blob: a6b46b7d5a1b1f9e71c8f516520bfa727f593bd4 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkCanvas.h"
#include "SkImageEncoder.h"
#if SK_SUPPORT_GPU
#include "GrTest.h"
#include "gl/GrGLGLSL.h"
#include "gl/GrGLInterface.h"
#include "gl/GrGLShaderVar.h"
#include "gl/GrGLUtil.h"
#include "glsl/GrGLSLCaps.h"
#include <stdio.h>
/*
* This is a native GL benchmark for instanced arrays vs vertex buffer objects. To benchmark this
* functionality, we draw n * kDrawMultipier triangles per run. If this number is less than
* kNumTri then we do a single draw, either with instances, or drawArrays. Otherwise we do
* multiple draws.
*
* Additionally, there is a divisor, which if > 0 will act as a multiplier for the number of draws
* issued.
*/
class GLInstancedArraysBench : public Benchmark {
public:
GLInstancedArraysBench() : fTexture(0) {}
protected:
void onPerCanvasPreDraw(SkCanvas* canvas) override;
virtual void setup(const GrGLContext*)=0;
void onPerCanvasPostDraw(SkCanvas* canvas) override;
virtual void teardown(const GrGLInterface*)=0;
static const GrGLuint kScreenWidth = 800;
static const GrGLuint kScreenHeight = 600;
static const uint32_t kNumTri = 10000;
static const uint32_t kVerticesPerTri = 3;
static const uint32_t kDrawMultiplier = 512;
private:
GrGLuint fTexture;
typedef Benchmark INHERITED;
};
#if 0
class GLGpuPosInstancedArraysBench : public GLInstancedArraysBench {
protected:
const char* onGetName() override {
return "GLInstancedArraysBench_gpupos";
}
void setup(const GrGLContext*) override;
void onDraw(const int loops, SkCanvas* canvas) override;
};
#endif
class GLCpuPosInstancedArraysBench : public GLInstancedArraysBench {
public:
/*
* Clients can decide to use either:
* kUseOne_VboSetup - one vertex buffer with colors and positions interleaved
* kUseTwo_VboSetup - two vertex buffers, one for colors, one for positions
* kUseInstance_VboSetup - two vertex buffers, one with per vertex indices, one with per
* instance colors
*/
enum VboSetup {
kUseOne_VboSetup,
kUseTwo_VboSetup,
kUseInstance_VboSetup,
};
/*
* drawDiv will act as a multiplier for the number of draws we issue if > 0. ie, 2 will issue
* 2x as many draws, 4 will issue 4x as many draws etc. There is a limit however, which is
* kDrawMultipier.
*/
GLCpuPosInstancedArraysBench(VboSetup vboSetup, int32_t drawDiv)
: fVboSetup(vboSetup)
, fDrawDiv(drawDiv)
, fProgram(0)
, fVAO(0) {
fName = VboSetupToStr(vboSetup, fDrawDiv);
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void setup(const GrGLContext*) override;
void onDraw(const int loops, SkCanvas* canvas) override;
void teardown(const GrGLInterface*) override;
private:
void setupInstanceVbo(const GrGLInterface*, const SkMatrix*);
void setupDoubleVbo(const GrGLInterface*, const SkMatrix*);
void setupSingleVbo(const GrGLInterface*, const SkMatrix*);
static SkString VboSetupToStr(VboSetup vboSetup, uint32_t drawDiv) {
SkString name("GLInstancedArraysBench");
switch (vboSetup) {
default:
case kUseOne_VboSetup:
name.appendf("_one_%u", drawDiv);
break;
case kUseTwo_VboSetup:
name.appendf("_two_%u", drawDiv);
break;
case kUseInstance_VboSetup:
name.append("_instance");
break;
}
return name;
}
SkString fName;
VboSetup fVboSetup;
uint32_t fDrawDiv;
SkTArray<GrGLuint> fBuffers;
GrGLuint fProgram;
GrGLuint fVAO;
};
static const GrGLContext* get_gl_context(SkCanvas* canvas) {
// This bench exclusively tests GL calls directly
if (NULL == canvas->getGrContext()) {
return NULL;
}
GrContext* context = canvas->getGrContext();
GrTestTarget tt;
context->getTestTarget(&tt);
if (!tt.target()) {
SkDebugf("Couldn't get Gr test target.");
return NULL;
}
const GrGLContext* ctx = tt.glContext();
if (!ctx) {
SkDebugf("Couldn't get an interface\n");
return NULL;
}
// We only care about gpus with drawArraysInstanced support
if (!ctx->interface()->fFunctions.fDrawArraysInstanced) {
return NULL;
}
return ctx;
}
void GLInstancedArraysBench::onPerCanvasPreDraw(SkCanvas* canvas) {
// This bench exclusively tests GL calls directly
const GrGLContext* ctx = get_gl_context(canvas);
if (!ctx) {
return;
}
this->setup(ctx);
}
void GLInstancedArraysBench::onPerCanvasPostDraw(SkCanvas* canvas) {
// This bench exclusively tests GL calls directly
const GrGLContext* ctx = get_gl_context(canvas);
if (!ctx) {
return;
}
const GrGLInterface* gl = ctx->interface();
// teardown
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0));
GR_GL_CALL(gl, BindVertexArray(0));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GR_GL_CALL(gl, DeleteTextures(1, &fTexture));
this->teardown(gl);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// TODO move all of the gpu positioning stuff to a new file
#ifdef GPU_POS
static const char* gpu_vertex_shader =
"layout (location = 0) in vec2 position;\n"
"layout (location = 1) in vec3 color;\n"
"layout (location = 2) in mat3 offset;\n"
"out vec3 fColor;\n"
"void main()\n"
"{\n"
"gl_Position = vec4(offset * vec3(position, 1.0f), 1.f);\n"
"fColor = color;\n"
"}\n";
#endif
static GrGLuint load_shader(const GrGLInterface* gl, const char* shaderSrc, GrGLenum type) {
GrGLuint shader;
// Create the shader object
GR_GL_CALL_RET(gl, shader, CreateShader(type));
// Load the shader source
GR_GL_CALL(gl, ShaderSource(shader, 1, &shaderSrc, NULL));
// Compile the shader
GR_GL_CALL(gl, CompileShader(shader));
// Check for compile time errors
GrGLint success;
GrGLchar infoLog[512];
GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &success));
if (!success)
{
GR_GL_CALL(gl, GetShaderInfoLog(shader, 512, NULL, infoLog));
SkDebugf("ERROR::SHADER::COMPLIATION_FAILED: %s\n", infoLog);
}
return shader;
}
static GrGLuint compile_shader(const GrGLContext* ctx) {
const char* version = GrGLGetGLSLVersionDecl(*ctx);
// setup vertex shader
GrGLShaderVar aPosition("a_position", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLShaderVar aColor("a_color", kVec3f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLShaderVar oColor("o_color", kVec3f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
SkString vshaderTxt(version);
aPosition.appendDecl(*ctx, &vshaderTxt);
vshaderTxt.append(";\n");
aColor.appendDecl(*ctx, &vshaderTxt);
vshaderTxt.append(";\n");
oColor.appendDecl(*ctx, &vshaderTxt);
vshaderTxt.append(";\n");
vshaderTxt.append(
"void main()\n"
"{\n"
"gl_Position = vec4(a_position, 0.f, 1.f);\n"
"o_color = a_color;\n"
"}\n");
const GrGLInterface* gl = ctx->interface();
GrGLuint vertexShader = load_shader(gl, vshaderTxt.c_str(), GR_GL_VERTEX_SHADER);
// setup fragment shader
GrGLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
SkString fshaderTxt(version);
GrGLAppendGLSLDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, gl->fStandard,
&fshaderTxt);
oColor.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
oColor.appendDecl(*ctx, &fshaderTxt);
fshaderTxt.append(";\n");
const char* fsOutName;
if (ctx->caps()->glslCaps()->mustDeclareFragmentShaderOutput()) {
oFragColor.appendDecl(*ctx, &fshaderTxt);
fshaderTxt.append(";\n");
fsOutName = oFragColor.c_str();
} else {
fsOutName = "gl_FragColor";
}
fshaderTxt.appendf(
"void main()\n"
"{\n"
"%s = vec4(o_color, 1.0f);\n"
"}\n", fsOutName);
GrGLuint fragmentShader = load_shader(gl, fshaderTxt.c_str(), GR_GL_FRAGMENT_SHADER);
GrGLint shaderProgram;
GR_GL_CALL_RET(gl, shaderProgram, CreateProgram());
GR_GL_CALL(gl, AttachShader(shaderProgram, vertexShader));
GR_GL_CALL(gl, AttachShader(shaderProgram, fragmentShader));
GR_GL_CALL(gl, LinkProgram(shaderProgram));
// Check for linking errors
GrGLint success;
GrGLchar infoLog[512];
GR_GL_CALL(gl, GetProgramiv(shaderProgram, GR_GL_LINK_STATUS, &success));
if (!success) {
GR_GL_CALL(gl, GetProgramInfoLog(shaderProgram, 512, NULL, infoLog));
SkDebugf("Linker Error: %s\n", infoLog);
}
GR_GL_CALL(gl, DeleteShader(vertexShader));
GR_GL_CALL(gl, DeleteShader(fragmentShader));
return shaderProgram;
}
//#define DUMP_IMAGES
#ifdef DUMP_IMAGES
static void dump_image(const GrGLInterface* gl, uint32_t screenWidth, uint32_t screenHeight,
const char* filename) {
// read back pixels
uint32_t readback[screenWidth * screenHeight];
GR_GL_CALL(gl, ReadPixels(0, // x
0, // y
screenWidth, // width
screenHeight, // height
GR_GL_RGBA, //format
GR_GL_UNSIGNED_BYTE, //type
readback));
// dump png
SkBitmap bm;
if (!bm.tryAllocPixels(SkImageInfo::MakeN32Premul(screenWidth, screenHeight))) {
SkDebugf("couldn't allocate bitmap\n");
return;
}
bm.setPixels(readback);
if (!SkImageEncoder::EncodeFile(filename, bm, SkImageEncoder::kPNG_Type, 100)) {
SkDebugf("------ failed to encode %s\n", filename);
remove(filename); // remove any partial file
return;
}
}
#endif
static void setup_framebuffer(const GrGLInterface* gl, int screenWidth, int screenHeight) {
//Setup framebuffer
GrGLuint texture;
GR_GL_CALL(gl, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
GR_GL_CALL(gl, PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
GR_GL_CALL(gl, GenTextures(1, &texture));
GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE15));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, texture));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE));
GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D,
0, //level
GR_GL_RGBA8, //internal format
screenWidth, // width
screenHeight, // height
0, //border
GR_GL_RGBA, //format
GR_GL_UNSIGNED_BYTE, // type
NULL));
// bind framebuffer
GrGLuint framebuffer;
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, GenFramebuffers(1, &framebuffer));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, framebuffer));
GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texture, 0));
GR_GL_CALL(gl, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GR_GL_CALL(gl, Viewport(0, 0, screenWidth, screenHeight));
}
template<typename Func>
static void setup_matrices(int numQuads, Func f) {
#if 0
float max = sqrt(numQuads);
float pos = 1.f / (2 * max);
GrGLfloat offset = pos * 2;
for(GrGLint row = 0; row < max; row++) {
for(GrGLint col = 0; col < max; col++) {
SkScalar xOffset = col / max * 2.f - 1.f + offset;
SkScalar yOffset = row / max * 2.f - 1.f + offset;
SkMatrix translation;
SkRandom random;
translation.setScale(pos, pos);
translation.postTranslate(xOffset, yOffset);
f(translation);
}
}
#endif
// We draw a really small triangle so we are not fill rate limited
for (int i = 0 ; i < numQuads; i++) {
SkMatrix m = SkMatrix::I();
m.setScale(0.0001f, 0.0001f);
f(m);
}
}
#ifdef GPU_POS
void GLGpuPosInstancedArraysBench::setup(const GrGLInterface* gl) {
setup_framebuffer(gl, kScreenWidth, kScreenHeight);
// compile and use shaders
GrGLint shaderProgram = compile_shader(gl, gpu_vertex_shader, fragment_shader);
// translations
int index = 0;
GrGLfloat viewMatrices[fNumQuads * fSkMatrixNumCells];
setup_matrices(fNumQuads, [&index, &viewMatrices](const SkMatrix& m) {
GrGLGetMatrix<3>(&viewMatrices[index], m);
index += fSkMatrixNumCells;
});
// Constants for our various shader programs
GrGLfloat quad_vertices[] = {
// Positions // Colors
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f
};
// update vertex data
GrGLuint quadVAO, quadVBO;
GR_GL_CALL(gl, GenVertexArrays(1, &quadVAO));
GR_GL_CALL(gl, GenBuffers(1, &quadVBO));
GR_GL_CALL(gl, BindVertexArray(quadVAO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, quadVBO));
GR_GL_CALL(gl, EnableVertexAttribArray(0));
GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, 5 * sizeof(GrGLfloat), (GrGLvoid*)0));
GR_GL_CALL(gl, EnableVertexAttribArray(1));
GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, 5 * sizeof(GrGLfloat), (GrGLvoid*)(2 * sizeof(GrGLfloat))));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(quad_vertices), quad_vertices, GR_GL_STATIC_DRAW));
// Also set instance data
GrGLuint instanceVBO;
GR_GL_CALL(gl, GenBuffers(1, &instanceVBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, instanceVBO));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(GrGLfloat) * fSkMatrixNumCells * fNumQuads,
&viewMatrices[0], GR_GL_STATIC_DRAW));
GR_GL_CALL(gl, EnableVertexAttribArray(2));
GR_GL_CALL(gl, EnableVertexAttribArray(3));
GR_GL_CALL(gl, EnableVertexAttribArray(4));
GR_GL_CALL(gl, VertexAttribPointer(2, 3, GR_GL_FLOAT, GR_GL_FALSE, 9 * sizeof(GrGLfloat), (GrGLvoid*)0));
GR_GL_CALL(gl, VertexAttribPointer(3, 3, GR_GL_FLOAT, GR_GL_FALSE, 9 * sizeof(GrGLfloat), (GrGLvoid*)(3 * sizeof(GrGLfloat))));
GR_GL_CALL(gl, VertexAttribPointer(4, 3, GR_GL_FLOAT, GR_GL_FALSE, 9 * sizeof(GrGLfloat), (GrGLvoid*)(6 * sizeof(GrGLfloat))));
GR_GL_CALL(gl, VertexAttribDivisor(2, 1));
GR_GL_CALL(gl, VertexAttribDivisor(3, 1));
GR_GL_CALL(gl, VertexAttribDivisor(4, 1));
// draw
GR_GL_CALL(gl, ClearColor(0.03f, 0.03f, 0.03f, 1.0f));
GR_GL_CALL(gl, Clear(GR_GL_COLOR_BUFFER_BIT));
// set us up to draw
GR_GL_CALL(gl, UseProgram(shaderProgram));
GR_GL_CALL(gl, BindVertexArray(quadVAO));
}
void GLGpuPosInstancedArraysBench::onDraw(const int loops, SkCanvas* canvas) {
const GrGLInterface* gl = get_interface(canvas);
if (!gl) {
return;
}
GR_GL_CALL(gl, DrawArraysInstanced(GR_GL_TRIANGLES, 0, 6, fNumQuads));
#ifdef DUMP_IMAGES
const char* filename = "out.png";
dump_image(gl, kScreenWidth, kScreenHeight, filename);
#endif
SkFAIL("done\n");
}
static uint32_t setup_quad_index_buffer(const GrGLInterface* gl) {
static const int kMaxQuads = 1;//1 << 12; // max possible: (1 << 14) - 1;
GR_STATIC_ASSERT(4 * kMaxQuads <= 65535);
static const uint16_t kPattern[] = { 0, 1, 2, 0, 2, 3 };
static const int kPatternSize = 6;
static const int kVertCount = 4;
static const int kIndicesCount = kPatternSize * kMaxQuads;
int size = kPatternSize * kMaxQuads * sizeof(uint16_t);
uint16_t* data = SkNEW_ARRAY(uint16_t, kMaxQuads * kPatternSize);
for (int i = 0; i < kMaxQuads; ++i) {
int baseIdx = i * kPatternSize;
uint16_t baseVert = (uint16_t)(i * kVertCount);
for (int j = 0; j < kPatternSize; ++j) {
data[baseIdx+j] = baseVert + kPattern[j];
}
}
GrGLuint quadIBO;
GR_GL_CALL(gl, GenBuffers(1, &quadIBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, quadIBO));
GR_GL_CALL(gl, BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, size, data, GR_GL_STATIC_DRAW));
SkDELETE_ARRAY(data);
return kIndicesCount;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
void GLCpuPosInstancedArraysBench::setupInstanceVbo(const GrGLInterface* gl,
const SkMatrix* viewMatrices) {
// We draw all of the instances at a single place because we aren't allowed to have per vertex
// per instance attributes
SkPoint positions[kVerticesPerTri];
positions[0].set(-1.0f, -1.0f);
positions[1].set( 1.0f, -1.0f);
positions[2].set( 1.0f, 1.0f);
viewMatrices[0].mapPointsWithStride(positions, sizeof(SkPoint), kVerticesPerTri);
// setup colors so we can detect we are actually drawing instances(the last triangle will be
// a different color)
GrGLfloat colors[kVerticesPerTri * kNumTri];
for (uint32_t i = 0; i < kNumTri; i++) {
// set colors
uint32_t offset = i * kVerticesPerTri;
float color = i == kNumTri - 1 ? 1.0f : 0.0f;
colors[offset++] = color; colors[offset++] = 0.0f; colors[offset++] = 0.0f;
}
GrGLuint posVBO;
// setup position VBO
GR_GL_CALL(gl, GenBuffers(1, &posVBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, posVBO));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(positions), positions, GR_GL_STATIC_DRAW));
GR_GL_CALL(gl, EnableVertexAttribArray(0));
GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, 2 * sizeof(GrGLfloat),
(GrGLvoid*)0));
// setup color VBO
GrGLuint instanceVBO;
GR_GL_CALL(gl, GenBuffers(1, &instanceVBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, instanceVBO));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(colors), colors, GR_GL_STATIC_DRAW));
GR_GL_CALL(gl, EnableVertexAttribArray(1));
GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, 3 * sizeof(GrGLfloat),
(GrGLvoid*)0));
GR_GL_CALL(gl, VertexAttribDivisor(1, 1));
fBuffers.push_back(posVBO);
fBuffers.push_back(instanceVBO);
}
void GLCpuPosInstancedArraysBench::setupDoubleVbo(const GrGLInterface* gl,
const SkMatrix* viewMatrices) {
// Constants for our various shader programs
SkPoint positions[kVerticesPerTri * kNumTri];
GrGLfloat colors[kVerticesPerTri * kNumTri * 3];
for (uint32_t i = 0; i < kNumTri; i++) {
SkPoint* position = &positions[i * kVerticesPerTri];
position[0].set(-1.0f, -1.0f);
position[1].set( 1.0f, -1.0f);
position[2].set( 1.0f, 1.0f);
viewMatrices[i].mapPointsWithStride(position, sizeof(SkPoint), kVerticesPerTri);
// set colors
float color = i == kNumTri - 1 ? 1.0f : 0.0f;
uint32_t offset = i * kVerticesPerTri * 3;
for (uint32_t j = 0; j < kVerticesPerTri; j++) {
colors[offset++] = color; colors[offset++] = 0.0f; colors[offset++] = 0.0f;
}
}
GrGLuint posVBO, colorVBO;
// setup position VBO
GR_GL_CALL(gl, GenBuffers(1, &posVBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, posVBO));
GR_GL_CALL(gl, EnableVertexAttribArray(0));
GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, 2 * sizeof(GrGLfloat),
(GrGLvoid*)0));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(positions), positions, GR_GL_STATIC_DRAW));
// setup color VBO
GR_GL_CALL(gl, GenBuffers(1, &colorVBO));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, colorVBO));
GR_GL_CALL(gl, EnableVertexAttribArray(1));
GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, 3 * sizeof(GrGLfloat),
(GrGLvoid*)0));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(colors), colors, GR_GL_STATIC_DRAW));
fBuffers.push_back(posVBO);
fBuffers.push_back(colorVBO);
}
struct Vertex {
SkPoint fPositions;
GrGLfloat fColors[3];
};
void GLCpuPosInstancedArraysBench::setupSingleVbo(const GrGLInterface* gl,
const SkMatrix* viewMatrices) {
// Constants for our various shader programs
Vertex vertices[kVerticesPerTri * kNumTri];
for (uint32_t i = 0; i < kNumTri; i++) {
Vertex* v = &vertices[i * kVerticesPerTri];
v[0].fPositions.set(-1.0f, -1.0f);
v[1].fPositions.set( 1.0f, -1.0f);
v[2].fPositions.set( 1.0f, 1.0f);
SkPoint* position = reinterpret_cast<SkPoint*>(v);
viewMatrices[i].mapPointsWithStride(position, sizeof(Vertex), kVerticesPerTri);
// set colors
float color = i == kNumTri - 1 ? 1.0f : 0.0f;
for (uint32_t j = 0; j < kVerticesPerTri; j++) {
uint32_t offset = 0;
v->fColors[offset++] = color; v->fColors[offset++] = 0.0f; v->fColors[offset++] = 0.0f;
v++;
}
}
GrGLuint vbo;
// setup VBO
GR_GL_CALL(gl, GenBuffers(1, &vbo));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, vbo));
GR_GL_CALL(gl, EnableVertexAttribArray(0));
GR_GL_CALL(gl, EnableVertexAttribArray(1));
GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
(GrGLvoid*)0));
GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
(GrGLvoid*)(sizeof(SkPoint))));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(vertices), vertices, GR_GL_STATIC_DRAW));
fBuffers.push_back(vbo);
}
void GLCpuPosInstancedArraysBench::setup(const GrGLContext* ctx) {
const GrGLInterface* gl = ctx->interface();
setup_framebuffer(gl, kScreenWidth, kScreenHeight);
fProgram = compile_shader(ctx);
// setup matrices
int index = 0;
SkMatrix viewMatrices[kNumTri];
setup_matrices(kNumTri, [&index, &viewMatrices](const SkMatrix& m) {
viewMatrices[index++] = m;
});
// setup VAO
GR_GL_CALL(gl, GenVertexArrays(1, &fVAO));
GR_GL_CALL(gl, BindVertexArray(fVAO));
switch (fVboSetup) {
case kUseOne_VboSetup:
this->setupSingleVbo(gl, viewMatrices);
break;
case kUseTwo_VboSetup:
this->setupDoubleVbo(gl, viewMatrices);
break;
case kUseInstance_VboSetup:
this->setupInstanceVbo(gl, viewMatrices);
break;
}
// clear screen
GR_GL_CALL(gl, ClearColor(0.03f, 0.03f, 0.03f, 1.0f));
GR_GL_CALL(gl, Clear(GR_GL_COLOR_BUFFER_BIT));
// set us up to draw
GR_GL_CALL(gl, UseProgram(fProgram));
GR_GL_CALL(gl, BindVertexArray(fVAO));
}
void GLCpuPosInstancedArraysBench::onDraw(const int loops, SkCanvas* canvas) {
const GrGLContext* ctx = get_gl_context(canvas);
if (!ctx) {
return;
}
const GrGLInterface* gl = ctx->interface();
uint32_t maxTrianglesPerFlush = fDrawDiv == 0 ? kNumTri :
kDrawMultiplier / fDrawDiv;
uint32_t trianglesToDraw = loops * kDrawMultiplier;
if (kUseInstance_VboSetup == fVboSetup) {
while (trianglesToDraw > 0) {
uint32_t triangles = SkTMin(trianglesToDraw, maxTrianglesPerFlush);
GR_GL_CALL(gl, DrawArraysInstanced(GR_GL_TRIANGLES, 0, kVerticesPerTri, triangles));
trianglesToDraw -= triangles;
}
} else {
while (trianglesToDraw > 0) {
uint32_t triangles = SkTMin(trianglesToDraw, maxTrianglesPerFlush);
GR_GL_CALL(gl, DrawArrays(GR_GL_TRIANGLES, 0, kVerticesPerTri * triangles));
trianglesToDraw -= triangles;
}
}
#ifdef DUMP_IMAGES
//const char* filename = "/data/local/tmp/out.png";
SkString filename("out");
filename.appendf("_%s.png", this->getName());
dump_image(gl, kScreenWidth, kScreenHeight, filename.c_str());
#endif
}
void GLCpuPosInstancedArraysBench::teardown(const GrGLInterface* gl) {
GR_GL_CALL(gl, DeleteProgram(fProgram));
GR_GL_CALL(gl, DeleteBuffers(fBuffers.count(), fBuffers.begin()));
GR_GL_CALL(gl, DeleteVertexArrays(1, &fVAO));
}
///////////////////////////////////////////////////////////////////////////////
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseInstance_VboSetup, 0) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseOne_VboSetup, 0) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseTwo_VboSetup, 0) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseOne_VboSetup, 1) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseTwo_VboSetup, 1) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseOne_VboSetup, 2) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseTwo_VboSetup, 2) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseOne_VboSetup, 4) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseTwo_VboSetup, 4) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseOne_VboSetup, 8) )
DEF_BENCH( return new GLCpuPosInstancedArraysBench(GLCpuPosInstancedArraysBench::kUseTwo_VboSetup, 8) )
#endif