blob: 8511637f11ab7229ec7dcb1af1246e3d5ac66486 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrix.h"
#include "SkPoint.h"
#include "SkString.h"
#if SK_SUPPORT_GPU
#include "GLBench.h"
#include "gl/GrGLContext.h"
#include "gl/GrGLInterface.h"
#include "gl/GrGLUtil.h"
#include "glsl/GrGLSL.h"
#include "glsl/GrGLSLCaps.h"
#include "glsl/GrGLSLShaderVar.h"
#include <stdio.h>
/**
* This is a GL benchmark for comparing the performance of using vec4 or float for coverage in GLSL.
* The generated shader code from this bench will draw several overlapping circles, one in each
* stage, to simulate coverage calculations. The number of circles (i.e. the number of stages) can
* be set as a parameter.
*/
class GLVec4ScalarBench : public GLBench {
public:
/*
* Use float or vec4 as GLSL data type for the output coverage
*/
enum CoverageSetup {
kUseScalar_CoverageSetup,
kUseVec4_CoverageSetup,
};
/*
* numStages determines the number of shader stages before the XP,
* which consequently determines how many circles are drawn
*/
GLVec4ScalarBench(CoverageSetup coverageSetup, uint32_t numStages)
: fCoverageSetup(coverageSetup)
, fNumStages(numStages)
, fVboId(0)
, fProgram(0) {
fName = NumStagesSetupToStr(coverageSetup, numStages);
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void setup(const GrGLContext*) override;
void glDraw(int loops, const GrGLContext*) override;
void teardown(const GrGLInterface*) override;
private:
void setupSingleVbo(const GrGLInterface*, const SkMatrix*);
GrGLuint setupShader(const GrGLContext*);
static SkString NumStagesSetupToStr(CoverageSetup coverageSetup, uint32_t numStages) {
SkString name("GLVec4ScalarBench");
switch (coverageSetup) {
default:
case kUseScalar_CoverageSetup:
name.appendf("_scalar_%u_stage", numStages);
break;
case kUseVec4_CoverageSetup:
name.appendf("_vec4_%u_stage", numStages);
break;
}
return name;
}
static const GrGLuint kScreenWidth = 800;
static const GrGLuint kScreenHeight = 600;
static const uint32_t kNumTriPerDraw = 512;
static const uint32_t kVerticesPerTri = 3;
SkString fName;
CoverageSetup fCoverageSetup;
uint32_t fNumStages;
GrGLuint fVboId;
GrGLuint fProgram;
GrGLuint fFboTextureId;
};
///////////////////////////////////////////////////////////////////////////////////////////////////
GrGLuint GLVec4ScalarBench::setupShader(const GrGLContext* ctx) {
const GrGLSLCaps* glslCaps = ctx->caps()->glslCaps();
const char* version = glslCaps->versionDeclString();
// this shader draws fNumStages overlapping circles of increasing opacity (coverage) and
// decreasing size, with the center of each subsequent circle closer to the bottom-right
// corner of the screen than the previous circle.
// set up vertex shader; this is a trivial vertex shader that passes through position and color
GrGLSLShaderVar aPosition("a_position", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLSLShaderVar oPosition("o_position", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
GrGLSLShaderVar aColor("a_color", kVec3f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLSLShaderVar oColor("o_color", kVec3f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
SkString vshaderTxt(version);
aPosition.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";\n");
aColor.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";\n");
oPosition.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";\n");
oColor.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";\n");
vshaderTxt.append(
"void main()\n"
"{\n"
" gl_Position = vec4(a_position, 0.0, 1.0);\n"
" o_position = a_position;\n"
" o_color = a_color;\n"
"}\n");
// set up fragment shader; this fragment shader will have fNumStages coverage stages plus an
// XP stage at the end. Each coverage stage computes the pixel's distance from some hard-
// coded center and compare that to some hard-coded circle radius to compute a coverage.
// Then, this coverage is mixed with the coverage from the previous stage and passed to the
// next stage.
GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
SkString fshaderTxt(version);
GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, &fshaderTxt);
oPosition.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
oPosition.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";\n");
oColor.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
oColor.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";\n");
const char* fsOutName;
if (glslCaps->mustDeclareFragmentShaderOutput()) {
oFragColor.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";\n");
fsOutName = oFragColor.c_str();
} else {
fsOutName = "sk_FragColor";
}
fshaderTxt.appendf(
"void main()\n"
"{\n"
" vec4 outputColor;\n"
" %s outputCoverage;\n"
" outputColor = vec4(%s, 1.0);\n"
" outputCoverage = %s;\n",
fCoverageSetup == kUseVec4_CoverageSetup ? "vec4" : "float",
oColor.getName().c_str(),
fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(1.0)" : "1.0"
);
float radius = 1.0f;
for (uint32_t i = 0; i < fNumStages; i++) {
float centerX = 1.0f - radius;
float centerY = 1.0f - radius;
fshaderTxt.appendf(
" {\n"
" float d = length(%s - vec2(%f, %f));\n"
" float edgeAlpha = clamp(100.0 * (%f - d), 0.0, 1.0);\n"
" outputCoverage = 0.5 * outputCoverage + 0.5 * %s;\n"
" }\n",
oPosition.getName().c_str(), centerX, centerY,
radius,
fCoverageSetup == kUseVec4_CoverageSetup ? "vec4(edgeAlpha)" : "edgeAlpha"
);
radius *= 0.8f;
}
fshaderTxt.appendf(
" {\n"
" %s = outputColor * outputCoverage;\n"
" }\n"
"}\n",
fsOutName);
return CreateProgram(ctx, vshaderTxt.c_str(), fshaderTxt.c_str());
}
template<typename Func>
static void setup_matrices(int numQuads, Func f) {
// We draw a really small triangle so we are not fill rate limited
for (int i = 0 ; i < numQuads; i++) {
SkMatrix m = SkMatrix::I();
m.setScale(0.01f, 0.01f);
f(m);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
struct Vertex {
SkPoint fPositions;
GrGLfloat fColors[3];
};
void GLVec4ScalarBench::setupSingleVbo(const GrGLInterface* gl, const SkMatrix* viewMatrices) {
// triangles drawn will alternate between the top-right half of the screen and the bottom-left
// half of the screen
Vertex vertices[kVerticesPerTri * kNumTriPerDraw];
for (uint32_t i = 0; i < kNumTriPerDraw; i++) {
Vertex* v = &vertices[i * kVerticesPerTri];
if (i % 2 == 0) {
v[0].fPositions.set(-1.0f, -1.0f);
v[1].fPositions.set( 1.0f, -1.0f);
v[2].fPositions.set( 1.0f, 1.0f);
} else {
v[0].fPositions.set(-1.0f, -1.0f);
v[1].fPositions.set( 1.0f, 1.0f);
v[2].fPositions.set( -1.0f, 1.0f);
}
SkPoint* position = reinterpret_cast<SkPoint*>(v);
viewMatrices[i].mapPointsWithStride(position, sizeof(Vertex), kVerticesPerTri);
GrGLfloat color[3] = {1.0f, 0.0f, 1.0f};
for (uint32_t j = 0; j < kVerticesPerTri; j++) {
v->fColors[0] = color[0];
v->fColors[1] = color[1];
v->fColors[2] = color[2];
v++;
}
}
GR_GL_CALL(gl, GenBuffers(1, &fVboId));
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, fVboId));
GR_GL_CALL(gl, EnableVertexAttribArray(0));
GR_GL_CALL(gl, EnableVertexAttribArray(1));
GR_GL_CALL(gl, VertexAttribPointer(0, 2, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
(GrGLvoid*)0));
GR_GL_CALL(gl, VertexAttribPointer(1, 3, GR_GL_FLOAT, GR_GL_FALSE, sizeof(Vertex),
(GrGLvoid*)(sizeof(SkPoint))));
GR_GL_CALL(gl, BufferData(GR_GL_ARRAY_BUFFER, sizeof(vertices), vertices, GR_GL_STATIC_DRAW));
}
void GLVec4ScalarBench::setup(const GrGLContext* ctx) {
const GrGLInterface* gl = ctx->interface();
if (!gl) {
SkFAIL("GL interface is nullptr in setup()!\n");
}
fFboTextureId = SetupFramebuffer(gl, kScreenWidth, kScreenHeight);
fProgram = this->setupShader(ctx);
int index = 0;
SkMatrix viewMatrices[kNumTriPerDraw];
setup_matrices(kNumTriPerDraw, [&index, &viewMatrices](const SkMatrix& m) {
viewMatrices[index++] = m;
});
this->setupSingleVbo(gl, viewMatrices);
GR_GL_CALL(gl, UseProgram(fProgram));
}
void GLVec4ScalarBench::glDraw(int loops, const GrGLContext* ctx) {
const GrGLInterface* gl = ctx->interface();
for (int i = 0; i < loops; i++) {
GR_GL_CALL(gl, DrawArrays(GR_GL_TRIANGLES, 0, kVerticesPerTri * kNumTriPerDraw));
}
// using -w when running nanobench will not produce correct images;
// changing this to #if 1 will write the correct images to the Skia folder.
#if 0
SkString filename("out");
filename.appendf("_%s.png", this->getName());
DumpImage(gl, kScreenWidth, kScreenHeight, filename.c_str());
#endif
}
void GLVec4ScalarBench::teardown(const GrGLInterface* gl) {
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GR_GL_CALL(gl, DeleteTextures(1, &fFboTextureId));
GR_GL_CALL(gl, DeleteProgram(fProgram));
GR_GL_CALL(gl, DeleteBuffers(1, &fVboId));
}
///////////////////////////////////////////////////////////////////////////////
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 1) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 1) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 2) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 2) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 4) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 4) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 6) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 6) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseScalar_CoverageSetup, 8) )
DEF_BENCH( return new GLVec4ScalarBench(GLVec4ScalarBench::kUseVec4_CoverageSetup, 8) )
#endif