blob: 0df8c06d9bcb19b3972c09bdc030be5e5c27eb5a [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "TestClassDef.h"
#include "SkBitmap.h"
#include "SkRect.h"
static const char* boolStr(bool value) {
return value ? "true" : "false";
}
// these are in the same order as the SkBitmap::Config enum
static const char* gConfigName[] = {
"None", "A8", "Index8", "565", "4444", "8888"
};
static void report_opaqueness(skiatest::Reporter* reporter, const SkBitmap& src,
const SkBitmap& dst) {
SkString str;
str.printf("src %s opaque:%d, dst %s opaque:%d",
gConfigName[src.config()], src.isOpaque(),
gConfigName[dst.config()], dst.isOpaque());
reporter->reportFailed(str);
}
static bool canHaveAlpha(SkBitmap::Config config) {
return config != SkBitmap::kRGB_565_Config;
}
// copyTo() should preserve isOpaque when it makes sense
static void test_isOpaque(skiatest::Reporter* reporter,
const SkBitmap& srcOpaque, const SkBitmap& srcPremul,
SkBitmap::Config dstConfig) {
SkBitmap dst;
if (canHaveAlpha(srcPremul.config()) && canHaveAlpha(dstConfig)) {
REPORTER_ASSERT(reporter, srcPremul.copyTo(&dst, dstConfig));
REPORTER_ASSERT(reporter, dst.config() == dstConfig);
if (srcPremul.isOpaque() != dst.isOpaque()) {
report_opaqueness(reporter, srcPremul, dst);
}
}
REPORTER_ASSERT(reporter, srcOpaque.copyTo(&dst, dstConfig));
REPORTER_ASSERT(reporter, dst.config() == dstConfig);
if (srcOpaque.isOpaque() != dst.isOpaque()) {
report_opaqueness(reporter, srcOpaque, dst);
}
}
static void init_src(const SkBitmap& bitmap) {
SkAutoLockPixels lock(bitmap);
if (bitmap.getPixels()) {
if (bitmap.getColorTable()) {
sk_bzero(bitmap.getPixels(), bitmap.getSize());
} else {
bitmap.eraseColor(SK_ColorWHITE);
}
}
}
static SkColorTable* init_ctable(SkAlphaType alphaType) {
static const SkColor colors[] = {
SK_ColorBLACK, SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorWHITE
};
return new SkColorTable(colors, SK_ARRAY_COUNT(colors), alphaType);
}
struct Pair {
SkBitmap::Config fConfig;
const char* fValid;
};
// Utility functions for copyPixelsTo()/copyPixelsFrom() tests.
// getPixel()
// setPixel()
// getSkConfigName()
// struct Coordinates
// reportCopyVerification()
// writeCoordPixels()
// Utility function to read the value of a given pixel in bm. All
// values converted to uint32_t for simplification of comparisons.
static uint32_t getPixel(int x, int y, const SkBitmap& bm) {
uint32_t val = 0;
uint16_t val16;
uint8_t val8;
SkAutoLockPixels lock(bm);
const void* rawAddr = bm.getAddr(x,y);
switch (bm.config()) {
case SkBitmap::kARGB_8888_Config:
memcpy(&val, rawAddr, sizeof(uint32_t));
break;
case SkBitmap::kARGB_4444_Config:
case SkBitmap::kRGB_565_Config:
memcpy(&val16, rawAddr, sizeof(uint16_t));
val = val16;
break;
case SkBitmap::kA8_Config:
case SkBitmap::kIndex8_Config:
memcpy(&val8, rawAddr, sizeof(uint8_t));
val = val8;
break;
default:
break;
}
return val;
}
// Utility function to set value of any pixel in bm.
// bm.getConfig() specifies what format 'val' must be
// converted to, but at present uint32_t can handle all formats.
static void setPixel(int x, int y, uint32_t val, SkBitmap& bm) {
uint16_t val16;
uint8_t val8;
SkAutoLockPixels lock(bm);
void* rawAddr = bm.getAddr(x,y);
switch (bm.config()) {
case SkBitmap::kARGB_8888_Config:
memcpy(rawAddr, &val, sizeof(uint32_t));
break;
case SkBitmap::kARGB_4444_Config:
case SkBitmap::kRGB_565_Config:
val16 = val & 0xFFFF;
memcpy(rawAddr, &val16, sizeof(uint16_t));
break;
case SkBitmap::kA8_Config:
case SkBitmap::kIndex8_Config:
val8 = val & 0xFF;
memcpy(rawAddr, &val8, sizeof(uint8_t));
break;
default:
// Ignore.
break;
}
}
// Utility to return string containing name of each format, to
// simplify diagnostic output.
static const char* getSkConfigName(const SkBitmap& bm) {
switch (bm.config()) {
case SkBitmap::kNo_Config: return "SkBitmap::kNo_Config";
case SkBitmap::kA8_Config: return "SkBitmap::kA8_Config";
case SkBitmap::kIndex8_Config: return "SkBitmap::kIndex8_Config";
case SkBitmap::kRGB_565_Config: return "SkBitmap::kRGB_565_Config";
case SkBitmap::kARGB_4444_Config: return "SkBitmap::kARGB_4444_Config";
case SkBitmap::kARGB_8888_Config: return "SkBitmap::kARGB_8888_Config";
default: return "Unknown SkBitmap configuration.";
}
}
// Helper struct to contain pixel locations, while avoiding need for STL.
struct Coordinates {
const int length;
SkIPoint* const data;
explicit Coordinates(int _length): length(_length)
, data(new SkIPoint[length]) { }
~Coordinates(){
delete [] data;
}
SkIPoint* operator[](int i) const {
// Use with care, no bounds checking.
return data + i;
}
};
// A function to verify that two bitmaps contain the same pixel values
// at all coordinates indicated by coords. Simplifies verification of
// copied bitmaps.
static void reportCopyVerification(const SkBitmap& bm1, const SkBitmap& bm2,
Coordinates& coords,
const char* msg,
skiatest::Reporter* reporter){
bool success = true;
// Confirm all pixels in the list match.
for (int i = 0; i < coords.length; ++i) {
success = success &&
(getPixel(coords[i]->fX, coords[i]->fY, bm1) ==
getPixel(coords[i]->fX, coords[i]->fY, bm2));
}
if (!success) {
SkString str;
str.printf("%s [config = %s]",
msg, getSkConfigName(bm1));
reporter->reportFailed(str);
}
}
// Writes unique pixel values at locations specified by coords.
static void writeCoordPixels(SkBitmap& bm, const Coordinates& coords) {
for (int i = 0; i < coords.length; ++i)
setPixel(coords[i]->fX, coords[i]->fY, i, bm);
}
DEF_TEST(BitmapCopy, reporter) {
static const Pair gPairs[] = {
{ SkBitmap::kNo_Config, "0000000" },
{ SkBitmap::kA8_Config, "0101010" },
{ SkBitmap::kIndex8_Config, "0111010" },
{ SkBitmap::kRGB_565_Config, "0101010" },
{ SkBitmap::kARGB_4444_Config, "0101110" },
{ SkBitmap::kARGB_8888_Config, "0101110" },
};
static const bool isExtracted[] = {
false, true
};
const int W = 20;
const int H = 33;
for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) {
for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) {
SkBitmap srcOpaque, srcPremul, dst;
{
SkColorTable* ctOpaque = NULL;
SkColorTable* ctPremul = NULL;
srcOpaque.setConfig(gPairs[i].fConfig, W, H, 0, kOpaque_SkAlphaType);
srcPremul.setConfig(gPairs[i].fConfig, W, H, 0, kPremul_SkAlphaType);
if (SkBitmap::kIndex8_Config == gPairs[i].fConfig) {
ctOpaque = init_ctable(kOpaque_SkAlphaType);
ctPremul = init_ctable(kPremul_SkAlphaType);
}
srcOpaque.allocPixels(ctOpaque);
srcPremul.allocPixels(ctPremul);
SkSafeUnref(ctOpaque);
SkSafeUnref(ctPremul);
}
init_src(srcOpaque);
init_src(srcPremul);
bool success = srcPremul.copyTo(&dst, gPairs[j].fConfig);
bool expected = gPairs[i].fValid[j] != '0';
if (success != expected) {
SkString str;
str.printf("SkBitmap::copyTo from %s to %s. expected %s returned %s",
gConfigName[i], gConfigName[j], boolStr(expected),
boolStr(success));
reporter->reportFailed(str);
}
bool canSucceed = srcPremul.canCopyTo(gPairs[j].fConfig);
if (success != canSucceed) {
SkString str;
str.printf("SkBitmap::copyTo from %s to %s. returned %s canCopyTo %s",
gConfigName[i], gConfigName[j], boolStr(success),
boolStr(canSucceed));
reporter->reportFailed(str);
}
if (success) {
REPORTER_ASSERT(reporter, srcPremul.width() == dst.width());
REPORTER_ASSERT(reporter, srcPremul.height() == dst.height());
REPORTER_ASSERT(reporter, dst.config() == gPairs[j].fConfig);
test_isOpaque(reporter, srcOpaque, srcPremul, dst.config());
if (srcPremul.config() == dst.config()) {
SkAutoLockPixels srcLock(srcPremul);
SkAutoLockPixels dstLock(dst);
REPORTER_ASSERT(reporter, srcPremul.readyToDraw());
REPORTER_ASSERT(reporter, dst.readyToDraw());
const char* srcP = (const char*)srcPremul.getAddr(0, 0);
const char* dstP = (const char*)dst.getAddr(0, 0);
REPORTER_ASSERT(reporter, srcP != dstP);
REPORTER_ASSERT(reporter, !memcmp(srcP, dstP,
srcPremul.getSize()));
REPORTER_ASSERT(reporter, srcPremul.getGenerationID() == dst.getGenerationID());
} else {
REPORTER_ASSERT(reporter, srcPremul.getGenerationID() != dst.getGenerationID());
}
// test extractSubset
{
SkBitmap bitmap(srcOpaque);
SkBitmap subset;
SkIRect r;
r.set(1, 1, 2, 2);
bitmap.setIsVolatile(true);
if (bitmap.extractSubset(&subset, r)) {
REPORTER_ASSERT(reporter, subset.width() == 1);
REPORTER_ASSERT(reporter, subset.height() == 1);
REPORTER_ASSERT(reporter,
subset.alphaType() == bitmap.alphaType());
REPORTER_ASSERT(reporter,
subset.isVolatile() == true);
SkBitmap copy;
REPORTER_ASSERT(reporter,
subset.copyTo(&copy, subset.config()));
REPORTER_ASSERT(reporter, copy.width() == 1);
REPORTER_ASSERT(reporter, copy.height() == 1);
REPORTER_ASSERT(reporter, copy.rowBytes() <= 4);
SkAutoLockPixels alp0(subset);
SkAutoLockPixels alp1(copy);
// they should both have, or both not-have, a colortable
bool hasCT = subset.getColorTable() != NULL;
REPORTER_ASSERT(reporter,
(copy.getColorTable() != NULL) == hasCT);
}
bitmap = srcPremul;
bitmap.setIsVolatile(false);
if (bitmap.extractSubset(&subset, r)) {
REPORTER_ASSERT(reporter,
subset.alphaType() == bitmap.alphaType());
REPORTER_ASSERT(reporter,
subset.isVolatile() == false);
}
}
} else {
// dst should be unchanged from its initial state
REPORTER_ASSERT(reporter, dst.config() == SkBitmap::kNo_Config);
REPORTER_ASSERT(reporter, dst.width() == 0);
REPORTER_ASSERT(reporter, dst.height() == 0);
}
} // for (size_t j = ...
// Tests for getSafeSize(), getSafeSize64(), copyPixelsTo(),
// copyPixelsFrom().
//
for (size_t copyCase = 0; copyCase < SK_ARRAY_COUNT(isExtracted);
++copyCase) {
// Test copying to/from external buffer.
// Note: the tests below have hard-coded values ---
// Please take care if modifying.
// Tests for getSafeSize64().
// Test with a very large configuration without pixel buffer
// attached.
SkBitmap tstSafeSize;
tstSafeSize.setConfig(gPairs[i].fConfig, 100000000U,
100000000U);
Sk64 safeSize = tstSafeSize.getSafeSize64();
if (safeSize.isNeg()) {
SkString str;
str.printf("getSafeSize64() negative: %s",
getSkConfigName(tstSafeSize));
reporter->reportFailed(str);
}
bool sizeFail = false;
// Compare against hand-computed values.
switch (gPairs[i].fConfig) {
case SkBitmap::kNo_Config:
break;
case SkBitmap::kA8_Config:
case SkBitmap::kIndex8_Config:
if (safeSize.fHi != 0x2386F2 ||
safeSize.fLo != 0x6FC10000)
sizeFail = true;
break;
case SkBitmap::kRGB_565_Config:
case SkBitmap::kARGB_4444_Config:
if (safeSize.fHi != 0x470DE4 ||
safeSize.fLo != 0xDF820000)
sizeFail = true;
break;
case SkBitmap::kARGB_8888_Config:
if (safeSize.fHi != 0x8E1BC9 ||
safeSize.fLo != 0xBF040000)
sizeFail = true;
break;
default:
break;
}
if (sizeFail) {
SkString str;
str.printf("getSafeSize64() wrong size: %s",
getSkConfigName(tstSafeSize));
reporter->reportFailed(str);
}
int subW = 2;
int subH = 2;
// Create bitmap to act as source for copies and subsets.
SkBitmap src, subset;
SkColorTable* ct = NULL;
if (isExtracted[copyCase]) { // A larger image to extract from.
src.setConfig(gPairs[i].fConfig, 2 * subW + 1, subH);
} else { // Tests expect a 2x2 bitmap, so make smaller.
src.setConfig(gPairs[i].fConfig, subW, subH);
}
if (SkBitmap::kIndex8_Config == src.config()) {
ct = init_ctable(kPremul_SkAlphaType);
}
src.allocPixels(ct);
SkSafeUnref(ct);
// Either copy src or extract into 'subset', which is used
// for subsequent calls to copyPixelsTo/From.
bool srcReady = false;
if (isExtracted[copyCase]) {
// The extractedSubset() test case allows us to test copy-
// ing when src and dst mave possibly different strides.
SkIRect r;
r.set(1, 0, 1 + subW, subH); // 2x2 extracted bitmap
srcReady = src.extractSubset(&subset, r);
} else {
srcReady = src.copyTo(&subset, src.config());
}
// Not all configurations will generate a valid 'subset'.
if (srcReady) {
// Allocate our target buffer 'buf' for all copies.
// To simplify verifying correctness of copies attach
// buf to a SkBitmap, but copies are done using the
// raw buffer pointer.
const size_t bufSize = subH *
SkBitmap::ComputeRowBytes(src.config(), subW) * 2;
SkAutoMalloc autoBuf (bufSize);
uint8_t* buf = static_cast<uint8_t*>(autoBuf.get());
SkBitmap bufBm; // Attach buf to this bitmap.
bool successExpected;
// Set up values for each pixel being copied.
Coordinates coords(subW * subH);
for (int x = 0; x < subW; ++x)
for (int y = 0; y < subH; ++y)
{
int index = y * subW + x;
SkASSERT(index < coords.length);
coords[index]->fX = x;
coords[index]->fY = y;
}
writeCoordPixels(subset, coords);
// Test #1 ////////////////////////////////////////////
// Before/after comparisons easier if we attach buf
// to an appropriately configured SkBitmap.
memset(buf, 0xFF, bufSize);
// Config with stride greater than src but that fits in buf.
bufBm.setConfig(gPairs[i].fConfig, subW, subH,
SkBitmap::ComputeRowBytes(subset.config(), subW) * 2);
bufBm.setPixels(buf);
successExpected = false;
// Then attempt to copy with a stride that is too large
// to fit in the buffer.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes() * 3)
== successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, 1.5*maxRowBytes)",
reporter);
// Test #2 ////////////////////////////////////////////
// This test should always succeed, but in the case
// of extracted bitmaps only because we handle the
// issue of getSafeSize(). Without getSafeSize()
// buffer overrun/read would occur.
memset(buf, 0xFF, bufSize);
bufBm.setConfig(gPairs[i].fConfig, subW, subH,
subset.rowBytes());
bufBm.setPixels(buf);
successExpected = subset.getSafeSize() <= bufSize;
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize) ==
successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize)", reporter);
// Test #3 ////////////////////////////////////////////
// Copy with different stride between src and dst.
memset(buf, 0xFF, bufSize);
bufBm.setConfig(gPairs[i].fConfig, subW, subH,
subset.rowBytes()+1);
bufBm.setPixels(buf);
successExpected = true; // Should always work.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize,
subset.rowBytes()+1) == successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, rowBytes+1)", reporter);
// Test #4 ////////////////////////////////////////////
// Test copy with stride too small.
memset(buf, 0xFF, bufSize);
bufBm.setConfig(gPairs[i].fConfig, subW, subH);
bufBm.setPixels(buf);
successExpected = false;
// Request copy with stride too small.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes()-1)
== successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, rowBytes()-1)", reporter);
#if 0 // copyPixelsFrom is gone
// Test #5 ////////////////////////////////////////////
// Tests the case where the source stride is too small
// for the source configuration.
memset(buf, 0xFF, bufSize);
bufBm.setConfig(gPairs[i].fConfig, subW, subH);
bufBm.setPixels(buf);
writeCoordPixels(bufBm, coords);
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, bufSize, 1) == false);
// Test #6 ///////////////////////////////////////////
// Tests basic copy from an external buffer to the bitmap.
// If the bitmap is "extracted", this also tests the case
// where the source stride is different from the dest.
// stride.
// We've made the buffer large enough to always succeed.
bufBm.setConfig(gPairs[i].fConfig, subW, subH);
bufBm.setPixels(buf);
writeCoordPixels(bufBm, coords);
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, bufSize, bufBm.rowBytes()) ==
true);
reportCopyVerification(bufBm, subset, coords,
"copyPixelsFrom(buf, bufSize)",
reporter);
// Test #7 ////////////////////////////////////////////
// Tests the case where the source buffer is too small
// for the transfer.
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, 1, subset.rowBytes()) ==
false);
#endif
}
} // for (size_t copyCase ...
}
}