blob: 85f36d9381f0257437034ade082937c71696b896 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGr.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrTextureParamsAdjuster.h"
#include "GrGpuResourcePriv.h"
#include "GrImageIDTextureAdjuster.h"
#include "GrXferProcessor.h"
#include "GrYUVProvider.h"
#include "SkColorFilter.h"
#include "SkConfig8888.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkErrorInternals.h"
#include "SkGrPixelRef.h"
#include "SkMessageBus.h"
#include "SkPixelRef.h"
#include "SkResourceCache.h"
#include "SkTextureCompressor.h"
#include "SkYUVPlanesCache.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrConstColorProcessor.h"
#include "effects/GrDitherEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
#include "effects/GrYUVEffect.h"
#ifndef SK_IGNORE_ETC1_SUPPORT
# include "ktx.h"
# include "etc1.h"
#endif
GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info) {
GrSurfaceDesc desc;
desc.fFlags = kNone_GrSurfaceFlags;
desc.fWidth = info.width();
desc.fHeight = info.height();
desc.fConfig = SkImageInfo2GrPixelConfig(info);
desc.fSampleCnt = 0;
return desc;
}
void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) {
SkASSERT(key);
SkASSERT(imageID);
SkASSERT(!imageBounds.isEmpty());
static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kImageIDDomain, 5);
builder[0] = imageID;
builder[1] = imageBounds.fLeft;
builder[2] = imageBounds.fTop;
builder[3] = imageBounds.fRight;
builder[4] = imageBounds.fBottom;
}
GrPixelConfig GrIsCompressedTextureDataSupported(GrContext* ctx, SkData* data,
int expectedW, int expectedH,
const void** outStartOfDataToUpload) {
*outStartOfDataToUpload = nullptr;
#ifndef SK_IGNORE_ETC1_SUPPORT
if (!ctx->caps()->isConfigTexturable(kETC1_GrPixelConfig)) {
return kUnknown_GrPixelConfig;
}
const uint8_t* bytes = data->bytes();
if (data->size() > ETC_PKM_HEADER_SIZE && etc1_pkm_is_valid(bytes)) {
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (etc1_pkm_get_width(bytes) != (unsigned)expectedW ||
etc1_pkm_get_height(bytes) != (unsigned)expectedH)
{
return kUnknown_GrPixelConfig;
}
*outStartOfDataToUpload = bytes + ETC_PKM_HEADER_SIZE;
return kETC1_GrPixelConfig;
} else if (SkKTXFile::is_ktx(bytes)) {
SkKTXFile ktx(data);
// Is it actually an ETC1 texture?
if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) {
return kUnknown_GrPixelConfig;
}
// Does the data match the dimensions of the bitmap? If not,
// then we don't know how to scale the image to match it...
if (ktx.width() != expectedW || ktx.height() != expectedH) {
return kUnknown_GrPixelConfig;
}
*outStartOfDataToUpload = ktx.pixelData();
return kETC1_GrPixelConfig;
}
#endif
return kUnknown_GrPixelConfig;
}
//////////////////////////////////////////////////////////////////////////////
/**
* Fill out buffer with the compressed format Ganesh expects from a colortable
* based bitmap. [palette (colortable) + indices].
*
* At the moment Ganesh only supports 8bit version. If Ganesh allowed we others
* we could detect that the colortable.count is <= 16, and then repack the
* indices as nibbles to save RAM, but it would take more time (i.e. a lot
* slower than memcpy), so skipping that for now.
*
* Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big
* as the colortable.count says it is.
*/
static void build_index8_data(void* buffer, const SkBitmap& bitmap) {
SkASSERT(kIndex_8_SkColorType == bitmap.colorType());
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
SkDEBUGFAIL("bitmap not ready to draw!");
return;
}
SkColorTable* ctable = bitmap.getColorTable();
char* dst = (char*)buffer;
const int count = ctable->count();
SkDstPixelInfo dstPI;
dstPI.fColorType = kRGBA_8888_SkColorType;
dstPI.fAlphaType = kPremul_SkAlphaType;
dstPI.fPixels = buffer;
dstPI.fRowBytes = count * sizeof(SkPMColor);
SkSrcPixelInfo srcPI;
srcPI.fColorType = kN32_SkColorType;
srcPI.fAlphaType = kPremul_SkAlphaType;
srcPI.fPixels = ctable->readColors();
srcPI.fRowBytes = count * sizeof(SkPMColor);
srcPI.convertPixelsTo(&dstPI, count, 1);
// always skip a full 256 number of entries, even if we memcpy'd fewer
dst += 256 * sizeof(GrColor);
if ((unsigned)bitmap.width() == bitmap.rowBytes()) {
memcpy(dst, bitmap.getPixels(), bitmap.getSize());
} else {
// need to trim off the extra bytes per row
size_t width = bitmap.width();
size_t rowBytes = bitmap.rowBytes();
const char* src = (const char*)bitmap.getPixels();
for (int y = 0; y < bitmap.height(); y++) {
memcpy(dst, src, width);
src += rowBytes;
dst += width;
}
}
}
/**
* Once we have made SkImages handle all lazy/deferred/generated content, the YUV apis will
* be gone from SkPixelRef, and we can remove this subclass entirely.
*/
class PixelRef_GrYUVProvider : public GrYUVProvider {
SkPixelRef* fPR;
public:
PixelRef_GrYUVProvider(SkPixelRef* pr) : fPR(pr) {}
uint32_t onGetID() override { return fPR->getGenerationID(); }
bool onGetYUVSizes(SkISize sizes[3]) override {
return fPR->getYUV8Planes(sizes, nullptr, nullptr, nullptr);
}
bool onGetYUVPlanes(SkISize sizes[3], void* planes[3], size_t rowBytes[3],
SkYUVColorSpace* space) override {
return fPR->getYUV8Planes(sizes, planes, rowBytes, space);
}
};
static GrTexture* create_texture_from_yuv(GrContext* ctx, const SkBitmap& bm,
const GrSurfaceDesc& desc) {
// Subsets are not supported, the whole pixelRef is loaded when using YUV decoding
SkPixelRef* pixelRef = bm.pixelRef();
if ((nullptr == pixelRef) ||
(pixelRef->info().width() != bm.info().width()) ||
(pixelRef->info().height() != bm.info().height())) {
return nullptr;
}
PixelRef_GrYUVProvider provider(pixelRef);
return provider.refAsTexture(ctx, desc, !bm.isVolatile());
}
static GrTexture* load_etc1_texture(GrContext* ctx, const SkBitmap &bm, GrSurfaceDesc desc) {
SkAutoTUnref<SkData> data(bm.pixelRef()->refEncodedData());
if (!data) {
return nullptr;
}
const void* startOfTexData;
desc.fConfig = GrIsCompressedTextureDataSupported(ctx, data, bm.width(), bm.height(),
&startOfTexData);
if (kUnknown_GrPixelConfig == desc.fConfig) {
return nullptr;
}
return ctx->textureProvider()->createTexture(desc, SkBudgeted::kYes, startOfTexData, 0);
}
GrTexture* GrUploadBitmapToTexture(GrContext* ctx, const SkBitmap& bmp) {
SkASSERT(!bmp.getTexture());
SkBitmap tmpBitmap;
const SkBitmap* bitmap = &bmp;
GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap->info());
const GrCaps* caps = ctx->caps();
if (kIndex_8_SkColorType == bitmap->colorType()) {
if (caps->isConfigTexturable(kIndex_8_GrPixelConfig)) {
size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig,
bitmap->width(), bitmap->height());
SkAutoMalloc storage(imageSize);
build_index8_data(storage.get(), bmp);
// our compressed data will be trimmed, so pass width() for its
// "rowBytes", since they are the same now.
return ctx->textureProvider()->createTexture(desc, SkBudgeted::kYes, storage.get(),
bitmap->width());
} else {
bmp.copyTo(&tmpBitmap, kN32_SkColorType);
// now bitmap points to our temp, which has been promoted to 32bits
bitmap = &tmpBitmap;
desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info());
}
} else if (!bitmap->readyToDraw()) {
// If the bitmap had compressed data and was then uncompressed, it'll still return
// compressed data on 'refEncodedData' and upload it. Probably not good, since if
// the bitmap has available pixels, then they might not be what the decompressed
// data is.
// Really?? We aren't doing this with YUV.
GrTexture *texture = load_etc1_texture(ctx, *bitmap, desc);
if (texture) {
return texture;
}
}
GrTexture *texture = create_texture_from_yuv(ctx, *bitmap, desc);
if (texture) {
return texture;
}
SkAutoLockPixels alp(*bitmap);
if (!bitmap->readyToDraw()) {
return nullptr;
}
return ctx->textureProvider()->createTexture(desc, SkBudgeted::kYes, bitmap->getPixels(),
bitmap->rowBytes());
}
////////////////////////////////////////////////////////////////////////////////
void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) {
class Invalidator : public SkPixelRef::GenIDChangeListener {
public:
explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {}
private:
GrUniqueKeyInvalidatedMessage fMsg;
void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); }
};
pixelRef->addGenIDChangeListener(new Invalidator(key));
}
GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap,
const GrTextureParams& params) {
if (bitmap.getTexture()) {
return GrBitmapTextureAdjuster(&bitmap).refTextureSafeForParams(params, nullptr);
}
return GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params);
}
///////////////////////////////////////////////////////////////////////////////
// alphatype is ignore for now, but if GrPixelConfig is expanded to encompass
// alpha info, that will be considered.
GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, SkColorProfileType pt) {
switch (ct) {
case kUnknown_SkColorType:
return kUnknown_GrPixelConfig;
case kAlpha_8_SkColorType:
return kAlpha_8_GrPixelConfig;
case kRGB_565_SkColorType:
return kRGB_565_GrPixelConfig;
case kARGB_4444_SkColorType:
return kRGBA_4444_GrPixelConfig;
case kRGBA_8888_SkColorType:
//if (kSRGB_SkColorProfileType == pt) {
// return kSRGBA_8888_GrPixelConfig;
//}
return kRGBA_8888_GrPixelConfig;
case kBGRA_8888_SkColorType:
return kBGRA_8888_GrPixelConfig;
case kIndex_8_SkColorType:
return kIndex_8_GrPixelConfig;
case kGray_8_SkColorType:
return kAlpha_8_GrPixelConfig; // TODO: gray8 support on gpu
case kRGBA_F16_SkColorType:
return kRGBA_half_GrPixelConfig;
}
SkASSERT(0); // shouldn't get here
return kUnknown_GrPixelConfig;
}
bool GrPixelConfig2ColorAndProfileType(GrPixelConfig config, SkColorType* ctOut,
SkColorProfileType* ptOut) {
SkColorType ct;
SkColorProfileType pt = kLinear_SkColorProfileType;
switch (config) {
case kAlpha_8_GrPixelConfig:
ct = kAlpha_8_SkColorType;
break;
case kIndex_8_GrPixelConfig:
ct = kIndex_8_SkColorType;
break;
case kRGB_565_GrPixelConfig:
ct = kRGB_565_SkColorType;
break;
case kRGBA_4444_GrPixelConfig:
ct = kARGB_4444_SkColorType;
break;
case kRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kSRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
pt = kSRGB_SkColorProfileType;
break;
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
if (ptOut) {
*ptOut = pt;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////////////////////
static inline bool blend_requires_shader(const SkXfermode::Mode mode, bool primitiveIsSrc) {
if (primitiveIsSrc) {
return SkXfermode::kSrc_Mode != mode;
} else {
return SkXfermode::kDst_Mode != mode;
}
}
static inline bool skpaint_to_grpaint_impl(GrContext* context,
const SkPaint& skPaint,
const SkMatrix& viewM,
const GrFragmentProcessor** shaderProcessor,
SkXfermode::Mode* primColorMode,
bool primitiveIsSrc,
GrPaint* grPaint) {
grPaint->setAntiAlias(skPaint.isAntiAlias());
// Setup the initial color considering the shader, the SkPaint color, and the presence or not
// of per-vertex colors.
SkAutoTUnref<const GrFragmentProcessor> aufp;
const GrFragmentProcessor* shaderFP = nullptr;
if (!primColorMode || blend_requires_shader(*primColorMode, primitiveIsSrc)) {
if (shaderProcessor) {
shaderFP = *shaderProcessor;
} else if (const SkShader* shader = skPaint.getShader()) {
aufp.reset(shader->asFragmentProcessor(context, viewM, nullptr,
skPaint.getFilterQuality()));
shaderFP = aufp;
if (!shaderFP) {
return false;
}
}
}
// Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is
// a known constant value. In that case we can simply apply a color filter during this
// conversion without converting the color filter to a GrFragmentProcessor.
bool applyColorFilterToPaintColor = false;
if (shaderFP) {
if (primColorMode) {
// There is a blend between the primitive color and the shader color. The shader sees
// the opaque paint color. The shader's output is blended using the provided mode by
// the primitive color. The blended color is then modulated by the paint's alpha.
// The geometry processor will insert the primitive color to start the color chain, so
// the GrPaint color will be ignored.
GrColor shaderInput = SkColorToOpaqueGrColor(skPaint.getColor());
shaderFP = GrFragmentProcessor::OverrideInput(shaderFP, shaderInput);
aufp.reset(shaderFP);
if (primitiveIsSrc) {
shaderFP = GrXfermodeFragmentProcessor::CreateFromDstProcessor(shaderFP,
*primColorMode);
} else {
shaderFP = GrXfermodeFragmentProcessor::CreateFromSrcProcessor(shaderFP,
*primColorMode);
}
aufp.reset(shaderFP);
// The above may return null if compose results in a pass through of the prim color.
if (shaderFP) {
grPaint->addColorFragmentProcessor(shaderFP);
}
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Create(
paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode))->unref();
}
} else {
// The shader's FP sees the paint unpremul color
grPaint->setColor(SkColorToUnpremulGrColor(skPaint.getColor()));
grPaint->addColorFragmentProcessor(shaderFP);
}
} else {
if (primColorMode) {
// There is a blend between the primitive color and the paint color. The blend considers
// the opaque paint color. The paint's alpha is applied to the post-blended color.
SkAutoTUnref<const GrFragmentProcessor> processor(
GrConstColorProcessor::Create(SkColorToOpaqueGrColor(skPaint.getColor()),
GrConstColorProcessor::kIgnore_InputMode));
if (primitiveIsSrc) {
processor.reset(GrXfermodeFragmentProcessor::CreateFromDstProcessor(processor,
*primColorMode));
} else {
processor.reset(GrXfermodeFragmentProcessor::CreateFromSrcProcessor(processor,
*primColorMode));
}
if (processor) {
grPaint->addColorFragmentProcessor(processor);
}
grPaint->setColor(SkColorToOpaqueGrColor(skPaint.getColor()));
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Create(
paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode))->unref();
}
} else {
// No shader, no primitive color.
grPaint->setColor(SkColorToPremulGrColor(skPaint.getColor()));
applyColorFilterToPaintColor = true;
}
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
if (applyColorFilterToPaintColor) {
grPaint->setColor(SkColorToPremulGrColor(colorFilter->filterColor(skPaint.getColor())));
} else {
SkAutoTUnref<const GrFragmentProcessor> cfFP(
colorFilter->asFragmentProcessor(context));
if (cfFP) {
grPaint->addColorFragmentProcessor(cfFP);
} else {
return false;
}
}
}
// When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on
// the GrPaint to also be null (also kSrcOver).
SkASSERT(!grPaint->getXPFactory());
SkXfermode* xfermode = skPaint.getXfermode();
if (xfermode) {
// SafeUnref in case a new xfermode is added that returns null.
// In such cases we will fall back to kSrcOver_Mode.
SkSafeUnref(grPaint->setXPFactory(xfermode->asXPFactory()));
}
#ifndef SK_IGNORE_GPU_DITHER
if (skPaint.isDither() && grPaint->numColorFragmentProcessors() > 0) {
grPaint->addColorFragmentProcessor(GrDitherEffect::Create())->unref();
}
#endif
return true;
}
bool SkPaintToGrPaint(GrContext* context, const SkPaint& skPaint, const SkMatrix& viewM,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, skPaint, viewM, nullptr, nullptr, false, grPaint);
}
/** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */
bool SkPaintToGrPaintReplaceShader(GrContext* context,
const SkPaint& skPaint,
const GrFragmentProcessor* shaderFP,
GrPaint* grPaint) {
if (!shaderFP) {
return false;
}
return skpaint_to_grpaint_impl(context, skPaint, SkMatrix::I(), &shaderFP, nullptr, false,
grPaint);
}
/** Ignores the SkShader (if any) on skPaint. */
bool SkPaintToGrPaintNoShader(GrContext* context,
const SkPaint& skPaint,
GrPaint* grPaint) {
// Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced.
static const GrFragmentProcessor* kNullShaderFP = nullptr;
static const GrFragmentProcessor** kIgnoreShader = &kNullShaderFP;
return skpaint_to_grpaint_impl(context, skPaint, SkMatrix::I(), kIgnoreShader, nullptr, false,
grPaint);
}
/** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must
be setup as a vertex attribute using the specified SkXfermode::Mode. */
bool SkPaintToGrPaintWithXfermode(GrContext* context,
const SkPaint& skPaint,
const SkMatrix& viewM,
SkXfermode::Mode primColorMode,
bool primitiveIsSrc,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, skPaint, viewM, nullptr, &primColorMode, primitiveIsSrc,
grPaint);
}
bool SkPaintToGrPaintWithTexture(GrContext* context,
const SkPaint& paint,
const SkMatrix& viewM,
const GrFragmentProcessor* fp,
bool textureIsAlphaOnly,
GrPaint* grPaint) {
SkAutoTUnref<const GrFragmentProcessor> shaderFP;
if (textureIsAlphaOnly) {
if (const SkShader* shader = paint.getShader()) {
shaderFP.reset(shader->asFragmentProcessor(context,
viewM,
nullptr,
paint.getFilterQuality()));
if (!shaderFP) {
return false;
}
const GrFragmentProcessor* fpSeries[] = { shaderFP.get(), fp };
shaderFP.reset(GrFragmentProcessor::RunInSeries(fpSeries, 2));
} else {
shaderFP.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp));
}
} else {
shaderFP.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp));
}
return SkPaintToGrPaintReplaceShader(context, paint, shaderFP.get(), grPaint);
}
////////////////////////////////////////////////////////////////////////////////////////////////
SkImageInfo GrMakeInfoFromTexture(GrTexture* tex, int w, int h, bool isOpaque) {
#ifdef SK_DEBUG
const GrSurfaceDesc& desc = tex->desc();
SkASSERT(w <= desc.fWidth);
SkASSERT(h <= desc.fHeight);
#endif
const GrPixelConfig config = tex->config();
SkColorType ct;
SkAlphaType at = isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
if (!GrPixelConfig2ColorAndProfileType(config, &ct, nullptr)) {
ct = kUnknown_SkColorType;
}
return SkImageInfo::Make(w, h, ct, at);
}
void GrWrapTextureInBitmap(GrTexture* src, int w, int h, bool isOpaque, SkBitmap* dst) {
const SkImageInfo info = GrMakeInfoFromTexture(src, w, h, isOpaque);
dst->setInfo(info);
dst->setPixelRef(new SkGrPixelRef(info, src))->unref();
}
GrTextureParams::FilterMode GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality,
const SkMatrix& viewM,
const SkMatrix& localM,
bool* doBicubic) {
*doBicubic = false;
GrTextureParams::FilterMode textureFilterMode;
switch (paintFilterQuality) {
case kNone_SkFilterQuality:
textureFilterMode = GrTextureParams::kNone_FilterMode;
break;
case kLow_SkFilterQuality:
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
break;
case kMedium_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
}
break;
}
case kHigh_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
*doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
break;
}
default:
SkErrorInternals::SetError( kInvalidPaint_SkError,
"Sorry, I don't understand the filtering "
"mode you asked for. Falling back to "
"MIPMaps.");
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
break;
}
return textureFilterMode;
}