| #include "CurveIntersection.h" |
| #include "Intersections.h" |
| #include "LineIntersection.h" |
| #include <algorithm> // used for std::swap |
| |
| |
| /* |
| Determine the intersection point of two line segments |
| Return FALSE if the lines don't intersect |
| from: http://paulbourke.net/geometry/lineline2d/ |
| */ |
| |
| int intersect(const _Line& a, const _Line& b, double aRange[2], double bRange[2]) { |
| double axLen = a[1].x - a[0].x; |
| double ayLen = a[1].y - a[0].y; |
| double bxLen = b[1].x - b[0].x; |
| double byLen = b[1].y - b[0].y; |
| /* Slopes match when denom goes to zero: |
| axLen / ayLen == bxLen / byLen |
| (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
| byLen * axLen == ayLen * bxLen |
| byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
| */ |
| double denom = byLen * axLen - ayLen * bxLen; |
| if (approximately_zero_squared(denom)) { |
| /* See if the axis intercepts match: |
| ay - ax * ayLen / axLen == by - bx * ayLen / axLen |
| axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) |
| axLen * ay - ax * ayLen == axLen * by - bx * ayLen |
| */ |
| if (approximately_equal_squared(axLen * a[0].y - ayLen * a[0].x, |
| axLen * b[0].y - ayLen * b[0].x)) { |
| const double* aPtr; |
| const double* bPtr; |
| if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) { |
| aPtr = &a[0].x; |
| bPtr = &b[0].x; |
| } else { |
| aPtr = &a[0].y; |
| bPtr = &b[0].y; |
| } |
| #if 0 // sorting edges fails to preserve original direction |
| double aMin = aPtr[0]; |
| double aMax = aPtr[2]; |
| double bMin = bPtr[0]; |
| double bMax = bPtr[2]; |
| if (aMin > aMax) { |
| std::swap(aMin, aMax); |
| } |
| if (bMin > bMax) { |
| std::swap(bMin, bMax); |
| } |
| if (aMax < bMin || bMax < aMin) { |
| return 0; |
| } |
| if (aRange) { |
| aRange[0] = bMin <= aMin ? 0 : (bMin - aMin) / (aMax - aMin); |
| aRange[1] = bMax >= aMax ? 1 : (bMax - aMin) / (aMax - aMin); |
| } |
| int bIn = (aPtr[0] - aPtr[2]) * (bPtr[0] - bPtr[2]) < 0; |
| if (bRange) { |
| bRange[bIn] = aMin <= bMin ? 0 : (aMin - bMin) / (bMax - bMin); |
| bRange[!bIn] = aMax >= bMax ? 1 : (aMax - bMin) / (bMax - bMin); |
| } |
| return 1 + ((aRange[0] != aRange[1]) || (bRange[0] != bRange[1])); |
| #else |
| assert(aRange); |
| assert(bRange); |
| double a0 = aPtr[0]; |
| double a1 = aPtr[2]; |
| double b0 = bPtr[0]; |
| double b1 = bPtr[2]; |
| double at0 = (a0 - b0) / (a0 - a1); |
| double at1 = (a0 - b1) / (a0 - a1); |
| if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
| return 0; |
| } |
| aRange[0] = std::max(std::min(at0, 1.0), 0.0); |
| aRange[1] = std::max(std::min(at1, 1.0), 0.0); |
| int bIn = (a0 - a1) * (b0 - b1) < 0; |
| bRange[bIn] = std::max(std::min((b0 - a0) / (b0 - b1), 1.0), 0.0); |
| bRange[!bIn] = std::max(std::min((b0 - a1) / (b0 - b1), 1.0), 0.0); |
| bool second = fabs(aRange[0] - aRange[1]) > FLT_EPSILON; |
| assert((fabs(bRange[0] - bRange[1]) <= FLT_EPSILON) ^ second); |
| return 1 + second; |
| #endif |
| } |
| } |
| double ab0y = a[0].y - b[0].y; |
| double ab0x = a[0].x - b[0].x; |
| double numerA = ab0y * bxLen - byLen * ab0x; |
| if (numerA < 0 && denom > numerA || numerA > 0 && denom < numerA) { |
| return 0; |
| } |
| double numerB = ab0y * axLen - ayLen * ab0x; |
| if (numerB < 0 && denom > numerB || numerB > 0 && denom < numerB) { |
| return 0; |
| } |
| /* Is the intersection along the the segments */ |
| if (aRange) { |
| aRange[0] = numerA / denom; |
| } |
| if (bRange) { |
| bRange[0] = numerB / denom; |
| } |
| return 1; |
| } |
| |
| int horizontalIntersect(const _Line& line, double y, double tRange[2]) { |
| double min = line[0].y; |
| double max = line[1].y; |
| if (min > max) { |
| std::swap(min, max); |
| } |
| if (min > y || max < y) { |
| return 0; |
| } |
| if (approximately_equal(min, max)) { |
| tRange[0] = 0; |
| tRange[1] = 1; |
| return 2; |
| } |
| tRange[0] = (y - line[0].y) / (line[1].y - line[0].y); |
| return 1; |
| } |
| |
| // OPTIMIZATION Given: dy = line[1].y - line[0].y |
| // and: xIntercept / (y - line[0].y) == (line[1].x - line[0].x) / dy |
| // then: xIntercept * dy == (line[1].x - line[0].x) * (y - line[0].y) |
| // Assuming that dy is always > 0, the line segment intercepts if: |
| // left * dy <= xIntercept * dy <= right * dy |
| // thus: left * dy <= (line[1].x - line[0].x) * (y - line[0].y) <= right * dy |
| // (clever as this is, it does not give us the t value, so may be useful only |
| // as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps) |
| int horizontalLineIntersect(const _Line& line, double left, double right, |
| double y, double tRange[2]) { |
| int result = horizontalIntersect(line, y, tRange); |
| if (result != 1) { |
| // FIXME: this is incorrect if result == 2 |
| return result; |
| } |
| double xIntercept = line[0].x + tRange[0] * (line[1].x - line[0].x); |
| if (xIntercept > right || xIntercept < left) { |
| return 0; |
| } |
| return result; |
| } |
| |
| int horizontalIntersect(const _Line& line, double left, double right, |
| double y, bool flipped, Intersections& intersections) { |
| int result = horizontalIntersect(line, y, intersections.fT[0]); |
| switch (result) { |
| case 0: |
| break; |
| case 1: { |
| double xIntercept = line[0].x + intersections.fT[0][0] |
| * (line[1].x - line[0].x); |
| if (xIntercept > right || xIntercept < left) { |
| return 0; |
| } |
| intersections.fT[1][0] = (xIntercept - left) / (right - left); |
| break; |
| } |
| case 2: |
| #if 0 // sorting edges fails to preserve original direction |
| double lineL = line[0].x; |
| double lineR = line[1].x; |
| if (lineL > lineR) { |
| std::swap(lineL, lineR); |
| } |
| double overlapL = std::max(left, lineL); |
| double overlapR = std::min(right, lineR); |
| if (overlapL > overlapR) { |
| return 0; |
| } |
| if (overlapL == overlapR) { |
| result = 1; |
| } |
| intersections.fT[0][0] = (overlapL - line[0].x) / (line[1].x - line[0].x); |
| intersections.fT[1][0] = (overlapL - left) / (right - left); |
| if (result > 1) { |
| intersections.fT[0][1] = (overlapR - line[0].x) / (line[1].x - line[0].x); |
| intersections.fT[1][1] = (overlapR - left) / (right - left); |
| } |
| #else |
| double a0 = line[0].x; |
| double a1 = line[1].x; |
| double b0 = flipped ? right : left; |
| double b1 = flipped ? left : right; |
| // FIXME: share common code below |
| double at0 = (a0 - b0) / (a0 - a1); |
| double at1 = (a0 - b1) / (a0 - a1); |
| if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
| return 0; |
| } |
| intersections.fT[0][0] = std::max(std::min(at0, 1.0), 0.0); |
| intersections.fT[0][1] = std::max(std::min(at1, 1.0), 0.0); |
| int bIn = (a0 - a1) * (b0 - b1) < 0; |
| intersections.fT[1][bIn] = std::max(std::min((b0 - a0) / (b0 - b1), |
| 1.0), 0.0); |
| intersections.fT[1][!bIn] = std::max(std::min((b0 - a1) / (b0 - b1), |
| 1.0), 0.0); |
| bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1]) |
| > FLT_EPSILON; |
| assert((fabs(intersections.fT[1][0] - intersections.fT[1][1]) |
| <= FLT_EPSILON) ^ second); |
| return 1 + second; |
| #endif |
| break; |
| } |
| if (flipped) { |
| // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x |
| for (int index = 0; index < result; ++index) { |
| intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
| } |
| } |
| return result; |
| } |
| |
| static int verticalIntersect(const _Line& line, double x, double tRange[2]) { |
| double min = line[0].x; |
| double max = line[1].x; |
| if (min > max) { |
| std::swap(min, max); |
| } |
| if (min > x || max < x) { |
| return 0; |
| } |
| if (approximately_equal(min, max)) { |
| tRange[0] = 0; |
| tRange[1] = 1; |
| return 2; |
| } |
| tRange[0] = (x - line[0].x) / (line[1].x - line[0].x); |
| return 1; |
| } |
| |
| int verticalIntersect(const _Line& line, double top, double bottom, |
| double x, bool flipped, Intersections& intersections) { |
| int result = verticalIntersect(line, x, intersections.fT[0]); |
| switch (result) { |
| case 0: |
| break; |
| case 1: { |
| double yIntercept = line[0].y + intersections.fT[0][0] |
| * (line[1].y - line[0].y); |
| if (yIntercept > bottom || yIntercept < top) { |
| return 0; |
| } |
| intersections.fT[1][0] = (yIntercept - top) / (bottom - top); |
| break; |
| } |
| case 2: |
| #if 0 // sorting edges fails to preserve original direction |
| double lineT = line[0].y; |
| double lineB = line[1].y; |
| if (lineT > lineB) { |
| std::swap(lineT, lineB); |
| } |
| double overlapT = std::max(top, lineT); |
| double overlapB = std::min(bottom, lineB); |
| if (overlapT > overlapB) { |
| return 0; |
| } |
| if (overlapT == overlapB) { |
| result = 1; |
| } |
| intersections.fT[0][0] = (overlapT - line[0].y) / (line[1].y - line[0].y); |
| intersections.fT[1][0] = (overlapT - top) / (bottom - top); |
| if (result > 1) { |
| intersections.fT[0][1] = (overlapB - line[0].y) / (line[1].y - line[0].y); |
| intersections.fT[1][1] = (overlapB - top) / (bottom - top); |
| } |
| #else |
| double a0 = line[0].y; |
| double a1 = line[1].y; |
| double b0 = flipped ? bottom : top; |
| double b1 = flipped ? top : bottom; |
| // FIXME: share common code above |
| double at0 = (a0 - b0) / (a0 - a1); |
| double at1 = (a0 - b1) / (a0 - a1); |
| if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { |
| return 0; |
| } |
| intersections.fT[0][0] = std::max(std::min(at0, 1.0), 0.0); |
| intersections.fT[0][1] = std::max(std::min(at1, 1.0), 0.0); |
| int bIn = (a0 - a1) * (b0 - b1) < 0; |
| intersections.fT[1][bIn] = std::max(std::min((b0 - a0) / (b0 - b1), |
| 1.0), 0.0); |
| intersections.fT[1][!bIn] = std::max(std::min((b0 - a1) / (b0 - b1), |
| 1.0), 0.0); |
| bool second = fabs(intersections.fT[0][0] - intersections.fT[0][1]) |
| > FLT_EPSILON; |
| assert((fabs(intersections.fT[1][0] - intersections.fT[1][1]) |
| <= FLT_EPSILON) ^ second); |
| return 1 + second; |
| #endif |
| break; |
| } |
| if (flipped) { |
| // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y |
| for (int index = 0; index < result; ++index) { |
| intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
| } |
| } |
| return result; |
| } |
| |
| // from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py |
| // 4 subs, 2 muls, 1 cmp |
| static bool ccw(const _Point& A, const _Point& B, const _Point& C) { |
| return (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x); |
| } |
| |
| // 16 subs, 8 muls, 6 cmps |
| bool testIntersect(const _Line& a, const _Line& b) { |
| return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1]) |
| && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]); |
| } |