blob: 4cca2bad1d44abf7ad3d1fcd6418bfbb4a5a17ba [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPatch.h"
#include "SkGeometry.h"
#include "SkColorPriv.h"
#include "SkBuffer.h"
////////////////////////////////////////////////////////////////////////////////
/**
* Evaluator to sample the values of a cubic bezier using forward differences.
* Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
* adding precalculated values.
* For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
* would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
* evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
* obtaining this value (mh) we could just add this constant step to our first sampled point
* to compute the next one.
*
* For the cubic case the first difference gives as a result a quadratic polynomial to which we can
* apply again forward differences and get linear function to which we can apply again forward
* differences to get a constant difference. This is why we keep an array of size 4, the 0th
* position keeps the sampled value while the next ones keep the quadratic, linear and constant
* difference values.
*/
class FwDCubicEvaluator {
public:
FwDCubicEvaluator() { }
/**
* Receives the 4 control points of the cubic bezier.
*/
FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
fPoints[0] = a;
fPoints[1] = b;
fPoints[2] = c;
fPoints[3] = d;
SkScalar cx[4], cy[4];
SkGetCubicCoeff(fPoints, cx, cy);
fCoefs[0].set(cx[0], cy[0]);
fCoefs[1].set(cx[1], cy[1]);
fCoefs[2].set(cx[2], cy[2]);
fCoefs[3].set(cx[3], cy[3]);
this->restart(1);
}
explicit FwDCubicEvaluator(SkPoint points[4]) {
for (int i = 0; i< 4; i++) {
fPoints[i] = points[i];
}
SkScalar cx[4], cy[4];
SkGetCubicCoeff(fPoints, cx, cy);
fCoefs[0].set(cx[0], cy[0]);
fCoefs[1].set(cx[1], cy[1]);
fCoefs[2].set(cx[2], cy[2]);
fCoefs[3].set(cx[3], cy[3]);
this->restart(1);
}
/**
* Restarts the forward differences evaluator to the first value of t = 0.
*/
void restart(int divisions) {
fDivisions = divisions;
SkScalar h = 1.f / fDivisions;
fCurrent = 0;
fMax = fDivisions + 1;
fFwDiff[0] = fCoefs[3];
SkScalar h2 = h * h;
SkScalar h3 = h2 * h;
fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
}
/**
* Check if the evaluator is still within the range of 0<=t<=1
*/
bool done() const {
return fCurrent > fMax;
}
/**
* Call next to obtain the SkPoint sampled and move to the next one.
*/
SkPoint next() {
SkPoint point = fFwDiff[0];
fFwDiff[0] += fFwDiff[1];
fFwDiff[1] += fFwDiff[2];
fFwDiff[2] += fFwDiff[3];
fCurrent++;
return point;
}
const SkPoint* getCtrlPoints() const {
return fPoints;
}
private:
int fMax, fCurrent, fDivisions;
SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
};
////////////////////////////////////////////////////////////////////////////////
SkPatch::SkPatch(const SkPoint points[12], const SkColor colors[4]) {
this->reset(points, colors);
}
static uint8_t bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
SkScalar c11) {
SkScalar a = c00 * (1.f - tx) + c10 * tx;
SkScalar b = c01 * (1.f - tx) + c11 * tx;
return uint8_t(a * (1.f - ty) + b * ty);
}
bool SkPatch::getVertexData(SkPatch::VertexData* data, int lodX, int lodY) const {
if (lodX < 1 || lodY < 1) {
return false;
}
// premultiply colors to avoid color bleeding.
SkPMColor colors[SkPatch::kNumColors];
for (int i = 0; i < SkPatch::kNumColors; i++) {
colors[i] = SkPreMultiplyColor(fCornerColors[i]);
}
// number of indices is limited by size of uint16_t, so we clamp it to avoid overflow
data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536);
lodX = SkMin32(lodX, 255);
lodY = SkMin32(lodY, 255);
data->fIndexCount = lodX * lodY * 6;
data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
SkPoint pts[SkPatch::kNumPtsCubic];
this->getBottomPoints(pts);
FwDCubicEvaluator fBottom(pts);
this->getTopPoints(pts);
FwDCubicEvaluator fTop(pts);
this->getLeftPoints(pts);
FwDCubicEvaluator fLeft(pts);
this->getRightPoints(pts);
FwDCubicEvaluator fRight(pts);
fBottom.restart(lodX);
fTop.restart(lodX);
SkScalar u = 0.0f;
int stride = lodY + 1;
for (int x = 0; x <= lodX; x++) {
SkPoint bottom = fBottom.next(), top = fTop.next();
fLeft.restart(lodY);
fRight.restart(lodY);
SkScalar v = 0.f;
for (int y = 0; y <= lodY; y++) {
int dataIndex = x * (lodY + 1) + y;
SkPoint left = fLeft.next(), right = fRight.next();
SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
(1.0f - v) * top.y() + v * bottom.y());
SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
(1.0f - u) * left.y() + u * right.y());
SkPoint s2 = SkPoint::Make(
(1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
+ u * fTop.getCtrlPoints()[3].x())
+ v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
+ u * fBottom.getCtrlPoints()[3].x()),
(1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
+ u * fTop.getCtrlPoints()[3].y())
+ v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
+ u * fBottom.getCtrlPoints()[3].y()));
data->fPoints[dataIndex] = s0 + s1 - s2;
uint8_t a = bilerp(u, v,
SkScalar(SkColorGetA(colors[kTopLeft_CornerColors])),
SkScalar(SkColorGetA(colors[kTopRight_CornerColors])),
SkScalar(SkColorGetA(colors[kBottomLeft_CornerColors])),
SkScalar(SkColorGetA(colors[kBottomRight_CornerColors])));
uint8_t r = bilerp(u, v,
SkScalar(SkColorGetR(colors[kTopLeft_CornerColors])),
SkScalar(SkColorGetR(colors[kTopRight_CornerColors])),
SkScalar(SkColorGetR(colors[kBottomLeft_CornerColors])),
SkScalar(SkColorGetR(colors[kBottomRight_CornerColors])));
uint8_t g = bilerp(u, v,
SkScalar(SkColorGetG(colors[kTopLeft_CornerColors])),
SkScalar(SkColorGetG(colors[kTopRight_CornerColors])),
SkScalar(SkColorGetG(colors[kBottomLeft_CornerColors])),
SkScalar(SkColorGetG(colors[kBottomRight_CornerColors])));
uint8_t b = bilerp(u, v,
SkScalar(SkColorGetB(colors[kTopLeft_CornerColors])),
SkScalar(SkColorGetB(colors[kTopRight_CornerColors])),
SkScalar(SkColorGetB(colors[kBottomLeft_CornerColors])),
SkScalar(SkColorGetB(colors[kBottomRight_CornerColors])));
data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
data->fTexCoords[dataIndex] = SkPoint::Make(u, v);
if(x < lodX && y < lodY) {
int i = 6 * (x * lodY + y);
data->fIndices[i] = x * stride + y;
data->fIndices[i + 1] = x * stride + 1 + y;
data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
data->fIndices[i + 3] = data->fIndices[i];
data->fIndices[i + 4] = data->fIndices[i + 2];
data->fIndices[i + 5] = (x + 1) * stride + y;
}
v = SkScalarClampMax(v + 1.f / lodY, 1);
}
u = SkScalarClampMax(u + 1.f / lodX, 1);
}
return true;
}
size_t SkPatch::writeToMemory(void* storage) const {
int byteCount = kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor);
if (NULL == storage) {
return SkAlign4(byteCount);
}
SkWBuffer buffer(storage);
buffer.write(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint));
buffer.write(fCornerColors, kNumColors * sizeof(SkColor));
buffer.padToAlign4();
return buffer.pos();
}
size_t SkPatch::readFromMemory(const void* storage, size_t length) {
SkRBufferWithSizeCheck buffer(storage, length);
if (!buffer.read(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint))) {
return 0;
}
if (!buffer.read(fCornerColors, kNumColors * sizeof(SkColor))) {
return 0;
}
return kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor);
}