| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrGpuGL.h" |
| #include "GrGLNameAllocator.h" |
| #include "GrGLStencilBuffer.h" |
| #include "GrGLPath.h" |
| #include "GrGLShaderBuilder.h" |
| #include "GrTemplates.h" |
| #include "GrTypes.h" |
| #include "SkStrokeRec.h" |
| #include "SkTemplates.h" |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define SKIP_CACHE_CHECK true |
| |
| #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) |
| #else |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR |
| #endif |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| GR_GL_CONSTANT_ALPHA, |
| GR_GL_ONE_MINUS_CONSTANT_ALPHA, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| }; |
| |
| bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { |
| static const bool gCoeffReferencesBlendConst[] = { |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| true, |
| true, |
| true, |
| true, |
| |
| // extended blend coeffs |
| false, |
| false, |
| false, |
| false, |
| }; |
| return gCoeffReferencesBlendConst[coeff]; |
| GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == |
| SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); |
| |
| GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); |
| GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); |
| GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); |
| GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); |
| GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); |
| GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); |
| GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); |
| GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); |
| |
| GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); |
| GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); |
| |
| // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope |
| GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == |
| SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static bool gPrintStartupSpew; |
| |
| GrGpuGL::GrGpuGL(const GrGLContext& ctx, GrContext* context) |
| : GrGpu(context) |
| , fGLContext(ctx) { |
| |
| SkASSERT(ctx.isInitialized()); |
| fCaps.reset(SkRef(ctx.caps())); |
| |
| fHWBoundTextures.reset(this->glCaps().maxFragmentTextureUnits()); |
| fHWPathTexGenSettings.reset(this->glCaps().maxFixedFunctionTextureCoords()); |
| |
| GrGLClearErr(fGLContext.interface()); |
| if (gPrintStartupSpew) { |
| const GrGLubyte* vendor; |
| const GrGLubyte* renderer; |
| const GrGLubyte* version; |
| GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); |
| GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); |
| GL_CALL_RET(version, GetString(GR_GL_VERSION)); |
| GrPrintf("------------------------- create GrGpuGL %p --------------\n", |
| this); |
| GrPrintf("------ VENDOR %s\n", vendor); |
| GrPrintf("------ RENDERER %s\n", renderer); |
| GrPrintf("------ VERSION %s\n", version); |
| GrPrintf("------ EXTENSIONS\n"); |
| #if 0 // TODO: Reenable this after GrGLInterface's extensions can be accessed safely. |
| ctx.extensions().print(); |
| #endif |
| GrPrintf("\n"); |
| GrPrintf(this->glCaps().dump().c_str()); |
| } |
| |
| fProgramCache = SkNEW_ARGS(ProgramCache, (this)); |
| |
| SkASSERT(this->glCaps().maxVertexAttributes() >= GrDrawState::kMaxVertexAttribCnt); |
| |
| fLastSuccessfulStencilFmtIdx = 0; |
| fHWProgramID = 0; |
| } |
| |
| GrGpuGL::~GrGpuGL() { |
| if (0 != fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| SkASSERT(fHWProgramID == fCurrentProgram->programID()); |
| GL_CALL(UseProgram(0)); |
| } |
| |
| delete fProgramCache; |
| |
| // This must be called by before the GrDrawTarget destructor |
| this->releaseGeometry(); |
| // This subclass must do this before the base class destructor runs |
| // since we will unref the GrGLInterface. |
| this->releaseResources(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig readConfig, |
| GrPixelConfig surfaceConfig) const { |
| if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == readConfig) { |
| return kBGRA_8888_GrPixelConfig; |
| } else if (this->glContext().isMesa() && |
| GrBytesPerPixel(readConfig) == 4 && |
| GrPixelConfigSwapRAndB(readConfig) == surfaceConfig) { |
| // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. |
| // Perhaps this should be guarded by some compiletime or runtime check. |
| return surfaceConfig; |
| } else if (readConfig == kBGRA_8888_GrPixelConfig && |
| !this->glCaps().readPixelsSupported(this->glInterface(), |
| GR_GL_BGRA, GR_GL_UNSIGNED_BYTE)) { |
| return kRGBA_8888_GrPixelConfig; |
| } else { |
| return readConfig; |
| } |
| } |
| |
| GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig writeConfig, |
| GrPixelConfig surfaceConfig) const { |
| if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == writeConfig) { |
| return kBGRA_8888_GrPixelConfig; |
| } else { |
| return writeConfig; |
| } |
| } |
| |
| bool GrGpuGL::canWriteTexturePixels(const GrTexture* texture, GrPixelConfig srcConfig) const { |
| if (kIndex_8_GrPixelConfig == srcConfig || kIndex_8_GrPixelConfig == texture->config()) { |
| return false; |
| } |
| if (srcConfig != texture->config() && kGLES_GrGLStandard == this->glStandard()) { |
| // In general ES2 requires the internal format of the texture and the format of the src |
| // pixels to match. However, It may or may not be possible to upload BGRA data to a RGBA |
| // texture. It depends upon which extension added BGRA. The Apple extension allows it |
| // (BGRA's internal format is RGBA) while the EXT extension does not (BGRA is its own |
| // internal format). |
| if (this->glCaps().isConfigTexturable(kBGRA_8888_GrPixelConfig) && |
| !this->glCaps().bgraIsInternalFormat() && |
| kBGRA_8888_GrPixelConfig == srcConfig && |
| kRGBA_8888_GrPixelConfig == texture->config()) { |
| return true; |
| } else { |
| return false; |
| } |
| } else { |
| return true; |
| } |
| } |
| |
| bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const { |
| return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL); |
| } |
| |
| void GrGpuGL::onResetContext(uint32_t resetBits) { |
| // we don't use the zb at all |
| if (resetBits & kMisc_GrGLBackendState) { |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| fHWDrawFace = GrDrawState::kInvalid_DrawFace; |
| fHWDitherEnabled = kUnknown_TriState; |
| |
| if (kGL_GrGLStandard == this->glStandard()) { |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't |
| // currently part of our gl interface. There are probably others as |
| // well. |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| } |
| |
| if (resetBits & kAA_GrGLBackendState) { |
| fHWAAState.invalidate(); |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < fHWBoundTextures.count(); ++s) { |
| fHWBoundTextures[s] = NULL; |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWGeometryState.invalidate(); |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTarget = NULL; |
| } |
| |
| if (resetBits & kPathRendering_GrGLBackendState) { |
| if (this->caps()->pathRenderingSupport()) { |
| fHWProjectionMatrixState.invalidate(); |
| // we don't use the model view matrix. |
| GL_CALL(MatrixLoadIdentity(GR_GL_MODELVIEW)); |
| |
| for (int i = 0; i < this->glCaps().maxFixedFunctionTextureCoords(); ++i) { |
| GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL)); |
| fHWPathTexGenSettings[i].fMode = GR_GL_NONE; |
| fHWPathTexGenSettings[i].fNumComponents = 0; |
| } |
| fHWActivePathTexGenSets = 0; |
| } |
| fHWPathStencilSettings.invalidate(); |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().unpackFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| fSharedGLProgramState.invalidate(); |
| } |
| } |
| |
| namespace { |
| |
| GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { |
| // By default, GrRenderTargets are GL's normal orientation so that they |
| // can be drawn to by the outside world without the client having |
| // to render upside down. |
| if (kDefault_GrSurfaceOrigin == origin) { |
| return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; |
| } else { |
| return origin; |
| } |
| } |
| |
| } |
| |
| GrTexture* GrGpuGL::onWrapBackendTexture(const GrBackendTextureDesc& desc) { |
| if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { |
| return NULL; |
| } |
| |
| if (0 == desc.fTextureHandle) { |
| return NULL; |
| } |
| |
| int maxSize = this->caps()->maxTextureSize(); |
| if (desc.fWidth > maxSize || desc.fHeight > maxSize) { |
| return NULL; |
| } |
| |
| GrGLTexture::Desc glTexDesc; |
| // next line relies on GrBackendTextureDesc's flags matching GrTexture's |
| glTexDesc.fFlags = (GrTextureFlags) desc.fFlags; |
| glTexDesc.fWidth = desc.fWidth; |
| glTexDesc.fHeight = desc.fHeight; |
| glTexDesc.fConfig = desc.fConfig; |
| glTexDesc.fSampleCnt = desc.fSampleCnt; |
| glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle); |
| glTexDesc.fIsWrapped = true; |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); |
| // FIXME: this should be calling resolve_origin(), but Chrome code is currently |
| // assuming the old behaviour, which is that backend textures are always |
| // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: |
| // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| if (kDefault_GrSurfaceOrigin == desc.fOrigin) { |
| glTexDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| } else { |
| glTexDesc.fOrigin = desc.fOrigin; |
| } |
| |
| GrGLTexture* texture = NULL; |
| if (renderTarget) { |
| GrGLRenderTarget::Desc glRTDesc; |
| glRTDesc.fRTFBOID = 0; |
| glRTDesc.fTexFBOID = 0; |
| glRTDesc.fMSColorRenderbufferID = 0; |
| glRTDesc.fConfig = desc.fConfig; |
| glRTDesc.fSampleCnt = desc.fSampleCnt; |
| glRTDesc.fOrigin = glTexDesc.fOrigin; |
| glRTDesc.fCheckAllocation = false; |
| if (!this->createRenderTargetObjects(glTexDesc.fWidth, |
| glTexDesc.fHeight, |
| glTexDesc.fTextureID, |
| &glRTDesc)) { |
| return NULL; |
| } |
| texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); |
| } else { |
| texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); |
| } |
| if (NULL == texture) { |
| return NULL; |
| } |
| |
| return texture; |
| } |
| |
| GrRenderTarget* GrGpuGL::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { |
| GrGLRenderTarget::Desc glDesc; |
| glDesc.fConfig = desc.fConfig; |
| glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle); |
| glDesc.fMSColorRenderbufferID = 0; |
| glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| glDesc.fSampleCnt = desc.fSampleCnt; |
| glDesc.fIsWrapped = true; |
| glDesc.fCheckAllocation = false; |
| |
| glDesc.fOrigin = resolve_origin(desc.fOrigin, true); |
| GrGLIRect viewport; |
| viewport.fLeft = 0; |
| viewport.fBottom = 0; |
| viewport.fWidth = desc.fWidth; |
| viewport.fHeight = desc.fHeight; |
| |
| GrRenderTarget* tgt = SkNEW_ARGS(GrGLRenderTarget, |
| (this, glDesc, viewport)); |
| if (desc.fStencilBits) { |
| GrGLStencilBuffer::Format format; |
| format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat; |
| format.fPacked = false; |
| format.fStencilBits = desc.fStencilBits; |
| format.fTotalBits = desc.fStencilBits; |
| static const bool kIsSBWrapped = false; |
| GrGLStencilBuffer* sb = SkNEW_ARGS(GrGLStencilBuffer, |
| (this, |
| kIsSBWrapped, |
| 0, |
| desc.fWidth, |
| desc.fHeight, |
| desc.fSampleCnt, |
| format)); |
| tgt->setStencilBuffer(sb); |
| sb->unref(); |
| } |
| return tgt; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrGpuGL::onWriteTexturePixels(GrTexture* texture, |
| int left, int top, int width, int height, |
| GrPixelConfig config, const void* buffer, |
| size_t rowBytes) { |
| if (NULL == buffer) { |
| return false; |
| } |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(texture); |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); |
| GrGLTexture::Desc desc; |
| desc.fFlags = glTex->desc().fFlags; |
| desc.fWidth = glTex->width(); |
| desc.fHeight = glTex->height(); |
| desc.fConfig = glTex->config(); |
| desc.fSampleCnt = glTex->desc().fSampleCnt; |
| desc.fTextureID = glTex->textureID(); |
| desc.fOrigin = glTex->origin(); |
| |
| bool success = false; |
| if (GrPixelConfigIsCompressed(desc.fConfig)) { |
| // We check that config == desc.fConfig in GrGpuGL::canWriteTexturePixels() |
| SkASSERT(config == desc.fConfig); |
| success = this->uploadCompressedTexData(desc, buffer, false, |
| left, top, width, height); |
| } else { |
| success = this->uploadTexData(desc, false, |
| left, top, width, height, |
| config, buffer, rowBytes); |
| } |
| |
| if (success) { |
| texture->impl()->dirtyMipMaps(true); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| bool adjust_pixel_ops_params(int surfaceWidth, |
| int surfaceHeight, |
| size_t bpp, |
| int* left, int* top, int* width, int* height, |
| const void** data, |
| size_t* rowBytes) { |
| if (!*rowBytes) { |
| *rowBytes = *width * bpp; |
| } |
| |
| SkIRect subRect = SkIRect::MakeXYWH(*left, *top, *width, *height); |
| SkIRect bounds = SkIRect::MakeWH(surfaceWidth, surfaceHeight); |
| |
| if (!subRect.intersect(bounds)) { |
| return false; |
| } |
| *data = reinterpret_cast<const void*>(reinterpret_cast<intptr_t>(*data) + |
| (subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp); |
| |
| *left = subRect.fLeft; |
| *top = subRect.fTop; |
| *width = subRect.width(); |
| *height = subRect.height(); |
| return true; |
| } |
| |
| GrGLenum check_alloc_error(const GrTextureDesc& desc, const GrGLInterface* interface) { |
| if (SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit)) { |
| return GR_GL_GET_ERROR(interface); |
| } else { |
| return CHECK_ALLOC_ERROR(interface); |
| } |
| } |
| |
| } |
| |
| bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc, |
| bool isNewTexture, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const void* data, |
| size_t rowBytes) { |
| SkASSERT(NULL != data || isNewTexture); |
| |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); |
| |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top, |
| &width, &height, &data, &rowBytes)) { |
| return false; |
| } |
| size_t trimRowBytes = width * bpp; |
| |
| // in case we need a temporary, trimmed copy of the src pixels |
| SkAutoSMalloc<128 * 128> tempStorage; |
| |
| // paletted textures cannot be partially updated |
| // We currently lazily create MIPMAPs when the we see a draw with |
| // GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the |
| // MIP levels are all created when the texture is created. So for now we don't use |
| // texture storage. |
| bool useTexStorage = false && |
| isNewTexture && |
| kIndex_8_GrPixelConfig != desc.fConfig && |
| this->glCaps().texStorageSupport(); |
| |
| if (useTexStorage && kGL_GrGLStandard == this->glStandard()) { |
| // 565 is not a sized internal format on desktop GL. So on desktop with |
| // 565 we always use an unsized internal format to let the system pick |
| // the best sized format to convert the 565 data to. Since TexStorage |
| // only allows sized internal formats we will instead use TexImage2D. |
| useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; |
| } |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| // glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized |
| // format for glTexImage, unlike ES3 and desktop. However, we allow the driver to decide the |
| // size of the internal format whenever possible and so only use a sized internal format when |
| // using texture storage. |
| if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat, |
| &externalFormat, &externalType)) { |
| return false; |
| } |
| |
| if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| // paletted textures cannot be updated |
| return false; |
| } |
| |
| /* |
| * check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| bool restoreGLRowLength = false; |
| bool swFlipY = false; |
| bool glFlipY = false; |
| if (NULL != data) { |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { |
| if (this->glCaps().unpackFlipYSupport()) { |
| glFlipY = true; |
| } else { |
| swFlipY = true; |
| } |
| } |
| if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { |
| // can't use this for flipping, only non-neg values allowed. :( |
| if (rowBytes != trimRowBytes) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } |
| } else { |
| if (trimRowBytes != rowBytes || swFlipY) { |
| // copy data into our new storage, skipping the trailing bytes |
| size_t trimSize = height * trimRowBytes; |
| const char* src = (const char*)data; |
| if (swFlipY) { |
| src += (height - 1) * rowBytes; |
| } |
| char* dst = (char*)tempStorage.reset(trimSize); |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, trimRowBytes); |
| if (swFlipY) { |
| src -= rowBytes; |
| } else { |
| src += rowBytes; |
| } |
| dst += trimRowBytes; |
| } |
| // now point data to our copied version |
| data = tempStorage.get(); |
| } |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); |
| } |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp))); |
| } |
| bool succeeded = true; |
| if (isNewTexture && |
| 0 == left && 0 == top && |
| desc.fWidth == width && desc.fHeight == height) { |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(this->glInterface(), |
| TexStorage2D(GR_GL_TEXTURE_2D, |
| 1, // levels |
| internalFormat, |
| desc.fWidth, desc.fHeight)); |
| } else { |
| if (GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| GrGLsizei imageSize = desc.fWidth * desc.fHeight + |
| kGrColorTableSize; |
| GL_ALLOC_CALL(this->glInterface(), |
| CompressedTexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| desc.fWidth, desc.fHeight, |
| 0, // border |
| imageSize, |
| data)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| TexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| desc.fWidth, desc.fHeight, |
| 0, // border |
| externalFormat, externalType, |
| data)); |
| } |
| } |
| GrGLenum error = check_alloc_error(desc, this->glInterface()); |
| if (error != GR_GL_NO_ERROR) { |
| succeeded = false; |
| } else { |
| // if we have data and we used TexStorage to create the texture, we |
| // now upload with TexSubImage. |
| if (NULL != data && useTexStorage) { |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, |
| data)); |
| } |
| } |
| } else { |
| if (swFlipY || glFlipY) { |
| top = desc.fHeight - (top + height); |
| } |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, data)); |
| } |
| |
| if (restoreGLRowLength) { |
| SkASSERT(this->glCaps().unpackRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| return succeeded; |
| } |
| |
| // TODO: This function is using a lot of wonky semantics like, if width == -1 |
| // then set width = desc.fWdith ... blah. A better way to do it might be to |
| // create a CompressedTexData struct that takes a desc/ptr and figures out |
| // the proper upload semantics. Then users can construct this function how they |
| // see fit if they want to go against the "standard" way to do it. |
| bool GrGpuGL::uploadCompressedTexData(const GrGLTexture::Desc& desc, |
| const void* data, |
| bool isNewTexture, |
| int left, int top, int width, int height) { |
| SkASSERT(NULL != data || isNewTexture); |
| |
| // No support for software flip y, yet... |
| SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); |
| |
| if (-1 == width) { |
| width = desc.fWidth; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(width <= desc.fWidth); |
| } |
| #endif |
| |
| if (-1 == height) { |
| height = desc.fHeight; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(height <= desc.fHeight); |
| } |
| #endif |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| int dataSize = GrCompressedFormatDataSize(desc.fConfig, width, height); |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat = 0; |
| if (!this->configToGLFormats(desc.fConfig, false, &internalFormat, NULL, NULL)) { |
| return false; |
| } |
| |
| bool succeeded = true; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| |
| if (isNewTexture) { |
| GL_ALLOC_CALL(this->glInterface(), |
| CompressedTexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| width, height, |
| 0, // border |
| dataSize, |
| data)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| CompressedTexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| internalFormat, |
| dataSize, |
| data)); |
| } |
| |
| GrGLenum error = check_alloc_error(desc, this->glInterface()); |
| if (error != GR_GL_NO_ERROR) { |
| succeeded = false; |
| } |
| return succeeded; |
| } |
| |
| static bool renderbuffer_storage_msaa(GrGLContext& ctx, |
| int sampleCount, |
| GrGLenum format, |
| int width, int height) { |
| CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kDesktop_ARB_MSFBOType: |
| case GrGLCaps::kDesktop_EXT_MSFBOType: |
| case GrGLCaps::kES_3_0_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); |
| break; |
| } |
| return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));; |
| } |
| |
| bool GrGpuGL::createRenderTargetObjects(int width, int height, |
| GrGLuint texID, |
| GrGLRenderTarget::Desc* desc) { |
| desc->fMSColorRenderbufferID = 0; |
| desc->fRTFBOID = 0; |
| desc->fTexFBOID = 0; |
| desc->fIsWrapped = false; |
| |
| GrGLenum status; |
| |
| GrGLenum msColorFormat = 0; // suppress warning |
| |
| if (desc->fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &desc->fTexFBOID)); |
| if (!desc->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (desc->fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { |
| GL_CALL(GenFramebuffers(1, &desc->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID)); |
| if (!desc->fRTFBOID || |
| !desc->fMSColorRenderbufferID || |
| !this->configToGLFormats(desc->fConfig, |
| // ES2 and ES3 require sized internal formats for rb storage. |
| kGLES_GrGLStandard == this->glStandard(), |
| &msColorFormat, |
| NULL, |
| NULL)) { |
| goto FAILED; |
| } |
| } else { |
| desc->fRTFBOID = desc->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTarget = NULL; |
| if (desc->fRTFBOID != desc->fTexFBOID) { |
| SkASSERT(desc->fSampleCnt > 0); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, |
| desc->fMSColorRenderbufferID)); |
| if (!renderbuffer_storage_msaa(fGLContext, |
| desc->fSampleCnt, |
| msColorFormat, |
| width, height)) { |
| goto FAILED; |
| } |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| desc->fMSColorRenderbufferID)); |
| if (desc->fCheckAllocation || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext.caps()->markConfigAsValidColorAttachment(desc->fConfig); |
| } |
| } |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID)); |
| |
| if (this->glCaps().usesImplicitMSAAResolve() && desc->fSampleCnt > 0) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0, desc->fSampleCnt)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0)); |
| } |
| if (desc->fCheckAllocation || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext.caps()->markConfigAsValidColorAttachment(desc->fConfig); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (desc->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID)); |
| } |
| if (desc->fRTFBOID != desc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID)); |
| } |
| if (desc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID)); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static GrTexture* return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return NULL; |
| } |
| |
| #if 0 && defined(SK_DEBUG) |
| static size_t as_size_t(int x) { |
| return x; |
| } |
| #endif |
| |
| GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc, |
| const void* srcData, |
| size_t rowBytes) { |
| |
| GrGLTexture::Desc glTexDesc; |
| GrGLRenderTarget::Desc glRTDesc; |
| |
| // Attempt to catch un- or wrongly initialized sample counts; |
| SkASSERT(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64); |
| // We fail if the MSAA was requested and is not available. |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { |
| //GrPrintf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| // If the sample count exceeds the max then we clamp it. |
| glTexDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); |
| |
| glTexDesc.fFlags = desc.fFlags; |
| glTexDesc.fWidth = desc.fWidth; |
| glTexDesc.fHeight = desc.fHeight; |
| glTexDesc.fConfig = desc.fConfig; |
| glTexDesc.fIsWrapped = false; |
| |
| glRTDesc.fMSColorRenderbufferID = 0; |
| glRTDesc.fRTFBOID = 0; |
| glRTDesc.fTexFBOID = 0; |
| glRTDesc.fIsWrapped = false; |
| glRTDesc.fConfig = glTexDesc.fConfig; |
| glRTDesc.fCheckAllocation = SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit); |
| |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrTextureFlagBit); |
| |
| glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| glRTDesc.fOrigin = glTexDesc.fOrigin; |
| |
| glRTDesc.fSampleCnt = glTexDesc.fSampleCnt; |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && |
| desc.fSampleCnt) { |
| //GrPrintf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| |
| if (renderTarget) { |
| int maxRTSize = this->caps()->maxRenderTargetSize(); |
| if (glTexDesc.fWidth > maxRTSize || glTexDesc.fHeight > maxRTSize) { |
| return return_null_texture(); |
| } |
| } else { |
| int maxSize = this->caps()->maxTextureSize(); |
| if (glTexDesc.fWidth > maxSize || glTexDesc.fHeight > maxSize) { |
| return return_null_texture(); |
| } |
| } |
| |
| GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); |
| |
| if (!glTexDesc.fTextureID) { |
| return return_null_texture(); |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); |
| |
| if (renderTarget && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_USAGE, |
| GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::TexParams initialTexParams; |
| // we only set a subset here so invalidate first |
| initialTexParams.invalidate(); |
| initialTexParams.fMinFilter = GR_GL_NEAREST; |
| initialTexParams.fMagFilter = GR_GL_NEAREST; |
| initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams.fMagFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams.fMinFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams.fWrapS)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams.fWrapT)); |
| if (!this->uploadTexData(glTexDesc, true, 0, 0, |
| glTexDesc.fWidth, glTexDesc.fHeight, |
| desc.fConfig, srcData, rowBytes)) { |
| GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| if (renderTarget) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| if (!this->createRenderTargetObjects(glTexDesc.fWidth, |
| glTexDesc.fHeight, |
| glTexDesc.fTextureID, |
| &glRTDesc)) { |
| GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); |
| } else { |
| tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); |
| } |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n", |
| glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| GrTexture* GrGpuGL::onCreateCompressedTexture(const GrTextureDesc& desc, |
| const void* srcData) { |
| |
| if(SkToBool(desc.fFlags & kRenderTarget_GrTextureFlagBit)) { |
| return return_null_texture(); |
| } |
| |
| // Make sure that we're not flipping Y. |
| GrSurfaceOrigin texOrigin = resolve_origin(desc.fOrigin, false); |
| if (kBottomLeft_GrSurfaceOrigin == texOrigin) { |
| return return_null_texture(); |
| } |
| |
| GrGLTexture::Desc glTexDesc; |
| |
| glTexDesc.fFlags = desc.fFlags; |
| glTexDesc.fWidth = desc.fWidth; |
| glTexDesc.fHeight = desc.fHeight; |
| glTexDesc.fConfig = desc.fConfig; |
| glTexDesc.fIsWrapped = false; |
| glTexDesc.fOrigin = texOrigin; |
| |
| int maxSize = this->caps()->maxTextureSize(); |
| if (glTexDesc.fWidth > maxSize || glTexDesc.fHeight > maxSize) { |
| return return_null_texture(); |
| } |
| |
| GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); |
| |
| if (!glTexDesc.fTextureID) { |
| return return_null_texture(); |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); |
| |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::TexParams initialTexParams; |
| // we only set a subset here so invalidate first |
| initialTexParams.invalidate(); |
| initialTexParams.fMinFilter = GR_GL_NEAREST; |
| initialTexParams.fMagFilter = GR_GL_NEAREST; |
| initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams.fMagFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams.fMinFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams.fWrapS)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams.fWrapT)); |
| |
| if (!this->uploadCompressedTexData(glTexDesc, srcData)) { |
| GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| GrPrintf("--- new compressed texture [%d] size=(%d %d) config=%d\n", |
| glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| namespace { |
| |
| const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount; |
| |
| void inline get_stencil_rb_sizes(const GrGLInterface* gl, |
| GrGLStencilBuffer::Format* format) { |
| |
| // we shouldn't ever know one size and not the other |
| SkASSERT((kUnknownBitCount == format->fStencilBits) == |
| (kUnknownBitCount == format->fTotalBits)); |
| if (kUnknownBitCount == format->fStencilBits) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_STENCIL_SIZE, |
| (GrGLint*)&format->fStencilBits); |
| if (format->fPacked) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_DEPTH_SIZE, |
| (GrGLint*)&format->fTotalBits); |
| format->fTotalBits += format->fStencilBits; |
| } else { |
| format->fTotalBits = format->fStencilBits; |
| } |
| } |
| } |
| } |
| |
| bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt, |
| int width, int height) { |
| |
| // All internally created RTs are also textures. We don't create |
| // SBs for a client's standalone RT (that is a RT that isn't also a texture). |
| SkASSERT(rt->asTexture()); |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numSamples(); |
| GrGLuint sbID; |
| GL_CALL(GenRenderbuffers(1, &sbID)); |
| if (!sbID) { |
| return false; |
| } |
| |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| for (int i = 0; i < stencilFmtCnt; ++i) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID)); |
| // we start with the last stencil format that succeeded in hopes |
| // that we won't go through this loop more than once after the |
| // first (painful) stencil creation. |
| int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; |
| const GrGLCaps::StencilFormat& sFmt = |
| this->glCaps().stencilFormats()[sIdx]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| bool created; |
| if (samples > 0) { |
| created = renderbuffer_storage_msaa(fGLContext, |
| samples, |
| sFmt.fInternalFormat, |
| width, height); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| width, height)); |
| created = |
| (GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); |
| } |
| if (created) { |
| // After sized formats we attempt an unsized format and take |
| // whatever sizes GL gives us. In that case we query for the size. |
| GrGLStencilBuffer::Format format = sFmt; |
| get_stencil_rb_sizes(this->glInterface(), &format); |
| static const bool kIsWrapped = false; |
| SkAutoTUnref<GrStencilBuffer> sb(SkNEW_ARGS(GrGLStencilBuffer, |
| (this, kIsWrapped, sbID, width, height, |
| samples, format))); |
| if (this->attachStencilBufferToRenderTarget(sb, rt)) { |
| fLastSuccessfulStencilFmtIdx = sIdx; |
| sb->transferToCache(); |
| rt->setStencilBuffer(sb); |
| return true; |
| } |
| sb->abandon(); // otherwise we lose sbID |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbID)); |
| return false; |
| } |
| |
| bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) { |
| GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt; |
| |
| GrGLuint fbo = glrt->renderFBOID(); |
| |
| if (NULL == sb) { |
| if (NULL != rt->getStencilBuffer()) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| #ifdef SK_DEBUG |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| SkASSERT(GR_GL_FRAMEBUFFER_COMPLETE == status); |
| #endif |
| } |
| return true; |
| } else { |
| GrGLStencilBuffer* glsb = static_cast<GrGLStencilBuffer*>(sb); |
| GrGLuint rb = glsb->renderbufferID(); |
| |
| fHWBoundRenderTarget = NULL; |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GrGLenum status; |
| if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| return false; |
| } else { |
| fGLContext.caps()->markColorConfigAndStencilFormatAsVerified( |
| rt->config(), |
| glsb->format()); |
| } |
| } |
| return true; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(size_t size, bool dynamic) { |
| GrGLVertexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| desc.fIsWrapped = false; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); |
| return vertexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setVertexBufferID(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ARRAY_BUFFER, |
| (GrGLsizeiptr) desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyVertexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); |
| return vertexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(size_t size, bool dynamic) { |
| GrGLIndexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| desc.fIsWrapped = false; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); |
| return indexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, |
| (GrGLsizeiptr) desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyIndexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); |
| return indexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| GrPath* GrGpuGL::onCreatePath(const SkPath& inPath, const SkStrokeRec& stroke) { |
| SkASSERT(this->caps()->pathRenderingSupport()); |
| return SkNEW_ARGS(GrGLPath, (this, inPath, stroke)); |
| } |
| |
| void GrGpuGL::flushScissor() { |
| if (fScissorState.fEnabled) { |
| // Only access the RT if scissoring is being enabled. We can call this before performing |
| // a glBitframebuffer for a surface->surface copy, which requires no RT to be bound to the |
| // GrDrawState. |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrGLRenderTarget* rt = |
| static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget()); |
| |
| SkASSERT(NULL != rt); |
| const GrGLIRect& vp = rt->getViewport(); |
| GrGLIRect scissor; |
| scissor.setRelativeTo(vp, |
| fScissorState.fRect.fLeft, |
| fScissorState.fRect.fTop, |
| fScissorState.fRect.width(), |
| fScissorState.fRect.height(), |
| rt->origin()); |
| // if the scissor fully contains the viewport then we fall through and |
| // disable the scissor test. |
| if (!scissor.contains(vp)) { |
| if (fHWScissorSettings.fRect != scissor) { |
| scissor.pushToGLScissor(this->glInterface()); |
| fHWScissorSettings.fRect = scissor; |
| } |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| return; |
| } |
| } |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| return; |
| } |
| } |
| |
| void GrGpuGL::onClear(const SkIRect* rect, GrColor color, bool canIgnoreRect) { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrRenderTarget* rt = drawState.getRenderTarget(); |
| // parent class should never let us get here with no RT |
| SkASSERT(NULL != rt); |
| |
| if (canIgnoreRect && this->glCaps().fullClearIsFree()) { |
| rect = NULL; |
| } |
| |
| SkIRect clippedRect; |
| if (NULL != rect) { |
| // flushScissor expects rect to be clipped to the target. |
| clippedRect = *rect; |
| SkIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height()); |
| if (clippedRect.intersect(rtRect)) { |
| rect = &clippedRect; |
| } else { |
| return; |
| } |
| } |
| |
| this->flushRenderTarget(rect); |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = (NULL != rect); |
| if (fScissorState.fEnabled) { |
| fScissorState.fRect = *rect; |
| } |
| this->flushScissor(); |
| |
| GrGLfloat r, g, b, a; |
| static const GrGLfloat scale255 = 1.f / 255.f; |
| a = GrColorUnpackA(color) * scale255; |
| GrGLfloat scaleRGB = scale255; |
| r = GrColorUnpackR(color) * scaleRGB; |
| g = GrColorUnpackG(color) * scaleRGB; |
| b = GrColorUnpackB(color) * scaleRGB; |
| |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| GL_CALL(ClearColor(r, g, b, a)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| void GrGpuGL::discard(GrRenderTarget* renderTarget) { |
| if (!this->caps()->discardRenderTargetSupport()) { |
| return; |
| } |
| if (NULL == renderTarget) { |
| renderTarget = this->drawState()->getRenderTarget(); |
| if (NULL == renderTarget) { |
| return; |
| } |
| } |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget); |
| if (renderTarget != fHWBoundRenderTarget) { |
| fHWBoundRenderTarget = NULL; |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID())); |
| } |
| switch (this->glCaps().invalidateFBType()) { |
| case GrGLCaps::kNone_FBFetchType: |
| SkFAIL("Should never get here."); |
| break; |
| case GrGLCaps::kInvalidate_InvalidateFBType: |
| if (0 == glRT->renderFBOID()) { |
| // When rendering to the default framebuffer the legal values for attachments |
| // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment |
| // types. |
| static const GrGLenum attachments[] = { GR_GL_COLOR }; |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } else { |
| static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } |
| break; |
| case GrGLCaps::kDiscard_InvalidateFBType: { |
| if (0 == glRT->renderFBOID()) { |
| // When rendering to the default framebuffer the legal values for attachments |
| // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment |
| // types. See glDiscardFramebuffer() spec. |
| static const GrGLenum attachments[] = { GR_GL_COLOR }; |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } else { |
| static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } |
| break; |
| } |
| } |
| renderTarget->flagAsResolved(); |
| } |
| |
| |
| void GrGpuGL::clearStencil() { |
| if (NULL == this->getDrawState().getRenderTarget()) { |
| return; |
| } |
| |
| this->flushRenderTarget(&SkIRect::EmptyIRect()); |
| |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = false; |
| this->flushScissor(); |
| |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| void GrGpuGL::clearStencilClip(const SkIRect& rect, bool insideClip) { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrRenderTarget* rt = drawState.getRenderTarget(); |
| SkASSERT(NULL != rt); |
| |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(NULL != rt->getStencilBuffer()); |
| GrGLint stencilBitCount = rt->getStencilBuffer()->bits(); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrDrawTarget says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideClip) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| this->flushRenderTarget(&SkIRect::EmptyIRect()); |
| |
| GrAutoTRestore<ScissorState> asr(&fScissorState); |
| fScissorState.fEnabled = true; |
| fScissorState.fRect = rect; |
| this->flushScissor(); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| size_t rowBytes) const { |
| // If this rendertarget is aready TopLeft, we don't need to flip. |
| if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { |
| return false; |
| } |
| |
| // if GL can do the flip then we'll never pay for it. |
| if (this->glCaps().packFlipYSupport()) { |
| return false; |
| } |
| |
| // If we have to do memcpy to handle non-trim rowBytes then we |
| // get the flip for free. Otherwise it costs. |
| if (this->glCaps().packRowLengthSupport()) { |
| return true; |
| } |
| // If we have to do memcpys to handle rowBytes then y-flip is free |
| // Note the rowBytes might be tight to the passed in data, but if data |
| // gets clipped in x to the target the rowBytes will no longer be tight. |
| if (left >= 0 && (left + width) < renderTarget->width()) { |
| return 0 == rowBytes || |
| GrBytesPerPixel(config) * width == rowBytes; |
| } else { |
| return false; |
| } |
| } |
| |
| bool GrGpuGL::onReadPixels(GrRenderTarget* target, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| void* buffer, |
| size_t rowBytes) { |
| // We cannot read pixels into a compressed buffer |
| if (GrPixelConfigIsCompressed(config)) { |
| return false; |
| } |
| |
| GrGLenum format = 0; |
| GrGLenum type = 0; |
| bool flipY = kBottomLeft_GrSurfaceOrigin == target->origin(); |
| if (!this->configToGLFormats(config, false, NULL, &format, &type)) { |
| return false; |
| } |
| size_t bpp = GrBytesPerPixel(config); |
| if (!adjust_pixel_ops_params(target->width(), target->height(), bpp, |
| &left, &top, &width, &height, |
| const_cast<const void**>(&buffer), |
| &rowBytes)) { |
| return false; |
| } |
| |
| // resolve the render target if necessary |
| GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target); |
| GrDrawState::AutoRenderTargetRestore artr; |
| switch (tgt->getResolveType()) { |
| case GrGLRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrGLRenderTarget::kAutoResolves_ResolveType: |
| artr.set(this->drawState(), target); |
| this->flushRenderTarget(&SkIRect::EmptyIRect()); |
| break; |
| case GrGLRenderTarget::kCanResolve_ResolveType: |
| this->onResolveRenderTarget(tgt); |
| // we don't track the state of the READ FBO ID. |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, |
| tgt->textureFBOID())); |
| break; |
| default: |
| SkFAIL("Unknown resolve type"); |
| } |
| |
| const GrGLIRect& glvp = tgt->getViewport(); |
| |
| // the read rect is viewport-relative |
| GrGLIRect readRect; |
| readRect.setRelativeTo(glvp, left, top, width, height, target->origin()); |
| |
| size_t tightRowBytes = bpp * width; |
| if (0 == rowBytes) { |
| rowBytes = tightRowBytes; |
| } |
| size_t readDstRowBytes = tightRowBytes; |
| void* readDst = buffer; |
| |
| // determine if GL can read using the passed rowBytes or if we need |
| // a scratch buffer. |
| SkAutoSMalloc<32 * sizeof(GrColor)> scratch; |
| if (rowBytes != tightRowBytes) { |
| if (this->glCaps().packRowLengthSupport()) { |
| SkASSERT(!(rowBytes % sizeof(GrColor))); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, |
| static_cast<GrGLint>(rowBytes / sizeof(GrColor)))); |
| readDstRowBytes = rowBytes; |
| } else { |
| scratch.reset(tightRowBytes * height); |
| readDst = scratch.get(); |
| } |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); |
| } |
| GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, |
| readRect.fWidth, readRect.fHeight, |
| format, type, readDst)); |
| if (readDstRowBytes != tightRowBytes) { |
| SkASSERT(this->glCaps().packRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); |
| flipY = false; |
| } |
| |
| // now reverse the order of the rows, since GL's are bottom-to-top, but our |
| // API presents top-to-bottom. We must preserve the padding contents. Note |
| // that the above readPixels did not overwrite the padding. |
| if (readDst == buffer) { |
| SkASSERT(rowBytes == readDstRowBytes); |
| if (flipY) { |
| scratch.reset(tightRowBytes); |
| void* tmpRow = scratch.get(); |
| // flip y in-place by rows |
| const int halfY = height >> 1; |
| char* top = reinterpret_cast<char*>(buffer); |
| char* bottom = top + (height - 1) * rowBytes; |
| for (int y = 0; y < halfY; y++) { |
| memcpy(tmpRow, top, tightRowBytes); |
| memcpy(top, bottom, tightRowBytes); |
| memcpy(bottom, tmpRow, tightRowBytes); |
| top += rowBytes; |
| bottom -= rowBytes; |
| } |
| } |
| } else { |
| SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); |
| // copy from readDst to buffer while flipping y |
| // const int halfY = height >> 1; |
| const char* src = reinterpret_cast<const char*>(readDst); |
| char* dst = reinterpret_cast<char*>(buffer); |
| if (flipY) { |
| dst += (height-1) * rowBytes; |
| } |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, tightRowBytes); |
| src += readDstRowBytes; |
| if (!flipY) { |
| dst += rowBytes; |
| } else { |
| dst -= rowBytes; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void GrGpuGL::flushRenderTarget(const SkIRect* bound) { |
| |
| GrGLRenderTarget* rt = |
| static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget()); |
| SkASSERT(NULL != rt); |
| |
| if (fHWBoundRenderTarget != rt) { |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID())); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| if (!this->glContext().isChromium()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| } |
| #endif |
| fHWBoundRenderTarget = rt; |
| const GrGLIRect& vp = rt->getViewport(); |
| if (fHWViewport != vp) { |
| vp.pushToGLViewport(this->glInterface()); |
| fHWViewport = vp; |
| } |
| } |
| if (NULL == bound || !bound->isEmpty()) { |
| rt->flagAsNeedingResolve(bound); |
| } |
| |
| GrTexture *texture = rt->asTexture(); |
| if (NULL != texture) { |
| texture->impl()->dirtyMipMaps(true); |
| } |
| } |
| |
| GrGLenum gPrimitiveType2GLMode[] = { |
| GR_GL_TRIANGLES, |
| GR_GL_TRIANGLE_STRIP, |
| GR_GL_TRIANGLE_FAN, |
| GR_GL_POINTS, |
| GR_GL_LINES, |
| GR_GL_LINE_STRIP |
| }; |
| |
| #define SWAP_PER_DRAW 0 |
| |
| #if SWAP_PER_DRAW |
| #if defined(SK_BUILD_FOR_MAC) |
| #include <AGL/agl.h> |
| #elif defined(SK_BUILD_FOR_WIN32) |
| #include <gl/GL.h> |
| void SwapBuf() { |
| DWORD procID = GetCurrentProcessId(); |
| HWND hwnd = GetTopWindow(GetDesktopWindow()); |
| while(hwnd) { |
| DWORD wndProcID = 0; |
| GetWindowThreadProcessId(hwnd, &wndProcID); |
| if(wndProcID == procID) { |
| SwapBuffers(GetDC(hwnd)); |
| } |
| hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); |
| } |
| } |
| #endif |
| #endif |
| |
| void GrGpuGL::onGpuDraw(const DrawInfo& info) { |
| size_t indexOffsetInBytes; |
| this->setupGeometry(info, &indexOffsetInBytes); |
| |
| SkASSERT((size_t)info.primitiveType() < SK_ARRAY_COUNT(gPrimitiveType2GLMode)); |
| |
| if (info.isIndexed()) { |
| GrGLvoid* indices = |
| reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) * info.startIndex()); |
| // info.startVertex() was accounted for by setupGeometry. |
| GL_CALL(DrawElements(gPrimitiveType2GLMode[info.primitiveType()], |
| info.indexCount(), |
| GR_GL_UNSIGNED_SHORT, |
| indices)); |
| } else { |
| // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for |
| // startVertex in the DrawElements case. So we always rely on setupGeometry to have |
| // accounted for startVertex. |
| GL_CALL(DrawArrays(gPrimitiveType2GLMode[info.primitiveType()], 0, info.vertexCount())); |
| } |
| #if SWAP_PER_DRAW |
| glFlush(); |
| #if defined(SK_BUILD_FOR_MAC) |
| aglSwapBuffers(aglGetCurrentContext()); |
| int set_a_break_pt_here = 9; |
| aglSwapBuffers(aglGetCurrentContext()); |
| #elif defined(SK_BUILD_FOR_WIN32) |
| SwapBuf(); |
| int set_a_break_pt_here = 9; |
| SwapBuf(); |
| #endif |
| #endif |
| } |
| |
| static GrGLenum gr_stencil_op_to_gl_path_rendering_fill_mode(GrStencilOp op) { |
| switch (op) { |
| default: |
| SkFAIL("Unexpected path fill."); |
| /* fallthrough */; |
| case kIncClamp_StencilOp: |
| return GR_GL_COUNT_UP; |
| case kInvert_StencilOp: |
| return GR_GL_INVERT; |
| } |
| } |
| |
| void GrGpuGL::onGpuStencilPath(const GrPath* path, SkPath::FillType fill) { |
| SkASSERT(this->caps()->pathRenderingSupport()); |
| |
| GrGLuint id = static_cast<const GrGLPath*>(path)->pathID(); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); |
| |
| flushPathStencilSettings(fill); |
| |
| // Decide how to manipulate the stencil buffer based on the fill rule. |
| SkASSERT(!fHWPathStencilSettings.isTwoSided()); |
| |
| GrGLenum fillMode = |
| gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); |
| GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); |
| GL_CALL(StencilFillPath(id, fillMode, writeMask)); |
| } |
| |
| void GrGpuGL::onGpuDrawPath(const GrPath* path, SkPath::FillType fill) { |
| SkASSERT(this->caps()->pathRenderingSupport()); |
| |
| GrGLuint id = static_cast<const GrGLPath*>(path)->pathID(); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); |
| SkASSERT(!fCurrentProgram->hasVertexShader()); |
| |
| flushPathStencilSettings(fill); |
| const SkStrokeRec& stroke = path->getStroke(); |
| |
| SkPath::FillType nonInvertedFill = SkPath::ConvertToNonInverseFillType(fill); |
| SkASSERT(!fHWPathStencilSettings.isTwoSided()); |
| GrGLenum fillMode = |
| gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); |
| GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); |
| |
| if (stroke.isFillStyle() || SkStrokeRec::kStrokeAndFill_Style == stroke.getStyle()) { |
| GL_CALL(StencilFillPath(id, fillMode, writeMask)); |
| } |
| if (stroke.needToApply()) { |
| GL_CALL(StencilStrokePath(id, 0xffff, writeMask)); |
| } |
| |
| if (nonInvertedFill == fill) { |
| if (stroke.needToApply()) { |
| GL_CALL(CoverStrokePath(id, GR_GL_BOUNDING_BOX)); |
| } else { |
| GL_CALL(CoverFillPath(id, GR_GL_BOUNDING_BOX)); |
| } |
| } else { |
| GrDrawState* drawState = this->drawState(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| SkRect bounds = SkRect::MakeLTRB(0, 0, |
| SkIntToScalar(drawState->getRenderTarget()->width()), |
| SkIntToScalar(drawState->getRenderTarget()->height())); |
| SkMatrix vmi; |
| // mapRect through persp matrix may not be correct |
| if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { |
| vmi.mapRect(&bounds); |
| // theoretically could set bloat = 0, instead leave it because of matrix inversion |
| // precision. |
| SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf; |
| bounds.outset(bloat, bloat); |
| } else { |
| avmr.setIdentity(drawState); |
| } |
| |
| this->drawSimpleRect(bounds, NULL); |
| } |
| } |
| |
| void GrGpuGL::onGpuDrawPaths(int pathCount, const GrPath** paths, |
| const SkMatrix* transforms, |
| SkPath::FillType fill, |
| SkStrokeRec::Style stroke) { |
| SkASSERT(this->caps()->pathRenderingSupport()); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()); |
| SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer()); |
| SkASSERT(!fCurrentProgram->hasVertexShader()); |
| SkASSERT(stroke != SkStrokeRec::kHairline_Style); |
| |
| SkAutoMalloc pathData(pathCount * sizeof(GrGLuint)); |
| SkAutoMalloc transformData(pathCount * sizeof(GrGLfloat) * 6); |
| GrGLfloat* transformValues = |
| reinterpret_cast<GrGLfloat*>(transformData.get()); |
| GrGLuint* pathIDs = reinterpret_cast<GrGLuint*>(pathData.get()); |
| |
| for (int i = 0; i < pathCount; ++i) { |
| SkASSERT(transforms[i].asAffine(NULL)); |
| const SkMatrix& m = transforms[i]; |
| transformValues[i * 6] = m.getScaleX(); |
| transformValues[i * 6 + 1] = m.getSkewY(); |
| transformValues[i * 6 + 2] = m.getSkewX(); |
| transformValues[i * 6 + 3] = m.getScaleY(); |
| transformValues[i * 6 + 4] = m.getTranslateX(); |
| transformValues[i * 6 + 5] = m.getTranslateY(); |
| pathIDs[i] = static_cast<const GrGLPath*>(paths[i])->pathID(); |
| } |
| |
| flushPathStencilSettings(fill); |
| |
| SkPath::FillType nonInvertedFill = |
| SkPath::ConvertToNonInverseFillType(fill); |
| |
| SkASSERT(!fHWPathStencilSettings.isTwoSided()); |
| GrGLenum fillMode = |
| gr_stencil_op_to_gl_path_rendering_fill_mode( |
| fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face)); |
| GrGLint writeMask = |
| fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face); |
| |
| bool doFill = stroke == SkStrokeRec::kFill_Style |
| || stroke == SkStrokeRec::kStrokeAndFill_Style; |
| bool doStroke = stroke == SkStrokeRec::kStroke_Style |
| || stroke == SkStrokeRec::kStrokeAndFill_Style; |
| |
| if (doFill) { |
| GL_CALL(StencilFillPathInstanced(pathCount, GR_GL_UNSIGNED_INT, |
| pathIDs, 0, |
| fillMode, writeMask, |
| GR_GL_AFFINE_2D, transformValues)); |
| } |
| if (doStroke) { |
| GL_CALL(StencilStrokePathInstanced(pathCount, GR_GL_UNSIGNED_INT, |
| pathIDs, 0, |
| 0xffff, writeMask, |
| GR_GL_AFFINE_2D, transformValues)); |
| } |
| |
| if (nonInvertedFill == fill) { |
| if (doStroke) { |
| GL_CALL(CoverStrokePathInstanced( |
| pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, |
| GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES, |
| GR_GL_AFFINE_2D, transformValues)); |
| } else { |
| GL_CALL(CoverFillPathInstanced( |
| pathCount, GR_GL_UNSIGNED_INT, pathIDs, 0, |
| GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES, |
| GR_GL_AFFINE_2D, transformValues)); |
| |
| } |
| } else { |
| GrDrawState* drawState = this->drawState(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| SkRect bounds = SkRect::MakeLTRB(0, 0, |
| SkIntToScalar(drawState->getRenderTarget()->width()), |
| SkIntToScalar(drawState->getRenderTarget()->height())); |
| SkMatrix vmi; |
| // mapRect through persp matrix may not be correct |
| if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { |
| vmi.mapRect(&bounds); |
| // theoretically could set bloat = 0, instead leave it because of matrix inversion |
| // precision. |
| SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf; |
| bounds.outset(bloat, bloat); |
| } else { |
| avmr.setIdentity(drawState); |
| } |
| |
| this->drawSimpleRect(bounds, NULL); |
| } |
| } |
| |
| void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| if (rt->needsResolve()) { |
| // Some extensions automatically resolves the texture when it is read. |
| if (this->glCaps().usesMSAARenderBuffers()) { |
| SkASSERT(rt->textureFBOID() != rt->renderFBOID()); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); |
| GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTarget = NULL; |
| const GrGLIRect& vp = rt->getViewport(); |
| const SkIRect dirtyRect = rt->getResolveRect(); |
| GrGLIRect r; |
| r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, |
| dirtyRect.width(), dirtyRect.height(), target->origin()); |
| |
| GrAutoTRestore<ScissorState> asr; |
| if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| asr.reset(&fScissorState); |
| fScissorState.fEnabled = true; |
| fScissorState.fRect = dirtyRect; |
| this->flushScissor(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) { |
| // this respects the scissor during the blit, so disable it. |
| asr.reset(&fScissorState); |
| fScissorState.fEnabled = false; |
| this->flushScissor(); |
| } |
| int right = r.fLeft + r.fWidth; |
| int top = r.fBottom + r.fHeight; |
| GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, |
| r.fLeft, r.fBottom, right, top, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| rt->flagAsResolved(); |
| } |
| } |
| |
| namespace { |
| |
| GrGLenum gr_to_gl_stencil_func(GrStencilFunc basicFunc) { |
| static const GrGLenum gTable[] = { |
| GR_GL_ALWAYS, // kAlways_StencilFunc |
| GR_GL_NEVER, // kNever_StencilFunc |
| GR_GL_GREATER, // kGreater_StencilFunc |
| GR_GL_GEQUAL, // kGEqual_StencilFunc |
| GR_GL_LESS, // kLess_StencilFunc |
| GR_GL_LEQUAL, // kLEqual_StencilFunc, |
| GR_GL_EQUAL, // kEqual_StencilFunc, |
| GR_GL_NOTEQUAL, // kNotEqual_StencilFunc, |
| }; |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kBasicStencilFuncCount); |
| GR_STATIC_ASSERT(0 == kAlways_StencilFunc); |
| GR_STATIC_ASSERT(1 == kNever_StencilFunc); |
| GR_STATIC_ASSERT(2 == kGreater_StencilFunc); |
| GR_STATIC_ASSERT(3 == kGEqual_StencilFunc); |
| GR_STATIC_ASSERT(4 == kLess_StencilFunc); |
| GR_STATIC_ASSERT(5 == kLEqual_StencilFunc); |
| GR_STATIC_ASSERT(6 == kEqual_StencilFunc); |
| GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc); |
| SkASSERT((unsigned) basicFunc < kBasicStencilFuncCount); |
| |
| return gTable[basicFunc]; |
| } |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[] = { |
| GR_GL_KEEP, // kKeep_StencilOp |
| GR_GL_REPLACE, // kReplace_StencilOp |
| GR_GL_INCR_WRAP, // kIncWrap_StencilOp |
| GR_GL_INCR, // kIncClamp_StencilOp |
| GR_GL_DECR_WRAP, // kDecWrap_StencilOp |
| GR_GL_DECR, // kDecClamp_StencilOp |
| GR_GL_ZERO, // kZero_StencilOp |
| GR_GL_INVERT, // kInvert_StencilOp |
| }; |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount); |
| GR_STATIC_ASSERT(0 == kKeep_StencilOp); |
| GR_STATIC_ASSERT(1 == kReplace_StencilOp); |
| GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); |
| GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); |
| GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); |
| GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); |
| GR_STATIC_ASSERT(6 == kZero_StencilOp); |
| GR_STATIC_ASSERT(7 == kInvert_StencilOp); |
| SkASSERT((unsigned) op < kStencilOpCount); |
| return gTable[op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings& settings, |
| GrGLenum glFace, |
| GrStencilSettings::Face grFace) { |
| GrGLenum glFunc = gr_to_gl_stencil_func(settings.func(grFace)); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); |
| |
| GrGLint ref = settings.funcRef(grFace); |
| GrGLint mask = settings.funcMask(grFace); |
| GrGLint writeMask = settings.writeMask(grFace); |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, glPassOp, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, glPassOp, glPassOp)); |
| } |
| } |
| } |
| |
| void GrGpuGL::flushStencil(DrawType type) { |
| if (kStencilPath_DrawType != type && fHWStencilSettings != fStencilSettings) { |
| if (fStencilSettings.isDisabled()) { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| } |
| if (!fStencilSettings.isDisabled()) { |
| if (this->caps()->twoSidedStencilSupport()) { |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_FRONT, |
| GrStencilSettings::kFront_Face); |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_BACK, |
| GrStencilSettings::kBack_Face); |
| } else { |
| set_gl_stencil(this->glInterface(), |
| fStencilSettings, |
| GR_GL_FRONT_AND_BACK, |
| GrStencilSettings::kFront_Face); |
| } |
| } |
| fHWStencilSettings = fStencilSettings; |
| } |
| } |
| |
| void GrGpuGL::flushAAState(DrawType type) { |
| // At least some ATI linux drivers will render GL_LINES incorrectly when MSAA state is enabled but |
| // the target is not multisampled. Single pixel wide lines are rendered thicker than 1 pixel wide. |
| #if 0 |
| // Replace RT_HAS_MSAA with this definition once this driver bug is no longer a relevant concern |
| #define RT_HAS_MSAA rt->isMultisampled() |
| #else |
| #define RT_HAS_MSAA (rt->isMultisampled() || kDrawLines_DrawType == type) |
| #endif |
| |
| const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); |
| if (kGL_GrGLStandard == this->glStandard()) { |
| // ES doesn't support toggling GL_MULTISAMPLE and doesn't have |
| // smooth lines. |
| // we prefer smooth lines over multisampled lines |
| bool smoothLines = false; |
| |
| if (kDrawLines_DrawType == type) { |
| smoothLines = this->willUseHWAALines(); |
| if (smoothLines) { |
| if (kYes_TriState != fHWAAState.fSmoothLineEnabled) { |
| GL_CALL(Enable(GR_GL_LINE_SMOOTH)); |
| fHWAAState.fSmoothLineEnabled = kYes_TriState; |
| // must disable msaa to use line smoothing |
| if (RT_HAS_MSAA && |
| kNo_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } else { |
| if (kNo_TriState != fHWAAState.fSmoothLineEnabled) { |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| fHWAAState.fSmoothLineEnabled = kNo_TriState; |
| } |
| } |
| } |
| if (!smoothLines && RT_HAS_MSAA) { |
| // FIXME: GL_NV_pr doesn't seem to like MSAA disabled. The paths |
| // convex hulls of each segment appear to get filled. |
| bool enableMSAA = kStencilPath_DrawType == type || |
| this->getDrawState().isHWAntialiasState(); |
| if (enableMSAA) { |
| if (kYes_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWAAState.fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fHWAAState.fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| } |
| |
| void GrGpuGL::flushPathStencilSettings(SkPath::FillType fill) { |
| GrStencilSettings pathStencilSettings; |
| this->getPathStencilSettingsForFillType(fill, &pathStencilSettings); |
| if (fHWPathStencilSettings != pathStencilSettings) { |
| // Just the func, ref, and mask is set here. The op and write mask are params to the call |
| // that draws the path to the SB (glStencilFillPath) |
| GrGLenum func = |
| gr_to_gl_stencil_func(pathStencilSettings.func(GrStencilSettings::kFront_Face)); |
| GL_CALL(PathStencilFunc(func, |
| pathStencilSettings.funcRef(GrStencilSettings::kFront_Face), |
| pathStencilSettings.funcMask(GrStencilSettings::kFront_Face))); |
| |
| fHWPathStencilSettings = pathStencilSettings; |
| } |
| } |
| |
| void GrGpuGL::flushBlend(bool isLines, |
| GrBlendCoeff srcCoeff, |
| GrBlendCoeff dstCoeff) { |
| if (isLines && this->willUseHWAALines()) { |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| if (kSA_GrBlendCoeff != fHWBlendState.fSrcCoeff || |
| kISA_GrBlendCoeff != fHWBlendState.fDstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_GrBlendCoeff], |
| gXfermodeCoeff2Blend[kISA_GrBlendCoeff])); |
| fHWBlendState.fSrcCoeff = kSA_GrBlendCoeff; |
| fHWBlendState.fDstCoeff = kISA_GrBlendCoeff; |
| } |
| } else { |
| // any optimization to disable blending should |
| // have already been applied and tweaked the coeffs |
| // to (1, 0). |
| bool blendOff = kOne_GrBlendCoeff == srcCoeff && |
| kZero_GrBlendCoeff == dstCoeff; |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| if (fHWBlendState.fSrcCoeff != srcCoeff || |
| fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| GrColor blendConst = this->getDrawState().getBlendConstant(); |
| if ((BlendCoeffReferencesConstant(srcCoeff) || |
| BlendCoeffReferencesConstant(dstCoeff)) && |
| (!fHWBlendState.fConstColorValid || |
| fHWBlendState.fConstColor != blendConst)) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(blendConst, c); |
| GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| } |
| } |
| |
| static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { |
| static const GrGLenum gWrapModes[] = { |
| GR_GL_CLAMP_TO_EDGE, |
| GR_GL_REPEAT, |
| GR_GL_MIRRORED_REPEAT |
| }; |
| GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); |
| GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); |
| GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); |
| GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); |
| return gWrapModes[tm]; |
| } |
| |
| void GrGpuGL::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { |
| SkASSERT(NULL != texture); |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. So keep this |
| // out of the "last != next" check. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (NULL != texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| if (fHWBoundTextures[unitIdx] != texture) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); |
| fHWBoundTextures[unitIdx] = texture; |
| } |
| |
| ResetTimestamp timestamp; |
| const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); |
| bool setAll = timestamp < this->getResetTimestamp(); |
| GrGLTexture::TexParams newTexParams; |
| |
| static GrGLenum glMinFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR_MIPMAP_LINEAR |
| }; |
| static GrGLenum glMagFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR |
| }; |
| GrTextureParams::FilterMode filterMode = params.filterMode(); |
| if (!this->caps()->mipMapSupport() && GrTextureParams::kMipMap_FilterMode == filterMode) { |
| filterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| newTexParams.fMinFilter = glMinFilterModes[filterMode]; |
| newTexParams.fMagFilter = glMagFilterModes[filterMode]; |
| |
| if (GrTextureParams::kMipMap_FilterMode == filterMode && |
| texture->mipMapsAreDirty() && !GrPixelConfigIsCompressed(texture->config())) { |
| GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D)); |
| texture->dirtyMipMaps(false); |
| } |
| |
| newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); |
| newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); |
| memcpy(newTexParams.fSwizzleRGBA, |
| GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), |
| sizeof(newTexParams.fSwizzleRGBA)); |
| if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| newTexParams.fMagFilter)); |
| } |
| if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| newTexParams.fMinFilter)); |
| } |
| if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| newTexParams.fWrapS)); |
| } |
| if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| newTexParams.fWrapT)); |
| } |
| if (this->glCaps().textureSwizzleSupport() && |
| (setAll || memcmp(newTexParams.fSwizzleRGBA, |
| oldTexParams.fSwizzleRGBA, |
| sizeof(newTexParams.fSwizzleRGBA)))) { |
| this->setTextureUnit(unitIdx); |
| if (this->glStandard() == kGLES_GrGLStandard) { |
| // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. |
| const GrGLenum* swizzle = newTexParams.fSwizzleRGBA; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); |
| } else { |
| GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint)); |
| const GrGLint* swizzle = reinterpret_cast<const GrGLint*>(newTexParams.fSwizzleRGBA); |
| GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle)); |
| } |
| } |
| texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); |
| } |
| |
| void GrGpuGL::setProjectionMatrix(const SkMatrix& matrix, |
| const SkISize& renderTargetSize, |
| GrSurfaceOrigin renderTargetOrigin) { |
| |
| SkASSERT(this->glCaps().pathRenderingSupport()); |
| |
| if (renderTargetOrigin == fHWProjectionMatrixState.fRenderTargetOrigin && |
| renderTargetSize == fHWProjectionMatrixState.fRenderTargetSize && |
| matrix.cheapEqualTo(fHWProjectionMatrixState.fViewMatrix)) { |
| return; |
| } |
| |
| fHWProjectionMatrixState.fViewMatrix = matrix; |
| fHWProjectionMatrixState.fRenderTargetSize = renderTargetSize; |
| fHWProjectionMatrixState.fRenderTargetOrigin = renderTargetOrigin; |
| |
| GrGLfloat glMatrix[4 * 4]; |
| fHWProjectionMatrixState.getRTAdjustedGLMatrix<4>(glMatrix); |
| GL_CALL(MatrixLoadf(GR_GL_PROJECTION, glMatrix)); |
| } |
| |
| void GrGpuGL::enablePathTexGen(int unitIdx, |
| PathTexGenComponents components, |
| const GrGLfloat* coefficients) { |
| SkASSERT(this->glCaps().pathRenderingSupport()); |
| SkASSERT(components >= kS_PathTexGenComponents && |
| components <= kSTR_PathTexGenComponents); |
| SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= unitIdx); |
| |
| if (GR_GL_OBJECT_LINEAR == fHWPathTexGenSettings[unitIdx].fMode && |
| components == fHWPathTexGenSettings[unitIdx].fNumComponents && |
| !memcmp(coefficients, fHWPathTexGenSettings[unitIdx].fCoefficients, |
| 3 * components * sizeof(GrGLfloat))) { |
| return; |
| } |
| |
| this->setTextureUnit(unitIdx); |
| |
| fHWPathTexGenSettings[unitIdx].fNumComponents = components; |
| GL_CALL(PathTexGen(GR_GL_TEXTURE0 + unitIdx, |
| GR_GL_OBJECT_LINEAR, |
| components, |
| coefficients)); |
| |
| memcpy(fHWPathTexGenSettings[unitIdx].fCoefficients, coefficients, |
| 3 * components * sizeof(GrGLfloat)); |
| } |
| |
| void GrGpuGL::enablePathTexGen(int unitIdx, PathTexGenComponents components, |
| const SkMatrix& matrix) { |
| GrGLfloat coefficients[3 * 3]; |
| SkASSERT(this->glCaps().pathRenderingSupport()); |
| SkASSERT(components >= kS_PathTexGenComponents && |
| components <= kSTR_PathTexGenComponents); |
| |
| coefficients[0] = SkScalarToFloat(matrix[SkMatrix::kMScaleX]); |
| coefficients[1] = SkScalarToFloat(matrix[SkMatrix::kMSkewX]); |
| coefficients[2] = SkScalarToFloat(matrix[SkMatrix::kMTransX]); |
| |
| if (components >= kST_PathTexGenComponents) { |
| coefficients[3] = SkScalarToFloat(matrix[SkMatrix::kMSkewY]); |
| coefficients[4] = SkScalarToFloat(matrix[SkMatrix::kMScaleY]); |
| coefficients[5] = SkScalarToFloat(matrix[SkMatrix::kMTransY]); |
| } |
| |
| if (components >= kSTR_PathTexGenComponents) { |
| coefficients[6] = SkScalarToFloat(matrix[SkMatrix::kMPersp0]); |
| coefficients[7] = SkScalarToFloat(matrix[SkMatrix::kMPersp1]); |
| coefficients[8] = SkScalarToFloat(matrix[SkMatrix::kMPersp2]); |
| } |
| |
| enablePathTexGen(unitIdx, components, coefficients); |
| } |
| |
| void GrGpuGL::flushPathTexGenSettings(int numUsedTexCoordSets) { |
| SkASSERT(this->glCaps().pathRenderingSupport()); |
| SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= numUsedTexCoordSets); |
| |
| // Only write the inactive path tex gens, since active path tex gens were |
| // written when they were enabled. |
| |
| SkDEBUGCODE( |
| for (int i = 0; i < numUsedTexCoordSets; i++) { |
| SkASSERT(0 != fHWPathTexGenSettings[i].fNumComponents); |
| } |
| ); |
| |
| for (int i = numUsedTexCoordSets; i < fHWActivePathTexGenSets; i++) { |
| SkASSERT(0 != fHWPathTexGenSettings[i].fNumComponents); |
| |
| this->setTextureUnit(i); |
| GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL)); |
| fHWPathTexGenSettings[i].fNumComponents = 0; |
| } |
| |
| fHWActivePathTexGenSets = numUsedTexCoordSets; |
| } |
| |
| void GrGpuGL::flushMiscFixedFunctionState() { |
| |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| if (drawState.isDitherState()) { |
| if (kYes_TriState != fHWDitherEnabled) { |
| GL_CALL(Enable(GR_GL_DITHER)); |
| fHWDitherEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWDitherEnabled) { |
| GL_CALL(Disable(GR_GL_DITHER)); |
| fHWDitherEnabled = kNo_TriState; |
| } |
| } |
| |
| if (drawState.isColorWriteDisabled()) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| |
| if (fHWDrawFace != drawState.getDrawFace()) { |
| switch (this->getDrawState().getDrawFace()) { |
| case GrDrawState::kCCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_BACK)); |
| break; |
| case GrDrawState::kCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_FRONT)); |
| break; |
| case GrDrawState::kBoth_DrawFace: |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| break; |
| default: |
| SkFAIL("Unknown draw face."); |
| } |
| fHWDrawFace = drawState.getDrawFace(); |
| } |
| } |
| |
| void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) { |
| SkASSERT(NULL != renderTarget); |
| if (fHWBoundRenderTarget == renderTarget) { |
| fHWBoundRenderTarget = NULL; |
| } |
| } |
| |
| void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) { |
| for (int s = 0; s < fHWBoundTextures.count(); ++s) { |
| if (fHWBoundTextures[s] == texture) { |
| // deleting bound texture does implied bind to 0 |
| fHWBoundTextures[s] = NULL; |
| } |
| } |
| } |
| |
| |
| GrGLuint GrGpuGL::createGLPathObject() { |
| if (NULL == fPathNameAllocator.get()) { |
| static const int range = 65536; |
| GrGLuint firstName; |
| GL_CALL_RET(firstName, GenPaths(range)); |
| fPathNameAllocator.reset(SkNEW_ARGS(GrGLNameAllocator, (firstName, firstName + range))); |
| } |
| |
| GrGLuint name = fPathNameAllocator->allocateName(); |
| if (0 == name) { |
| // Our reserved path names are all in use. Fall back on GenPaths. |
| GL_CALL_RET(name, GenPaths(1)); |
| } |
| |
| return name; |
| } |
| |
| void GrGpuGL::deleteGLPathObject(GrGLuint name) { |
| if (NULL == fPathNameAllocator.get() || |
| name < fPathNameAllocator->firstName() || |
| name >= fPathNameAllocator->endName()) { |
| // If we aren't inside fPathNameAllocator's range then this name was |
| // generated by the GenPaths fallback (or else the name is unallocated). |
| GL_CALL(DeletePaths(name, 1)); |
| return; |
| } |
| |
| // Make the path empty to save memory, but don't free the name in the driver. |
| GL_CALL(PathCommands(name, 0, NULL, 0, GR_GL_FLOAT, NULL)); |
| fPathNameAllocator->free(name); |
| } |
| |
| bool GrGpuGL::configToGLFormats(GrPixelConfig config, |
| bool getSizedInternalFormat, |
| GrGLenum* internalFormat, |
| GrGLenum* externalFormat, |
| GrGLenum* externalType) { |
| GrGLenum dontCare; |
| if (NULL == internalFormat) { |
| internalFormat = &dontCare; |
| } |
| if (NULL == externalFormat) { |
| externalFormat = &dontCare; |
| } |
| if (NULL == externalType) { |
| externalType = &dontCare; |
| } |
| |
| if(!this->glCaps().isConfigTexturable(config)) { |
| return false; |
| } |
| |
| switch (config) { |
| case kRGBA_8888_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kBGRA_8888_GrPixelConfig: |
| if (this->glCaps().bgraIsInternalFormat()) { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_BGRA8; |
| } else { |
| *internalFormat = GR_GL_BGRA; |
| } |
| } else { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| } |
| *externalFormat = GR_GL_BGRA; |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kRGB_565_GrPixelConfig: |
| *internalFormat = GR_GL_RGB; |
| *externalFormat = GR_GL_RGB; |
| if (getSizedInternalFormat) { |
| if (this->glStandard() == kGL_GrGLStandard) { |
| return false; |
| } else { |
| *internalFormat = GR_GL_RGB565; |
| } |
| } else { |
| *internalFormat = GR_GL_RGB; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; |
| break; |
| case kRGBA_4444_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA4; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; |
| break; |
| case kIndex_8_GrPixelConfig: |
| // glCompressedTexImage doesn't take external params |
| *externalFormat = GR_GL_PALETTE8_RGBA8; |
| // no sized/unsized internal format distinction here |
| *internalFormat = GR_GL_PALETTE8_RGBA8; |
| // unused with CompressedTexImage |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kAlpha_8_GrPixelConfig: |
| if (this->glCaps().textureRedSupport()) { |
| *internalFormat = GR_GL_RED; |
| *externalFormat = GR_GL_RED; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_R8; |
| } else { |
| *internalFormat = GR_GL_RED; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| *externalFormat = GR_GL_ALPHA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_ALPHA8; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } |
| break; |
| case kETC1_GrPixelConfig: |
| *internalFormat = GR_GL_COMPRESSED_RGB8_ETC1; |
| break; |
| case kLATC_GrPixelConfig: |
| switch(this->glCaps().latcAlias()) { |
| case GrGLCaps::kLATC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_LUMINANCE_LATC1; |
| break; |
| case GrGLCaps::kRGTC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_RED_RGTC1; |
| break; |
| case GrGLCaps::k3DC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_3DC_X; |
| break; |
| } |
| break; |
| case kR11_EAC_GrPixelConfig: |
| *internalFormat = GR_GL_COMPRESSED_R11; |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| void GrGpuGL::setTextureUnit(int unit) { |
| SkASSERT(unit >= 0 && unit < fHWBoundTextures.count()); |
| if (unit != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGpuGL::setScratchTextureUnit() { |
| // Bind the last texture unit since it is the least likely to be used by GrGLProgram. |
| int lastUnitIdx = fHWBoundTextures.count() - 1; |
| if (lastUnitIdx != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); |
| fHWActiveTextureUnitIdx = lastUnitIdx; |
| } |
| // clear out the this field so that if a program does use this unit it will rebind the correct |
| // texture. |
| fHWBoundTextures[lastUnitIdx] = NULL; |
| } |
| |
| namespace { |
| // Determines whether glBlitFramebuffer could be used between src and dst. |
| inline bool can_blit_framebuffer(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGpuGL* gpu, |
| bool* wouldNeedTempFBO = NULL) { |
| if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && |
| gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && |
| gpu->glCaps().usesMSAARenderBuffers()) { |
| // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match |
| // or the rects are not the same (not just the same size but have the same edges). |
| if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && |
| (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { |
| return false; |
| } |
| if (NULL != wouldNeedTempFBO) { |
| *wouldNeedTempFBO = NULL == dst->asRenderTarget() || NULL == src->asRenderTarget(); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| inline bool can_copy_texsubimage(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGpuGL* gpu, |
| bool* wouldNeedTempFBO = NULL) { |
| // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage |
| // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps |
| // many drivers would allow it to work, but ANGLE does not. |
| if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && |
| (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { |
| return false; |
| } |
| const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); |
| // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) |
| // then we don't want to copy to the texture but to the MSAA buffer. |
| if (NULL != dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { |
| return false; |
| } |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| // If the src is multisampled (and uses an extension where there is a separate MSAA |
| // renderbuffer) then it is an invalid operation to call CopyTexSubImage |
| if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| return false; |
| } |
| if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && |
| NULL != dst->asTexture() && |
| dst->origin() == src->origin() && |
| kIndex_8_GrPixelConfig != src->config() && |
| !GrPixelConfigIsCompressed(src->config())) { |
| if (NULL != wouldNeedTempFBO) { |
| *wouldNeedTempFBO = NULL == src->asRenderTarget(); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is |
| // relative to is output. |
| inline GrGLuint bind_surface_as_fbo(const GrGLInterface* gl, |
| GrSurface* surface, |
| GrGLenum fboTarget, |
| GrGLIRect* viewport) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| GrGLuint tempFBOID; |
| if (NULL == rt) { |
| SkASSERT(NULL != surface->asTexture()); |
| GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID(); |
| GR_GL_CALL(gl, GenFramebuffers(1, &tempFBOID)); |
| GR_GL_CALL(gl, BindFramebuffer(fboTarget, tempFBOID)); |
| GR_GL_CALL(gl, FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, |
| 0)); |
| viewport->fLeft = 0; |
| viewport->fBottom = 0; |
| viewport->fWidth = surface->width(); |
| viewport->fHeight = surface->height(); |
| } else { |
| tempFBOID = 0; |
| GR_GL_CALL(gl, BindFramebuffer(fboTarget, rt->renderFBOID())); |
| *viewport = rt->getViewport(); |
| } |
| return tempFBOID; |
| } |
| |
| } |
| |
| void GrGpuGL::initCopySurfaceDstDesc(const GrSurface* src, GrTextureDesc* desc) { |
| // Check for format issues with glCopyTexSubImage2D |
| if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && |
| kBGRA_8888_GrPixelConfig == src->config()) { |
| // glCopyTexSubImage2D doesn't work with this config. We'll want to make it a render target |
| // in order to call glBlitFramebuffer or to copy to it by rendering. |
| INHERITED::initCopySurfaceDstDesc(src, desc); |
| return; |
| } else if (NULL == src->asRenderTarget()) { |
| // We don't want to have to create an FBO just to use glCopyTexSubImage2D. Let the base |
| // class handle it by rendering. |
| INHERITED::initCopySurfaceDstDesc(src, desc); |
| return; |
| } |
| |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. |
| INHERITED::initCopySurfaceDstDesc(src, desc); |
| } else { |
| desc->fConfig = src->config(); |
| desc->fOrigin = src->origin(); |
| desc->fFlags = kNone_GrTextureFlags; |
| } |
| } |
| |
| bool GrGpuGL::onCopySurface(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| bool inheritedCouldCopy = INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint); |
| bool copied = false; |
| bool wouldNeedTempFBO = false; |
| if (can_copy_texsubimage(dst, src, this, &wouldNeedTempFBO) && |
| (!wouldNeedTempFBO || !inheritedCouldCopy)) { |
| GrGLuint srcFBO; |
| GrGLIRect srcVP; |
| srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_FRAMEBUFFER, &srcVP); |
| GrGLTexture* dstTex = static_cast<GrGLTexture*>(dst->asTexture()); |
| SkASSERT(NULL != dstTex); |
| // We modified the bound FBO |
| fHWBoundRenderTarget = NULL; |
| GrGLIRect srcGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID())); |
| GrGLint dstY; |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); |
| } else { |
| dstY = dstPoint.fY; |
| } |
| GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0, |
| dstPoint.fX, dstY, |
| srcGLRect.fLeft, srcGLRect.fBottom, |
| srcGLRect.fWidth, srcGLRect.fHeight)); |
| copied = true; |
| if (srcFBO) { |
| GL_CALL(DeleteFramebuffers(1, &srcFBO)); |
| } |
| } else if (can_blit_framebuffer(dst, src, this, &wouldNeedTempFBO) && |
| (!wouldNeedTempFBO || !inheritedCouldCopy)) { |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| bool selfOverlap = false; |
| if (dst->isSameAs(src)) { |
| selfOverlap = SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect); |
| } |
| |
| if (!selfOverlap) { |
| GrGLuint dstFBO; |
| GrGLuint srcFBO; |
| GrGLIRect dstVP; |
| GrGLIRect srcVP; |
| dstFBO = bind_surface_as_fbo(this->glInterface(), dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP); |
| srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_READ_FRAMEBUFFER, &srcVP); |
| // We modified the bound FBO |
| fHWBoundRenderTarget = NULL; |
| GrGLIRect srcGLRect; |
| GrGLIRect dstGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| dstGLRect.setRelativeTo(dstVP, |
| dstRect.fLeft, |
| dstRect.fTop, |
| dstRect.width(), |
| dstRect.height(), |
| dst->origin()); |
| |
| GrAutoTRestore<ScissorState> asr; |
| if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) { |
| // The EXT version applies the scissor during the blit, so disable it. |
| asr.reset(&fScissorState); |
| fScissorState.fEnabled = false; |
| this->flushScissor(); |
| } |
| GrGLint srcY0; |
| GrGLint srcY1; |
| // Does the blit need to y-mirror or not? |
| if (src->origin() == dst->origin()) { |
| srcY0 = srcGLRect.fBottom; |
| srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; |
| } else { |
| srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; |
| srcY1 = srcGLRect.fBottom; |
| } |
| GL_CALL(BlitFramebuffer(srcGLRect.fLeft, |
| srcY0, |
| srcGLRect.fLeft + srcGLRect.fWidth, |
| srcY1, |
| dstGLRect.fLeft, |
| dstGLRect.fBottom, |
| dstGLRect.fLeft + dstGLRect.fWidth, |
| dstGLRect.fBottom + dstGLRect.fHeight, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| if (dstFBO) { |
| GL_CALL(DeleteFramebuffers(1, &dstFBO)); |
| } |
| if (srcFBO) { |
| GL_CALL(DeleteFramebuffers(1, &srcFBO)); |
| } |
| copied = true; |
| } |
| } |
| if (!copied && inheritedCouldCopy) { |
| copied = INHERITED::onCopySurface(dst, src, srcRect, dstPoint); |
| SkASSERT(copied); |
| } |
| return copied; |
| } |
| |
| bool GrGpuGL::onCanCopySurface(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| // This mirrors the logic in onCopySurface. |
| if (can_copy_texsubimage(dst, src, this)) { |
| return true; |
| } |
| if (can_blit_framebuffer(dst, src, this)) { |
| if (dst->isSameAs(src)) { |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| if(!SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { |
| return true; |
| } |
| } else { |
| return true; |
| } |
| } |
| return INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint); |
| } |
| |
| void GrGpuGL::didAddGpuTraceMarker() { |
| if (this->caps()->gpuTracingSupport()) { |
| const GrTraceMarkerSet& markerArray = this->getActiveTraceMarkers(); |
| SkString markerString = markerArray.toStringLast(); |
| GL_CALL(PushGroupMarker(0, markerString.c_str())); |
| } |
| } |
| |
| void GrGpuGL::didRemoveGpuTraceMarker() { |
| if (this->caps()->gpuTracingSupport()) { |
| GL_CALL(PopGroupMarker()); |
| } |
| } |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGLAttribArrayState* GrGpuGL::HWGeometryState::bindArrayAndBuffersToDraw( |
| GrGpuGL* gpu, |
| const GrGLVertexBuffer* vbuffer, |
| const GrGLIndexBuffer* ibuffer) { |
| SkASSERT(NULL != vbuffer); |
| GrGLAttribArrayState* attribState; |
| |
| // We use a vertex array if we're on a core profile and the verts are in a VBO. |
| if (gpu->glCaps().isCoreProfile() && !vbuffer->isCPUBacked()) { |
| if (NULL == fVBOVertexArray || fVBOVertexArray->wasDestroyed()) { |
| SkSafeUnref(fVBOVertexArray); |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fVBOVertexArray = SkNEW_ARGS(GrGLVertexArray, (gpu, arrayID, attrCount)); |
| } |
| attribState = fVBOVertexArray->bindWithIndexBuffer(ibuffer); |
| } else { |
| if (NULL != ibuffer) { |
| this->setIndexBufferIDOnDefaultVertexArray(gpu, ibuffer->bufferID()); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |