mat.setSkew(SkIntToScalar(15), SkIntToScalar(20), |
| SkIntToScalar(2), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // perspective x |
| mat.reset(); |
| mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // perspective y |
| mat.reset(); |
| mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // rotate |
| for (int angle = 0; angle < 360; ++angle) { |
| mat.reset(); |
| mat.setRotate(SkIntToScalar(angle)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| } |
| |
| // see if there are any accumulated precision issues |
| mat.reset(); |
| for (int i = 1; i < 360; i++) { |
| mat.postRotate(SkIntToScalar(1)); |
| } |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // rotate + translate |
| mat.reset(); |
| mat.setRotate(SkIntToScalar(30)); |
| mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // rotate + uniform scale |
| mat.reset(); |
| mat.setRotate(SkIntToScalar(30)); |
| mat.postScale(SkIntToScalar(2), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| |
| // rotate + non-uniform scale |
| mat.reset(); |
| mat.setRotate(SkIntToScalar(30)); |
| mat.postScale(SkIntToScalar(3), SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // all zero |
| mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // all zero except perspective |
| mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1); |
| REPORTER_ASSERT(reporter, !mat.isSimilarity()); |
| |
| // scales zero, only skews |
| mat.setAll(0, SK_Scalar1, 0, |
| SK_Scalar1, 0, 0, |
| 0, 0, SkMatrix::I()[8]); |
| REPORTER_ASSERT(reporter, mat.isSimilarity()); |
| } |
| |
| // For test_matrix_decomposition, below. |
| static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, |
| SkScalar tolerance = SK_ScalarNearlyZero) { |
| // from Bruce Dawson |
| // absolute check |
| SkScalar diff = SkScalarAbs(a - b); |
| if (diff < tolerance) { |
| return true; |
| } |
| |
| // relative check |
| a = SkScalarAbs(a); |
| b = SkScalarAbs(b); |
| SkScalar largest = (b > a) ? b : a; |
| |
| if (diff <= largest*tolerance) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool check_matrix_recomposition(const SkMatrix& mat, |
| const SkPoint& rotation1, |
| const SkPoint& scale, |
| const SkPoint& rotation2) { |
| SkScalar c1 = rotation1.fX; |
| SkScalar s1 = rotation1.fY; |
| SkScalar scaleX = scale.fX; |
| SkScalar scaleY = scale.fY; |
| SkScalar c2 = rotation2.fX; |
| SkScalar s2 = rotation2.fY; |
| |
| // We do a relative check here because large scale factors cause problems with an absolute check |
| bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], |
| scaleX*c1*c2 - scaleY*s1*s2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], |
| -scaleX*s1*c2 - scaleY*c1*s2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], |
| scaleX*c1*s2 + scaleY*s1*c2) && |
| scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], |
| -scaleX*s1*s2 + scaleY*c1*c2); |
| return result; |
| } |
| |
| static void test_matrix_decomposition(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| SkPoint rotation1, scale, rotation2; |
| |
| const float kRotation0 = 15.5f; |
| const float kRotation1 = -50.f; |
| const float kScale0 = 5000.f; |
| const float kScale1 = 0.001f; |
| |
| // identity |
| mat.reset(); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| // make sure it doesn't crash if we pass in NULLs |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL)); |
| |
| // rotation only |
| mat.setRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale only |
| mat.setScale(kScale0, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale only |
| mat.setScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then uniform scale |
| mat.setRotate(kRotation1); |
| mat.postScale(kScale0, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale then rotation |
| mat.setScale(kScale0, kScale0); |
| mat.postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then uniform scale+reflection |
| mat.setRotate(kRotation0); |
| mat.postScale(kScale1, -kScale1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // uniform scale+reflection, then rotate |
| mat.setScale(kScale0, -kScale0); |
| mat.postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then anisotropic scale |
| mat.setRotate(kRotation1); |
| mat.postScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation then anisotropic scale |
| mat.setRotate(90); |
| mat.postScale(kScale1, kScale0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale then rotation |
| mat.setScale(kScale1, kScale0); |
| mat.postRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // anisotropic scale then rotation |
| mat.setScale(kScale1, kScale0); |
| mat.postRotate(90); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, uniform scale, then different rotation |
| mat.setRotate(kRotation1); |
| mat.postScale(kScale0, kScale0); |
| mat.postRotate(kRotation0); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, anisotropic scale, then different rotation |
| mat.setRotate(kRotation0); |
| mat.postScale(kScale1, kScale0); |
| mat.postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // rotation, anisotropic scale + reflection, then different rotation |
| mat.setRotate(kRotation0); |
| mat.postScale(-kScale1, kScale0); |
| mat.postRotate(kRotation1); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // try some random matrices |
| SkRandom rand; |
| for (int m = 0; m < 1000; ++m) { |
| SkScalar rot0 = rand.nextRangeF(-180, 180); |
| SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); |
| SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); |
| SkScalar rot1 = rand.nextRangeF(-180, 180); |
| mat.setRotate(rot0); |
| mat.postScale(sx, sy); |
| mat.postRotate(rot1); |
| |
| if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| } else { |
| // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero |
| SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - |
| mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY]; |
| REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot)); |
| } |
| } |
| |
| // translation shouldn't affect this |
| mat.postTranslate(-1000.f, 1000.f); |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // perspective shouldn't affect this |
| mat[SkMatrix::kMPersp0] = 12.f; |
| mat[SkMatrix::kMPersp1] = 4.f; |
| mat[SkMatrix::kMPersp2] = 1872.f; |
| REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); |
| |
| // degenerate matrices |
| // mostly zero entries |
| mat.reset(); |
| mat[SkMatrix::kMScaleX] = 0.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| mat.reset(); |
| mat[SkMatrix::kMScaleY] = 0.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| mat.reset(); |
| // linearly dependent entries |
| mat[SkMatrix::kMScaleX] = 1.f; |
| mat[SkMatrix::kMSkewX] = 2.f; |
| mat[SkMatrix::kMSkewY] = 4.f; |
| mat[SkMatrix::kMScaleY] = 8.f; |
| REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); |
| } |
| |
| // For test_matrix_homogeneous, below. |
| static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) { |
| for (int i = 0; i < count; ++i) { |
| if (!scalar_nearly_equal_relative(a[i], b[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // For test_matrix_homogeneous, below. |
| // Maps a single triple in src using m and compares results to those in dst |
| static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3], |
| const SkScalar dst[3]) { |
| SkScalar res[3]; |
| SkScalar ms[9] = {m[0], m[1], m[2], |
| m[3], m[4], m[5], |
| m[6], m[7], m[8]}; |
| res[0] = src[0] * ms[0] + src[1] * ms[1] + src[2] * ms[2]; |
| res[1] = src[0] * ms[3] + src[1] * ms[4] + src[2] * ms[5]; |
| res[2] = src[0] * ms[6] + src[1] * ms[7] + src[2] * ms[8]; |
| return scalar_array_nearly_equal_relative(res, dst, 3); |
| } |
| |
| static void test_matrix_homogeneous(skiatest::Reporter* reporter) { |
| SkMatrix mat; |
| |
| const float kRotation0 = 15.5f; |
| const float kRotation1 = -50.f; |
| const float kScale0 = 5000.f; |
| |
| const int kTripleCount = 1000; |
| const int kMatrixCount = 1000; |
| SkRandom rand; |
| |
| SkScalar randTriples[3*kTripleCount]; |
| for (int i = 0; i < 3*kTripleCount; ++i) { |
| randTriples[i] = rand.nextRangeF(-3000.f, 3000.f); |
| } |
| |
| SkMatrix mats[kMatrixCount]; |
| for (int i = 0; i < kMatrixCount; ++i) { |
| for (int j = 0; j < 9; ++j) { |
| mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f)); |
| } |
| } |
| |
| // identity |
| { |
| mat.reset(); |
| SkScalar dst[3*kTripleCount]; |
| mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); |
| REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3)); |
| } |
| |
| // zero matrix |
| { |
| mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); |
| SkScalar dst[3*kTripleCount]; |
| mat.mapHomogeneousPoints(dst, randTriples, kTripleCount); |
| SkScalar zeros[3] = {0.f, 0.f, 0.f}; |
| for (int i = 0; i < kTripleCount; ++i) { |
| REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3)); |
| } |
| } |
| |
| // zero point |
| { |
| SkScalar zeros[3] = {0.f, 0.f, 0.f}; |
| for (int i = 0; i < kMatrixCount; ++i) { |
| SkScalar dst[3]; |
| mats[i].mapHomogeneousPoints(dst, zeros, 1); |
| REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3)); |
| } |
| } |
| |
| // doesn't crash with null dst, src, count == 0 |
| { |
| mats[0].mapHomogeneousPoints(NULL, NULL, 0); |
| } |
| |
| // uniform scale of point |
| { |
| mat.setScale(kScale0, kScale0); |
| SkScalar dst[3]; |
| SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; |
| SkPoint pnt; |
| pnt.set(src[0], src[1]); |
| mat.mapHomogeneousPoints(dst, src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); |
| } |
| |
| // rotation of point |
| { |
| mat.setRotate(kRotation0); |
| SkScalar dst[3]; |
| SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; |
| SkPoint pnt; |
| pnt.set(src[0], src[1]); |
| mat.mapHomogeneousPoints(dst, src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); |
| } |
| |
| // rotation, scale, rotation of point |
| { |
| mat.setRotate(kRotation1); |
| mat.postScale(kScale0, kScale0); |
| mat.postRotate(kRotation0); |
| SkScalar dst[3]; |
| SkScalar src[3] = {randTriples[0], randTriples[1], 1.f}; |
| SkPoint pnt; |
| pnt.set(src[0], src[1]); |
| mat.mapHomogeneousPoints(dst, src, 1); |
| mat.mapPoints(&pnt, &pnt, 1); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY)); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1)); |
| } |
| |
| // compare with naive approach |
| { |
| for (int i = 0; i < kMatrixCount; ++i) { |
| for (int j = 0; j < kTripleCount; ++j) { |
| SkScalar dst[3]; |
| mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1); |
| REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst)); |
| } |
| } |
| } |
| |
| } |
| |
| DEF_TEST(Matrix, reporter) { |
| SkMatrix mat, inverse, iden1, iden2; |
| |
| mat.reset(); |
| mat.setTranslate(SK_Scalar1, SK_Scalar1); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| |
| mat.setScale(SkIntToScalar(2), SkIntToScalar(4)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| test_flatten(reporter, mat); |
| |
| mat.setScale(SK_Scalar1/2, SkIntToScalar(2)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| test_flatten(reporter, mat); |
| |
| mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0); |
| mat.postRotate(SkIntToScalar(25)); |
| REPORTER_ASSERT(reporter, mat.invert(NULL)); |
| REPORTER_ASSERT(reporter, mat.invert(&inverse)); |
| iden1.setConcat(mat, inverse); |
| REPORTER_ASSERT(reporter, is_identity(iden1)); |
| iden2.setConcat(inverse, mat); |
| REPORTER_ASSERT(reporter, is_identity(iden2)); |
| test_flatten(reporter, mat); |
| test_flatten(reporter, iden2); |
| |
| mat.setScale(0, SK_Scalar1); |
| REPORTER_ASSERT(reporter, !mat.invert(NULL)); |
| REPORTER_ASSERT(reporter, !mat.invert(&inverse)); |
| mat.setScale(SK_Scalar1, 0); |
| REPORTER_ASSERT(reporter, !mat.invert(NULL)); |
| REPORTER_ASSERT(reporter, !mat.invert(&inverse)); |
| |
| // rectStaysRect test |
| { |
| static const struct { |
| SkScalar m00, m01, m10, m11; |
| bool mStaysRect; |
| } |
| gRectStaysRectSamples[] = { |
| { 0, 0, 0, 0, false }, |
| { 0, 0, 0, SK_Scalar1, false }, |
| { 0, 0, SK_Scalar1, 0, false }, |
| { 0, 0, SK_Scalar1, SK_Scalar1, false }, |
| { 0, SK_Scalar1, 0, 0, false }, |
| { 0, SK_Scalar1, 0, SK_Scalar1, false }, |
| { 0, SK_Scalar1, SK_Scalar1, 0, true }, |
| { 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }, |
| { SK_Scalar1, 0, 0, 0, false }, |
| { SK_Scalar1, 0, 0, SK_Scalar1, true }, |
| { SK_Scalar1, 0, SK_Scalar1, 0, false }, |
| { SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false }, |
| { SK_Scalar1, SK_Scalar1, 0, 0, false }, |
| { SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false }, |
| { SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false }, |
| { SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false } |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) { |
| SkMatrix m; |
| |
| m.reset(); |
| m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00); |
| m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01); |
| m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10); |
| m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11); |
| REPORTER_ASSERT(reporter, |
| m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect); |
| } |
| } |
| |
| mat.reset(); |
| mat.set(SkMatrix::kMScaleX, SkIntToScalar(1)); |
| mat.set(SkMatrix::kMSkewX, SkIntToScalar(2)); |
| mat.set(SkMatrix::kMTransX, SkIntToScalar(3)); |
| mat.set(SkMatrix::kMSkewY, SkIntToScalar(4)); |
| mat.set(SkMatrix::kMScaleY, SkIntToScalar(5)); |
| mat.set(SkMatrix::kMTransY, SkIntToScalar(6)); |
| SkScalar affine[6]; |
| REPORTER_ASSERT(reporter, mat.asAffine(affine)); |
| |
| #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e) |
| REPORTER_ASSERT(reporter, affineEqual(ScaleX)); |
| REPORTER_ASSERT(reporter, affineEqual(SkewY)); |
| REPORTER_ASSERT(reporter, affineEqual(SkewX)); |
| REPORTER_ASSERT(reporter, affineEqual(ScaleY)); |
| REPORTER_ASSERT(reporter, affineEqual(TransX)); |
| REPORTER_ASSERT(reporter, affineEqual(TransY)); |
| #undef affineEqual |
| |
| mat.set(SkMatrix::kMPersp1, SkScalarToPersp(SK_Scalar1 / 2)); |
| REPORTER_ASSERT(reporter, !mat.asAffine(affine)); |
| |
| SkMatrix mat2; |
| mat2.reset(); |
| mat.reset(); |
| SkScalar zero = 0; |
| mat.set(SkMatrix::kMSkewX, -zero); |
| REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2)); |
| |
| mat2.reset(); |
| mat.reset(); |
| mat.set(SkMatrix::kMSkewX, SK_ScalarNaN); |
| mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN); |
| REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2)); |
| |
| test_matrix_min_max_stretch(reporter); |
| test_matrix_is_similarity(reporter); |
| test_matrix_recttorect(reporter); |
| test_matrix_decomposition(reporter); |
| test_matrix_homogeneous(reporter); |
| } |