blob: 341216aa3040a4b7aa23585b94c59bdb1dd54777 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLGpu.h"
#include "GrGLBuffer.h"
#include "GrGLGLSL.h"
#include "GrGLGpuCommandBuffer.h"
#include "GrGLStencilAttachment.h"
#include "GrGLTextureRenderTarget.h"
#include "GrFixedClip.h"
#include "GrGpuResourcePriv.h"
#include "GrMesh.h"
#include "GrPipeline.h"
#include "GrPLSGeometryProcessor.h"
#include "GrRenderTargetPriv.h"
#include "GrSurfacePriv.h"
#include "GrTexturePriv.h"
#include "GrTypes.h"
#include "builders/GrGLShaderStringBuilder.h"
#include "glsl/GrGLSL.h"
#include "glsl/GrGLSLCaps.h"
#include "glsl/GrGLSLPLSPathRendering.h"
#include "instanced/GLInstancedRendering.h"
#include "SkMipMap.h"
#include "SkPixmap.h"
#include "SkStrokeRec.h"
#include "SkTemplates.h"
#include "SkTypes.h"
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#define SKIP_CACHE_CHECK true
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
///////////////////////////////////////////////////////////////////////////////
using gr_instanced::InstancedRendering;
using gr_instanced::GLInstancedRendering;
static const GrGLenum gXfermodeEquation2Blend[] = {
// Basic OpenGL blend equations.
GR_GL_FUNC_ADD,
GR_GL_FUNC_SUBTRACT,
GR_GL_FUNC_REVERSE_SUBTRACT,
// GL_KHR_blend_equation_advanced.
GR_GL_SCREEN,
GR_GL_OVERLAY,
GR_GL_DARKEN,
GR_GL_LIGHTEN,
GR_GL_COLORDODGE,
GR_GL_COLORBURN,
GR_GL_HARDLIGHT,
GR_GL_SOFTLIGHT,
GR_GL_DIFFERENCE,
GR_GL_EXCLUSION,
GR_GL_MULTIPLY,
GR_GL_HSL_HUE,
GR_GL_HSL_SATURATION,
GR_GL_HSL_COLOR,
GR_GL_HSL_LUMINOSITY
};
GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation);
GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation);
GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation);
GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation);
GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation);
GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation);
GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation);
GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation);
GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation);
GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation);
GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation);
GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation);
GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation);
GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation);
GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation);
GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation);
GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation);
GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt);
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options,
GrContext* context) {
SkAutoTUnref<const GrGLInterface> glInterface(
reinterpret_cast<const GrGLInterface*>(backendContext));
if (!glInterface) {
glInterface.reset(GrGLDefaultInterface());
} else {
glInterface->ref();
}
if (!glInterface) {
return nullptr;
}
GrGLContext* glContext = GrGLContext::Create(glInterface, options);
if (glContext) {
return new GrGLGpu(glContext, context);
}
return nullptr;
}
static bool gPrintStartupSpew;
GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context)
: GrGpu(context)
, fGLContext(ctx)
, fProgramCache(new ProgramCache(this))
, fHWProgramID(0)
, fTempSrcFBOID(0)
, fTempDstFBOID(0)
, fStencilClearFBOID(0)
, fHWMaxUsedBufferTextureUnit(-1)
, fHWPLSEnabled(false)
, fPLSHasBeenUsed(false)
, fHWMinSampleShading(0.0) {
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
fCopyPrograms[i].fProgram = 0;
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
fMipmapPrograms[i].fProgram = 0;
}
fWireRectProgram.fProgram = 0;
fPLSSetupProgram.fProgram = 0;
SkASSERT(ctx);
fCaps.reset(SkRef(ctx->caps()));
fHWBoundTextureUniqueIDs.reset(this->glCaps().glslCaps()->maxCombinedSamplers());
fHWBufferState[kVertex_GrBufferType].fGLTarget = GR_GL_ARRAY_BUFFER;
fHWBufferState[kIndex_GrBufferType].fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER;
fHWBufferState[kTexel_GrBufferType].fGLTarget = GR_GL_TEXTURE_BUFFER;
fHWBufferState[kDrawIndirect_GrBufferType].fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER;
if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) {
fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget =
GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM;
fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget =
GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM;
} else {
fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER;
fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_BUFFER;
}
GR_STATIC_ASSERT(6 == SK_ARRAY_COUNT(fHWBufferState));
if (this->caps()->shaderCaps()->texelBufferSupport()) {
fHWBufferTextures.reset(this->glCaps().glslCaps()->maxCombinedSamplers());
}
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
fPathRendering.reset(new GrGLPathRendering(this));
}
GrGLClearErr(this->glInterface());
if (gPrintStartupSpew) {
const GrGLubyte* vendor;
const GrGLubyte* renderer;
const GrGLubyte* version;
GL_CALL_RET(vendor, GetString(GR_GL_VENDOR));
GL_CALL_RET(renderer, GetString(GR_GL_RENDERER));
GL_CALL_RET(version, GetString(GR_GL_VERSION));
SkDebugf("------------------------- create GrGLGpu %p --------------\n",
this);
SkDebugf("------ VENDOR %s\n", vendor);
SkDebugf("------ RENDERER %s\n", renderer);
SkDebugf("------ VERSION %s\n", version);
SkDebugf("------ EXTENSIONS\n");
this->glContext().extensions().print();
SkDebugf("\n");
SkDebugf("%s", this->glCaps().dump().c_str());
}
}
GrGLGpu::~GrGLGpu() {
// Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu
// to release the resources held by the objects themselves.
fPathRendering.reset();
fCopyProgramArrayBuffer.reset();
fMipmapProgramArrayBuffer.reset();
fWireRectArrayBuffer.reset();
fPLSSetupProgram.fArrayBuffer.reset();
if (0 != fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
GL_CALL(UseProgram(0));
}
if (0 != fTempSrcFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID));
}
if (0 != fTempDstFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID));
}
if (0 != fStencilClearFBOID) {
GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID));
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (0 != fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (0 != fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (0 != fWireRectProgram.fProgram) {
GL_CALL(DeleteProgram(fWireRectProgram.fProgram));
}
if (0 != fPLSSetupProgram.fProgram) {
GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram));
}
delete fProgramCache;
}
bool GrGLGpu::createPLSSetupProgram() {
if (!fPLSSetupProgram.fArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fPLSSetupProgram.fArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata),
kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
if (!fPLSSetupProgram.fArrayBuffer) {
return false;
}
}
SkASSERT(!fPLSSetupProgram.fProgram);
GL_CALL_RET(fPLSSetupProgram.fProgram, CreateProgram());
if (!fPLSSetupProgram.fProgram) {
return false;
}
const GrGLSLCaps* glslCaps = this->glCaps().glslCaps();
const char* version = glslCaps->versionDeclString();
GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier);
SkString vshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoord.addModifier("noperspective");
}
aVertex.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
uPosXform.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
vTexCoord.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// PLS Setup Program VS\n"
"void main() {"
" gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;"
" gl_Position.zw = vec2(0, 1);"
"}"
);
SkString fshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
fshaderTxt.append("#extension ");
fshaderTxt.append(glslCaps->fbFetchExtensionString());
fshaderTxt.append(" : require\n");
fshaderTxt.append("#extension GL_EXT_shader_pixel_local_storage : require\n");
GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, &fshaderTxt);
vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
vTexCoord.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
uTexture.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(
"// PLS Setup Program FS\n"
GR_GL_PLS_PATH_DATA_DECL
"void main() {\n"
" " GR_GL_PLS_DSTCOLOR_NAME " = gl_LastFragColorARM;\n"
" pls.windings = ivec4(0, 0, 0, 0);\n"
"}"
);
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram,
GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram,
GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats);
GL_CALL(LinkProgram(fPLSSetupProgram.fProgram));
GL_CALL_RET(fPLSSetupProgram.fPosXformUniform, GetUniformLocation(fPLSSetupProgram.fProgram,
"u_posXform"));
GL_CALL(BindAttribLocation(fPLSSetupProgram.fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
void GrGLGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (DisconnectType::kCleanup == type) {
if (fHWProgramID) {
GL_CALL(UseProgram(0));
}
if (fTempSrcFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID));
}
if (fTempDstFBOID) {
GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID));
}
if (fStencilClearFBOID) {
GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID));
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
if (fCopyPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram));
}
}
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
if (fMipmapPrograms[i].fProgram) {
GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram));
}
}
if (fWireRectProgram.fProgram) {
GL_CALL(DeleteProgram(fWireRectProgram.fProgram));
}
if (fPLSSetupProgram.fProgram) {
GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram));
}
} else {
if (fProgramCache) {
fProgramCache->abandon();
}
}
delete fProgramCache;
fProgramCache = nullptr;
fHWProgramID = 0;
fTempSrcFBOID = 0;
fTempDstFBOID = 0;
fStencilClearFBOID = 0;
fCopyProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) {
fCopyPrograms[i].fProgram = 0;
}
fMipmapProgramArrayBuffer.reset();
for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) {
fMipmapPrograms[i].fProgram = 0;
}
fWireRectProgram.fProgram = 0;
fWireRectArrayBuffer.reset();
fPLSSetupProgram.fProgram = 0;
fPLSSetupProgram.fArrayBuffer.reset();
if (this->glCaps().shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->disconnect(type);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLGpu::onResetContext(uint32_t resetBits) {
// we don't use the zb at all
if (resetBits & kMisc_GrGLBackendState) {
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
fHWBufferState[kTexel_GrBufferType].invalidate();
fHWBufferState[kDrawIndirect_GrBufferType].invalidate();
fHWBufferState[kXferCpuToGpu_GrBufferType].invalidate();
fHWBufferState[kXferGpuToCpu_GrBufferType].invalidate();
fHWDrawFace = GrDrawFace::kInvalid;
if (kGL_GrGLStandard == this->glStandard()) {
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
// We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't
// currently part of our gl interface. There are probably others as
// well.
}
if (kGLES_GrGLStandard == this->glStandard() &&
this->hasExtension("GL_ARM_shader_framebuffer_fetch")) {
// The arm extension requires specifically enabling MSAA fetching per sample.
// On some devices this may have a perf hit. Also multiple render targets are disabled
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM));
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
GL_CALL(Disable(GR_GL_DITHER));
}
if (resetBits & kMSAAEnable_GrGLBackendState) {
fMSAAEnabled = kUnknown_TriState;
if (this->caps()->usesMixedSamples()) {
if (0 != this->caps()->maxRasterSamples()) {
fHWRasterMultisampleEnabled = kUnknown_TriState;
fHWNumRasterSamples = 0;
}
// The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage
// modulation. This state has no effect when not rendering to a mixed sampled target.
GL_CALL(CoverageModulation(GR_GL_RGBA));
}
}
fHWActiveTextureUnitIdx = -1; // invalid
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) {
fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID;
}
for (int b = 0; b < fHWBufferTextures.count(); ++b) {
SkASSERT(this->caps()->shaderCaps()->texelBufferSupport());
fHWBufferTextures[b].fKnownBound = false;
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWWindowRectsState.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWVertexArrayState.invalidate();
fHWBufferState[kVertex_GrBufferType].invalidate();
fHWBufferState[kIndex_GrBufferType].invalidate();
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
fHWSRGBFramebuffer = kUnknown_TriState;
}
if (resetBits & kPathRendering_GrGLBackendState) {
if (this->caps()->shaderCaps()->pathRenderingSupport()) {
this->glPathRendering()->resetContext();
}
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->glCaps().unpackRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().packRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().unpackFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
}
}
static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) {
// By default, GrRenderTargets are GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
if (kDefault_GrSurfaceOrigin == origin) {
return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin;
} else {
return origin;
}
}
GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc,
GrWrapOwnership ownership) {
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
if (!desc.fTextureHandle) {
return nullptr;
}
#else
const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(desc.fTextureHandle);
if (!info || !info->fID) {
return nullptr;
}
#endif
// next line relies on GrBackendTextureDesc's flags matching GrTexture's
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag);
GrGLTexture::IDDesc idDesc;
GrSurfaceDesc surfDesc;
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
idDesc.fInfo.fID = static_cast<GrGLuint>(desc.fTextureHandle);
// When we create the texture, we only
// create GL_TEXTURE_2D at the moment.
// External clients can do something different.
idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D;
#else
idDesc.fInfo = *info;
#endif
if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) {
if (renderTarget) {
// This combination is not supported.
return nullptr;
}
if (!this->glCaps().glslCaps()->externalTextureSupport()) {
return nullptr;
}
} else if (GR_GL_TEXTURE_RECTANGLE == idDesc.fInfo.fTarget) {
if (!this->glCaps().rectangleTextureSupport()) {
return nullptr;
}
} else if (GR_GL_TEXTURE_2D != idDesc.fInfo.fTarget) {
return nullptr;
}
// Sample count is interpreted to mean the number of samples that Gr code should allocate
// for a render buffer that resolves to the texture. We don't support MSAA textures.
if (desc.fSampleCnt && !renderTarget) {
return nullptr;
}
if (kAdopt_GrWrapOwnership == ownership) {
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
} else {
idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed;
}
surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags;
surfDesc.fWidth = desc.fWidth;
surfDesc.fHeight = desc.fHeight;
surfDesc.fConfig = desc.fConfig;
surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount());
// FIXME: this should be calling resolve_origin(), but Chrome code is currently
// assuming the old behaviour, which is that backend textures are always
// BottomLeft, even for non-RT's. Once Chrome is fixed, change this to:
// glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget);
if (kDefault_GrSurfaceOrigin == desc.fOrigin) {
surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin;
} else {
surfDesc.fOrigin = desc.fOrigin;
}
GrGLTexture* texture = nullptr;
if (renderTarget) {
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(surfDesc, idDesc.fInfo, &rtIDDesc)) {
return nullptr;
}
texture = GrGLTextureRenderTarget::CreateWrapped(this, surfDesc, idDesc, rtIDDesc);
} else {
texture = GrGLTexture::CreateWrapped(this, surfDesc, idDesc);
}
if (nullptr == texture) {
return nullptr;
}
return texture;
}
GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc,
GrWrapOwnership ownership) {
GrGLRenderTarget::IDDesc idDesc;
idDesc.fRTFBOID = static_cast<GrGLuint>(wrapDesc.fRenderTargetHandle);
idDesc.fMSColorRenderbufferID = 0;
idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
if (kAdopt_GrWrapOwnership == ownership) {
idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kOwned;
} else {
idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed;
}
idDesc.fIsMixedSampled = false;
GrSurfaceDesc desc;
desc.fConfig = wrapDesc.fConfig;
desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag;
desc.fWidth = wrapDesc.fWidth;
desc.fHeight = wrapDesc.fHeight;
desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount());
desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true);
return GrGLRenderTarget::CreateWrapped(this, desc, idDesc, wrapDesc.fStencilBits);
}
GrRenderTarget* GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTextureDesc& desc) {
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
if (!desc.fTextureHandle) {
return nullptr;
}
#else
const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(desc.fTextureHandle);
if (!info || !info->fID) {
return nullptr;
}
#endif
GrGLTextureInfo texInfo;
GrSurfaceDesc surfDesc;
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
texInfo.fID = static_cast<GrGLuint>(desc.fTextureHandle);
// We only support GL_TEXTURE_2D at the moment.
texInfo.fTarget = GR_GL_TEXTURE_2D;
#else
texInfo = *info;
#endif
if (GR_GL_TEXTURE_RECTANGLE != texInfo.fTarget &&
GR_GL_TEXTURE_2D != texInfo.fTarget) {
// Only texture rectangle and texture 2d are supported. We do not check whether texture
// rectangle is supported by Skia - if the caller provided us with a texture rectangle,
// we assume the necessary support exists.
return nullptr;
}
surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags;
surfDesc.fWidth = desc.fWidth;
surfDesc.fHeight = desc.fHeight;
surfDesc.fConfig = desc.fConfig;
surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount());
// FIXME: this should be calling resolve_origin(), but Chrome code is currently
// assuming the old behaviour, which is that backend textures are always
// BottomLeft, even for non-RT's. Once Chrome is fixed, change this to:
// glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget);
if (kDefault_GrSurfaceOrigin == desc.fOrigin) {
surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin;
} else {
surfDesc.fOrigin = desc.fOrigin;
}
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(surfDesc, texInfo, &rtIDDesc)) {
return nullptr;
}
return GrGLRenderTarget::CreateWrapped(this, surfDesc, rtIDDesc, 0);
}
////////////////////////////////////////////////////////////////////////////////
bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height,
GrPixelConfig srcConfig,
DrawPreference* drawPreference,
WritePixelTempDrawInfo* tempDrawInfo) {
if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) {
return false;
}
// This subclass only allows writes to textures. If the dst is not a texture we have to draw
// into it. We could use glDrawPixels on GLs that have it, but we don't today.
if (!dstSurface->asTexture()) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else {
GrGLTexture* texture = static_cast<GrGLTexture*>(dstSurface->asTexture());
if (GR_GL_TEXTURE_EXTERNAL == texture->target()) {
// We don't currently support writing pixels to EXTERNAL textures.
return false;
}
}
if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
// Start off assuming no swizzling
tempDrawInfo->fSwizzle = GrSwizzle::RGBA();
tempDrawInfo->fWriteConfig = srcConfig;
// These settings we will always want if a temp draw is performed. Initially set the config
// to srcConfig, though that may be modified if we decide to do a R/G swap.
tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags;
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL.
bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config();
if (configsAreRBSwaps) {
if (!this->caps()->isConfigTexturable(srcConfig)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteConfig = dstSurface->config();
} else if (this->glCaps().rgba8888PixelsOpsAreSlow() &&
kRGBA_8888_GrPixelConfig == srcConfig) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteConfig = dstSurface->config();
} else if (kGLES_GrGLStandard == this->glStandard() &&
this->glCaps().bgraIsInternalFormat()) {
// The internal format and external formats must match texture uploads so we can't
// swizzle while uploading when BGRA is a distinct internal format.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config();
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fWriteConfig = dstSurface->config();
}
}
if (!this->glCaps().unpackFlipYSupport() &&
kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
static bool check_write_and_transfer_input(GrGLTexture* glTex, GrSurface* surface,
GrPixelConfig config) {
if (!glTex) {
return false;
}
// OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) {
return false;
}
// Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures
if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) {
return false;
}
return true;
}
bool GrGLGpu::onWritePixels(GrSurface* surface,
int left, int top, int width, int height,
GrPixelConfig config,
const SkTArray<GrMipLevel>& texels) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!check_write_and_transfer_input(glTex, surface, config)) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(glTex->target(), glTex->textureID()));
bool success = false;
if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) {
// We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels()
SkASSERT(config == glTex->desc().fConfig);
success = this->uploadCompressedTexData(glTex->desc(), glTex->target(), texels,
kWrite_UploadType, left, top, width, height);
} else {
success = this->uploadTexData(glTex->desc(), glTex->target(), kWrite_UploadType,
left, top, width, height, config, texels);
}
return success;
}
bool GrGLGpu::onTransferPixels(GrSurface* surface,
int left, int top, int width, int height,
GrPixelConfig config, GrBuffer* transferBuffer,
size_t offset, size_t rowBytes) {
GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture());
if (!check_write_and_transfer_input(glTex, surface, config)) {
return false;
}
// For the moment, can't transfer compressed data
if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(glTex->target(), glTex->textureID()));
SkASSERT(!transferBuffer->isMapped());
SkASSERT(!transferBuffer->isCPUBacked());
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer);
this->bindBuffer(kXferCpuToGpu_GrBufferType, glBuffer);
bool success = false;
GrMipLevel mipLevel;
mipLevel.fPixels = transferBuffer;
mipLevel.fRowBytes = rowBytes;
SkSTArray<1, GrMipLevel> texels;
texels.push_back(mipLevel);
success = this->uploadTexData(glTex->desc(), glTex->target(), kTransfer_UploadType,
left, top, width, height, config, texels);
return success;
}
// For GL_[UN]PACK_ALIGNMENT.
static inline GrGLint config_alignment(GrPixelConfig config) {
SkASSERT(!GrPixelConfigIsCompressed(config));
switch (config) {
case kAlpha_8_GrPixelConfig:
return 1;
case kRGB_565_GrPixelConfig:
case kRGBA_4444_GrPixelConfig:
case kAlpha_half_GrPixelConfig:
case kRGBA_half_GrPixelConfig:
return 2;
case kRGBA_8888_GrPixelConfig:
case kBGRA_8888_GrPixelConfig:
case kSRGBA_8888_GrPixelConfig:
case kSBGRA_8888_GrPixelConfig:
case kRGBA_float_GrPixelConfig:
return 4;
default:
return 0;
}
}
static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc,
const GrGLInterface* interface) {
if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) {
return GR_GL_GET_ERROR(interface);
} else {
return CHECK_ALLOC_ERROR(interface);
}
}
/**
* Creates storage space for the texture and fills it with texels.
*
* @param desc The surface descriptor for the texture being created.
* @param interface The GL interface in use.
* @param caps The capabilities of the GL device.
* @param internalFormat The data format used for the internal storage of the texture. May be sized.
* @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized.
* @param externalFormat The data format used for the external storage of the texture.
* @param externalType The type of the data used for the external storage of the texture.
* @param texels The texel data of the texture being created.
* @param baseWidth The width of the texture's base mipmap level
* @param baseHeight The height of the texture's base mipmap level
* @param succeeded Set to true if allocating and populating the texture completed
* without error.
*/
static bool allocate_and_populate_uncompressed_texture(const GrSurfaceDesc& desc,
const GrGLInterface& interface,
const GrGLCaps& caps,
GrGLenum target,
GrGLenum internalFormat,
GrGLenum internalFormatForTexStorage,
GrGLenum externalFormat,
GrGLenum externalType,
const SkTArray<GrMipLevel>& texels,
int baseWidth, int baseHeight) {
CLEAR_ERROR_BEFORE_ALLOC(&interface);
bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig);
// We can only use TexStorage if we know we will not later change the storage requirements.
// This means if we may later want to add mipmaps, we cannot use TexStorage.
// Right now, we cannot know if we will later add mipmaps or not.
// The only time we can use TexStorage is when we already have the
// mipmaps.
useTexStorage &= texels.count() > 1;
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(&interface,
TexStorage2D(target,
texels.count(),
internalFormatForTexStorage,
desc.fWidth, desc.fHeight));
GrGLenum error = check_alloc_error(desc, &interface);
if (error != GR_GL_NO_ERROR) {
return false;
} else {
for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) {
const void* currentMipData = texels[currentMipLevel].fPixels;
if (currentMipData == nullptr) {
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, desc.fWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, desc.fHeight / twoToTheMipLevel);
GR_GL_CALL(&interface,
TexSubImage2D(target,
currentMipLevel,
0, // left
0, // top
currentWidth,
currentHeight,
externalFormat, externalType,
currentMipData));
}
return true;
}
} else {
if (texels.empty()) {
GL_ALLOC_CALL(&interface,
TexImage2D(target,
0,
internalFormat,
baseWidth,
baseHeight,
0, // border
externalFormat, externalType,
nullptr));
GrGLenum error = check_alloc_error(desc, &interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
} else {
for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
const void* currentMipData = texels[currentMipLevel].fPixels;
// Even if curremtMipData is nullptr, continue to call TexImage2D.
// This will allocate texture memory which we can later populate.
GL_ALLOC_CALL(&interface,
TexImage2D(target,
currentMipLevel,
internalFormat,
currentWidth,
currentHeight,
0, // border
externalFormat, externalType,
currentMipData));
GrGLenum error = check_alloc_error(desc, &interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
}
}
}
return true;
}
/**
* Creates storage space for the texture and fills it with texels.
*
* @param desc The surface descriptor for the texture being created.
* @param interface The GL interface in use.
* @param caps The capabilities of the GL device.
* @param internalFormat The data format used for the internal storage of the texture.
* @param texels The texel data of the texture being created.
*/
static bool allocate_and_populate_compressed_texture(const GrSurfaceDesc& desc,
const GrGLInterface& interface,
const GrGLCaps& caps,
GrGLenum target, GrGLenum internalFormat,
const SkTArray<GrMipLevel>& texels,
int baseWidth, int baseHeight) {
CLEAR_ERROR_BEFORE_ALLOC(&interface);
bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig);
// We can only use TexStorage if we know we will not later change the storage requirements.
// This means if we may later want to add mipmaps, we cannot use TexStorage.
// Right now, we cannot know if we will later add mipmaps or not.
// The only time we can use TexStorage is when we already have the
// mipmaps.
useTexStorage &= texels.count() > 1;
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(&interface,
TexStorage2D(target,
texels.count(),
internalFormat,
baseWidth, baseHeight));
GrGLenum error = check_alloc_error(desc, &interface);
if (error != GR_GL_NO_ERROR) {
return false;
} else {
for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) {
const void* currentMipData = texels[currentMipLevel].fPixels;
if (currentMipData == nullptr) {
continue;
}
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
// Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth,
currentHeight);
GR_GL_CALL(&interface, CompressedTexSubImage2D(target,
currentMipLevel,
0, // left
0, // top
currentWidth,
currentHeight,
internalFormat,
SkToInt(dataSize),
currentMipData));
}
}
} else {
for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel);
int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel);
// Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, baseWidth, baseHeight);
GL_ALLOC_CALL(&interface,
CompressedTexImage2D(target,
currentMipLevel,
internalFormat,
currentWidth,
currentHeight,
0, // border
SkToInt(dataSize),
texels[currentMipLevel].fPixels));
GrGLenum error = check_alloc_error(desc, &interface);
if (error != GR_GL_NO_ERROR) {
return false;
}
}
}
return true;
}
/**
* After a texture is created, any state which was altered during its creation
* needs to be restored.
*
* @param interface The GL interface to use.
* @param caps The capabilities of the GL device.
* @param restoreGLRowLength Should the row length unpacking be restored?
* @param glFlipY Did GL flip the texture vertically?
*/
static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps,
bool restoreGLRowLength, bool glFlipY) {
if (restoreGLRowLength) {
SkASSERT(caps.unpackRowLengthSupport());
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (glFlipY) {
GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
}
bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc,
GrGLenum target,
UploadType uploadType,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const SkTArray<GrMipLevel>& texels) {
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrPixelConfigIsCompressed(dataConfig));
SkASSERT(this->caps()->isConfigTexturable(desc.fConfig));
// texels is const.
// But we may need to flip the texture vertically to prepare it.
// Rather than flip in place and alter the incoming data,
// we allocate a new buffer to flip into.
// This means we need to make a non-const shallow copy of texels.
SkTArray<GrMipLevel> texelsShallowCopy(texels);
for (int currentMipLevel = texelsShallowCopy.count() - 1; currentMipLevel >= 0;
currentMipLevel--) {
SkASSERT(texelsShallowCopy[currentMipLevel].fPixels || kTransfer_UploadType == uploadType);
}
const GrGLInterface* interface = this->glInterface();
const GrGLCaps& caps = this->glCaps();
size_t bpp = GrBytesPerPixel(dataConfig);
if (width == 0 || height == 0) {
return false;
}
for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
if (currentHeight > SK_MaxS32 ||
currentWidth > SK_MaxS32) {
return false;
}
if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top,
&currentWidth,
&currentHeight,
&texelsShallowCopy[currentMipLevel].fPixels,
&texelsShallowCopy[currentMipLevel].fRowBytes)) {
return false;
}
if (currentWidth < 0 || currentHeight < 0) {
return false;
}
}
// Internal format comes from the texture desc.
GrGLenum internalFormat;
// External format and type come from the upload data.
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(desc.fConfig, dataConfig, &internalFormat,
&externalFormat, &externalType)) {
return false;
}
// TexStorage requires a sized format, and internalFormat may or may not be
GrGLenum internalFormatForTexStorage = this->glCaps().configSizedInternalFormat(desc.fConfig);
/*
* Check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
bool swFlipY = false;
bool glFlipY = false;
if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin && !texelsShallowCopy.empty()) {
if (caps.unpackFlipYSupport()) {
glFlipY = true;
} else {
swFlipY = true;
}
}
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
// find the combined size of all the mip levels and the relative offset of
// each into the collective buffer
size_t combined_buffer_size = 0;
SkTArray<size_t> individual_mip_offsets(texelsShallowCopy.count());
for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
const size_t trimmedSize = currentWidth * bpp * currentHeight;
individual_mip_offsets.push_back(combined_buffer_size);
combined_buffer_size += trimmedSize;
}
char* buffer = (char*)tempStorage.reset(combined_buffer_size);
for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
const size_t trimRowBytes = currentWidth * bpp;
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
restoreGLRowLength = false;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes;
// TODO: This optimization should be enabled with or without mips.
// For use with mips, we must set GR_GL_UNPACK_ROW_LENGTH once per
// mip level, before calling glTexImage2D.
const bool usesMips = texelsShallowCopy.count() > 1;
if (caps.unpackRowLengthSupport() && !swFlipY && !usesMips) {
// can't use this for flipping, only non-neg values allowed. :(
if (rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
} else if (kTransfer_UploadType != uploadType) {
if (trimRowBytes != rowBytes || swFlipY) {
// copy data into our new storage, skipping the trailing bytes
const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels;
if (swFlipY && currentHeight >= 1) {
src += (currentHeight - 1) * rowBytes;
}
char* dst = buffer + individual_mip_offsets[currentMipLevel];
for (int y = 0; y < currentHeight; y++) {
memcpy(dst, src, trimRowBytes);
if (swFlipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our copied version
texelsShallowCopy[currentMipLevel].fPixels = buffer +
individual_mip_offsets[currentMipLevel];
texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes;
}
} else {
return false;
}
}
if (!texelsShallowCopy.empty()) {
if (glFlipY) {
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE));
}
GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT,
config_alignment(desc.fConfig)));
}
bool succeeded = true;
if (kNewTexture_UploadType == uploadType &&
0 == left && 0 == top &&
desc.fWidth == width && desc.fHeight == height) {
succeeded = allocate_and_populate_uncompressed_texture(desc, *interface, caps, target,
internalFormat,
internalFormatForTexStorage,
externalFormat, externalType,
texelsShallowCopy, width, height);
} else {
if (swFlipY || glFlipY) {
top = desc.fHeight - (top + height);
}
for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count();
currentMipLevel++) {
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
GL_CALL(TexSubImage2D(target,
currentMipLevel,
left, top,
currentWidth,
currentHeight,
externalFormat, externalType,
texelsShallowCopy[currentMipLevel].fPixels));
}
}
restore_pixelstore_state(*interface, caps, restoreGLRowLength, glFlipY);
return succeeded;
}
// TODO: This function is using a lot of wonky semantics like, if width == -1
// then set width = desc.fWdith ... blah. A better way to do it might be to
// create a CompressedTexData struct that takes a desc/ptr and figures out
// the proper upload semantics. Then users can construct this function how they
// see fit if they want to go against the "standard" way to do it.
bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc,
GrGLenum target,
const SkTArray<GrMipLevel>& texels,
UploadType uploadType,
int left, int top, int width, int height) {
SkASSERT(this->caps()->isConfigTexturable(desc.fConfig));
// No support for software flip y, yet...
SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin);
const GrGLInterface* interface = this->glInterface();
const GrGLCaps& caps = this->glCaps();
if (-1 == width) {
width = desc.fWidth;
}
#ifdef SK_DEBUG
else {
SkASSERT(width <= desc.fWidth);
}
#endif
if (-1 == height) {
height = desc.fHeight;
}
#ifdef SK_DEBUG
else {
SkASSERT(height <= desc.fHeight);
}
#endif
// We only need the internal format for compressed 2D textures.
GrGLenum internalFormat;
if (!caps.getCompressedTexImageFormats(desc.fConfig, &internalFormat)) {
return false;
}
if (kNewTexture_UploadType == uploadType) {
return allocate_and_populate_compressed_texture(desc, *interface, caps, target,
internalFormat, texels, width, height);
} else {
// Paletted textures can't be updated.
if (GR_GL_PALETTE8_RGBA8 == internalFormat) {
return false;
}
for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) {
SkASSERT(texels[currentMipLevel].fPixels || kTransfer_UploadType == uploadType);
int twoToTheMipLevel = 1 << currentMipLevel;
int currentWidth = SkTMax(1, width / twoToTheMipLevel);
int currentHeight = SkTMax(1, height / twoToTheMipLevel);
// Make sure that the width and height that we pass to OpenGL
// is a multiple of the block size.
size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth,
currentHeight);
GL_CALL(CompressedTexSubImage2D(target,
currentMipLevel,
left, top,
currentWidth,
currentHeight,
internalFormat,
SkToInt(dataSize),
texels[currentMipLevel].fPixels));
}
}
return true;
}
static bool renderbuffer_storage_msaa(const GrGLContext& ctx,
int sampleCount,
GrGLenum format,
int width, int height) {
CLEAR_ERROR_BEFORE_ALLOC(ctx.interface());
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType());
switch (ctx.caps()->msFBOType()) {
case GrGLCaps::kDesktop_ARB_MSFBOType:
case GrGLCaps::kDesktop_EXT_MSFBOType:
case GrGLCaps::kMixedSamples_MSFBOType:
case GrGLCaps::kES_3_0_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kNone_MSFBOType:
SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers.");
break;
}
return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));
}
bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc,
const GrGLTextureInfo& texInfo,
GrGLRenderTarget::IDDesc* idDesc) {
idDesc->fMSColorRenderbufferID = 0;
idDesc->fRTFBOID = 0;
idDesc->fRTFBOOwnership = GrBackendObjectOwnership::kOwned;
idDesc->fTexFBOID = 0;
SkASSERT((GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType()) ==
this->caps()->usesMixedSamples());
idDesc->fIsMixedSampled = desc.fSampleCnt > 0 && this->caps()->usesMixedSamples();
GrGLenum status;
GrGLenum colorRenderbufferFormat = 0; // suppress warning
if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID));
if (!idDesc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) {
GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
if (!idDesc->fRTFBOID ||
!idDesc->fMSColorRenderbufferID) {
goto FAILED;
}
if (!this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat)) {
return false;
}
} else {
idDesc->fRTFBOID = idDesc->fTexFBOID;
}
// below here we may bind the FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
SkASSERT(desc.fSampleCnt > 0);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID));
if (!renderbuffer_storage_msaa(*fGLContext,
desc.fSampleCnt,
colorRenderbufferFormat,
desc.fWidth, desc.fHeight)) {
goto FAILED;
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
idDesc->fMSColorRenderbufferID));
if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) ||
!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
}
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID));
if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
texInfo.fTarget,
texInfo.fID, 0, desc.fSampleCnt));
} else {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
texInfo.fTarget,
texInfo.fID, 0));
}
if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) ||
!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig);
}
return true;
FAILED:
if (idDesc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID));
}
if (idDesc->fRTFBOID != idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID));
}
if (idDesc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// SkDEBUGFAIL("null texture");
return nullptr;
}
#if 0 && defined(SK_DEBUG)
static size_t as_size_t(int x) {
return x;
}
#endif
static GrGLTexture::IDDesc generate_gl_texture(const GrGLInterface* interface) {
GrGLTexture::IDDesc idDesc;
idDesc.fInfo.fID = 0;
GR_GL_CALL(interface, GenTextures(1, &idDesc.fInfo.fID));
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
// When we create the texture, we only
// create GL_TEXTURE_2D at the moment.
// External clients can do something different.
idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D;
return idDesc;
}
static void set_initial_texture_params(const GrGLInterface* interface,
const GrGLTextureInfo& info,
GrGLTexture::TexParams* initialTexParams) {
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
// we only set a subset here so invalidate first
initialTexParams->invalidate();
initialTexParams->fMinFilter = GR_GL_NEAREST;
initialTexParams->fMagFilter = GR_GL_NEAREST;
initialTexParams->fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams->fWrapT = GR_GL_CLAMP_TO_EDGE;
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams->fMagFilter));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams->fMinFilter));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_WRAP_S,
initialTexParams->fWrapS));
GR_GL_CALL(interface, TexParameteri(info.fTarget,
GR_GL_TEXTURE_WRAP_T,
initialTexParams->fWrapT));
}
GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc,
SkBudgeted budgeted,
const SkTArray<GrMipLevel>& texels) {
// We fail if the MSAA was requested and is not available.
if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) {
//SkDebugf("MSAA RT requested but not supported on this platform.");
return return_null_texture();
}
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
GrGLTexture::IDDesc idDesc;
idDesc.fOwnership = GrBackendObjectOwnership::kOwned;
GrGLTexture::TexParams initialTexParams;
if (!this->createTextureImpl(desc, &idDesc.fInfo, renderTarget, &initialTexParams, texels)) {
return return_null_texture();
}
GrGLTexture* tex;
if (renderTarget) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0));
GrGLRenderTarget::IDDesc rtIDDesc;
if (!this->createRenderTargetObjects(desc, idDesc.fInfo, &rtIDDesc)) {
GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID));
return return_null_texture();
}
tex = new GrGLTextureRenderTarget(this, budgeted, desc, idDesc, rtIDDesc);
} else {
bool wasMipMapDataProvided = false;
if (texels.count() > 1) {
wasMipMapDataProvided = true;
}
tex = new GrGLTexture(this, budgeted, desc, idDesc, wasMipMapDataProvided);
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n",
idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc,
SkBudgeted budgeted,
const SkTArray<GrMipLevel>& texels) {
// Make sure that we're not flipping Y.
if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) {
return return_null_texture();
}
GrGLTexture::IDDesc idDesc = generate_gl_texture(this->glInterface());
if (!idDesc.fInfo.fID) {
return return_null_texture();
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(idDesc.fInfo.fTarget, idDesc.fInfo.fID));
GrGLTexture::TexParams initialTexParams;
set_initial_texture_params(this->glInterface(), idDesc.fInfo, &initialTexParams);
if (!this->uploadCompressedTexData(desc, idDesc.fInfo.fTarget, texels)) {
GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID));
return return_null_texture();
}
GrGLTexture* tex;
tex = new GrGLTexture(this, budgeted, desc, idDesc);
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n",
idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
namespace {
const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount;
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLStencilAttachment::Format* format) {
// we shouldn't ever know one size and not the other
SkASSERT((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) {
static const int kSize = 16;
SkASSERT(this->caps()->isConfigRenderable(config, false));
if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) {
// Default to unsupported, set this if we find a stencil format that works.
int firstWorkingStencilFormatIndex = -1;
// Create color texture
GrGLuint colorID = 0;
GL_CALL(GenTextures(1, &colorID));
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
GR_GL_NEAREST));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat,
&externalType)) {
return false;
}
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D,
0,
internalFormat,
kSize,
kSize,
0,
externalFormat,
externalType,
NULL));
if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(DeleteTextures(1, &colorID));
return -1;
}
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
// Create Framebuffer
GrGLuint fb = 0;
GL_CALL(GenFramebuffers(1, &fb));
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fb));
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
colorID,
0));
GrGLuint sbRBID = 0;
GL_CALL(GenRenderbuffers(1, &sbRBID));
// look over formats till I find a compatible one
int stencilFmtCnt = this->glCaps().stencilFormats().count();
if (sbRBID) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID));
for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) {
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
kSize, kSize));
if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, sbRBID));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status == GR_GL_FRAMEBUFFER_COMPLETE) {
firstWorkingStencilFormatIndex = i;
break;
}
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (sFmt.fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
}
}
GL_CALL(DeleteRenderbuffers(1, &sbRBID));
}
GL_CALL(DeleteTextures(1, &colorID));
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GL_CALL(DeleteFramebuffers(1, &fb));
fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex);
}
return this->glCaps().getStencilFormatIndexForConfig(config);
}
bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info,
bool renderTarget, GrGLTexture::TexParams* initialTexParams,
const SkTArray<GrMipLevel>& texels) {
info->fID = 0;
info->fTarget = GR_GL_TEXTURE_2D;
GL_CALL(GenTextures(1, &(info->fID)));
if (!info->fID) {
return false;
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(info->fTarget, info->fID));
if (renderTarget && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(info->fTarget,
GR_GL_TEXTURE_USAGE,
GR_GL_FRAMEBUFFER_ATTACHMENT));
}
if (info) {
set_initial_texture_params(this->glInterface(), *info, initialTexParams);
}
if (!this->uploadTexData(desc, info->fTarget, kNewTexture_UploadType, 0, 0,
desc.fWidth, desc.fHeight,
desc.fConfig, texels)) {
GL_CALL(DeleteTextures(1, &(info->fID)));
return false;
}
return true;
}
GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width,
int height) {
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numStencilSamples();
GrGLStencilAttachment::IDDesc sbDesc;
int sIdx = this->getCompatibleStencilIndex(rt->config());
if (sIdx < 0) {
return nullptr;
}
if (!sbDesc.fRenderbufferID) {
GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID));
}
if (!sbDesc.fRenderbufferID) {
return nullptr;
}
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID));
const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
if (samples > 0) {
SkAssertResult(renderbuffer_storage_msaa(*fGLContext,
samples,
sFmt.fInternalFormat,
width, height));
} else {
GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
SkASSERT(GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface()));
}
fStats.incStencilAttachmentCreates();
// After sized formats we attempt an unsized format and take
// whatever sizes GL gives us. In that case we query for the size.
GrGLStencilAttachment::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), &format);
GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this,
sbDesc,
width,
height,
samples,
format);
return stencil;
}
////////////////////////////////////////////////////////////////////////////////
// GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer
// objects are implemented as client-side-arrays on tile-deferred architectures.
#define DYNAMIC_USAGE_PARAM GR_GL_STREAM_DRAW
GrBuffer* GrGLGpu::onCreateBuffer(size_t size, GrBufferType intendedType,
GrAccessPattern accessPattern, const void* data) {
return GrGLBuffer::Create(this, size, intendedType, accessPattern, data);
}
InstancedRendering* GrGLGpu::onCreateInstancedRendering() {
return new GLInstancedRendering(this);
}
void GrGLGpu::flushScissor(const GrScissorState& scissorState,
const GrGLIRect& rtViewport,
GrSurfaceOrigin rtOrigin) {
if (scissorState.enabled()) {
GrGLIRect scissor;
scissor.setRelativeTo(rtViewport,
scissorState.rect().fLeft,
scissorState.rect().fTop,
scissorState.rect().width(),
scissorState.rect().height(),
rtOrigin);
// if the scissor fully contains the viewport then we fall through and
// disable the scissor test.
if (!scissor.contains(rtViewport)) {
if (fHWScissorSettings.fRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWScissorSettings.fRect = scissor;
}
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
return;
}
}
// See fall through note above
this->disableScissor();
}
void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState,
const GrGLRenderTarget* rt) {
typedef GrWindowRectsState::Mode Mode;
SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen.
SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles());
if (!this->caps()->maxWindowRectangles() ||
fHWWindowRectsState.knownEqualTo(rt->origin(), rt->getViewport(), windowState)) {
return;
}
// This is purely a workaround for a spurious warning generated by gcc. Otherwise the above
// assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912
int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows));
SkASSERT(windowState.numWindows() == numWindows);
GrGLIRect glwindows[GrWindowRectangles::kMaxWindows];
const SkIRect* skwindows = windowState.windows().data();
int dx = -windowState.origin().x(), dy = -windowState.origin().y();
for (int i = 0; i < numWindows; ++i) {
const SkIRect& skwindow = skwindows[i].makeOffset(dx, dy);
glwindows[i].setRelativeTo(rt->getViewport(), skwindow, rt->origin());
}
GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE;
GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts()));
fHWWindowRectsState.set(rt->origin(), rt->getViewport(), windowState);
}
void GrGLGpu::disableWindowRectangles() {
if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) {
return;
}
GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr));
fHWWindowRectsState.setDisabled();
}
void GrGLGpu::flushMinSampleShading(float minSampleShading) {
if (fHWMinSampleShading != minSampleShading) {
if (minSampleShading > 0.0) {
GL_CALL(Enable(GR_GL_SAMPLE_SHADING));
GL_CALL(MinSampleShading(minSampleShading));
}
else {
GL_CALL(Disable(GR_GL_SAMPLE_SHADING));
}
fHWMinSampleShading = minSampleShading;
}
}
bool GrGLGpu::flushGLState(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc,
bool willDrawPoints) {
SkAutoTUnref<GrGLProgram> program(fProgramCache->refProgram(this, pipeline, primProc,
willDrawPoints));
if (!program) {
GrCapsDebugf(this->caps(), "Failed to create program!\n");
return false;
}
program->generateMipmaps(primProc, pipeline);
GrXferProcessor::BlendInfo blendInfo;
pipeline.getXferProcessor().getBlendInfo(&blendInfo);
this->flushColorWrite(blendInfo.fWriteColor);
this->flushDrawFace(pipeline.getDrawFace());
this->flushMinSampleShading(primProc.getSampleShading());
GrGLuint programID = program->programID();
if (fHWProgramID != programID) {
GL_CALL(UseProgram(programID));
fHWProgramID = programID;
}
if (blendInfo.fWriteColor) {
// Swizzle the blend to match what the shader will output.
const GrSwizzle& swizzle = this->glCaps().glslCaps()->configOutputSwizzle(
pipeline.getRenderTarget()->config());
this->flushBlend(blendInfo, swizzle);
}
program->setData(primProc, pipeline);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.getRenderTarget());
this->flushStencil(pipeline.getStencil());
this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin());
this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT);
this->flushHWAAState(glRT, pipeline.isHWAntialiasState(), !pipeline.getStencil().isDisabled());
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(glRT, nullptr, pipeline.getDisableOutputConversionToSRGB());
return true;
}
void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc,
const GrNonInstancedMesh& mesh,
size_t* indexOffsetInBytes) {
const GrBuffer* vbuf = mesh.vertexBuffer();
SkASSERT(vbuf);
SkASSERT(!vbuf->isMapped());
GrGLAttribArrayState* attribState;
if (mesh.isIndexed()) {
SkASSERT(indexOffsetInBytes);
*indexOffsetInBytes = 0;
const GrBuffer* ibuf = mesh.indexBuffer();
SkASSERT(ibuf);
SkASSERT(!ibuf->isMapped());
*indexOffsetInBytes += ibuf->baseOffset();
attribState = fHWVertexArrayState.bindInternalVertexArray(this, ibuf);
} else {
attribState = fHWVertexArrayState.bindInternalVertexArray(this);
}
int vaCount = primProc.numAttribs();
if (vaCount > 0) {
GrGLsizei stride = static_cast<GrGLsizei>(primProc.getVertexStride());
size_t vertexOffsetInBytes = stride * mesh.startVertex();
vertexOffsetInBytes += vbuf->baseOffset();
uint32_t usedAttribArraysMask = 0;
size_t offset = 0;
for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) {
const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex);
usedAttribArraysMask |= (1 << attribIndex);
GrVertexAttribType attribType = attrib.fType;
attribState->set(this,
attribIndex,
vbuf,
attribType,
stride,
reinterpret_cast<GrGLvoid*>(vertexOffsetInBytes + offset));
offset += attrib.fOffset;
}
attribState->disableUnusedArrays(this, usedAttribArraysMask);
}
}
GrGLenum GrGLGpu::bindBuffer(GrBufferType type, const GrBuffer* buffer) {
this->handleDirtyContext();
// Index buffer state is tied to the vertex array.
if (kIndex_GrBufferType == type) {
this->bindVertexArray(0);
}
SkASSERT(type >= 0 && type <= kLast_GrBufferType);
auto& bufferState = fHWBufferState[type];
if (buffer->uniqueID() != bufferState.fBoundBufferUniqueID) {
if (buffer->isCPUBacked()) {
if (!bufferState.fBufferZeroKnownBound) {
GL_CALL(BindBuffer(bufferState.fGLTarget, 0));
}
} else {
const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer);
GL_CALL(BindBuffer(bufferState.fGLTarget, glBuffer->bufferID()));
}
bufferState.fBufferZeroKnownBound = buffer->isCPUBacked();
bufferState.fBoundBufferUniqueID = buffer->uniqueID();
}
return bufferState.fGLTarget;
}
void GrGLGpu::notifyBufferReleased(const GrGLBuffer* buffer) {
if (buffer->hasAttachedToTexture()) {
// Detach this buffer from any textures to ensure the underlying memory is freed.
uint32_t uniqueID = buffer->uniqueID();
for (int i = fHWMaxUsedBufferTextureUnit; i >= 0; --i) {
auto& buffTex = fHWBufferTextures[i];
if (uniqueID != buffTex.fAttachedBufferUniqueID) {
continue;
}
if (i == fHWMaxUsedBufferTextureUnit) {
--fHWMaxUsedBufferTextureUnit;
}
this->setTextureUnit(i);
if (!buffTex.fKnownBound) {
SkASSERT(buffTex.fTextureID);
GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID));
buffTex.fKnownBound = true;
}
GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER,
this->glCaps().configSizedInternalFormat(buffTex.fTexelConfig), 0));
}
}
}
void GrGLGpu::disableScissor() {
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
return;
}
}
void GrGLGpu::clear(const GrFixedClip& clip, GrColor color, GrRenderTarget* target) {
this->handleDirtyContext();
// parent class should never let us get here with no RT
SkASSERT(target);
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, clip.scissorEnabled() ? &clip.scissorRect() : nullptr);
this->flushScissor(clip.scissorState(), glRT->getViewport(), glRT->origin());
this->flushWindowRectangles(clip.windowRectsState(), glRT);
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGLGpu::clearStencil(GrRenderTarget* target) {
if (nullptr == target) {
return;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, &SkIRect::EmptyIRect());
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
void GrGLGpu::clearStencilClip(const GrFixedClip& clip,
bool insideStencilMask,
GrRenderTarget* target) {
SkASSERT(target);
this->handleDirtyContext();
GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
GrGLint stencilBitCount = sb->bits();
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideStencilMask) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target);
this->flushRenderTarget(glRT, &SkIRect::EmptyIRect());
this->flushScissor(clip.scissorState(), glRT->getViewport(), glRT->origin());
this->flushWindowRectangles(clip.windowRectsState(), glRT);
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps,
int width, int height, GrPixelConfig config,
size_t rowBytes) {
// If this render target is already TopLeft, we don't need to flip.
if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) {
return false;
}
// If the read is really small or smaller than the min texture size, don't force a draw.
static const int kMinSize = 32;
if (width < kMinSize || height < kMinSize) {
return false;
}
// if GL can do the flip then we'll never pay for it.
if (caps.packFlipYSupport()) {
return false;
}
// If we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
// Note that we're assuming that 0 rowBytes has already been handled and that the width has been
// clipped.
return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes;
}
bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) {
auto bindRenderTarget = [this, target]() -> bool {
this->flushRenderTarget(static_cast<GrGLRenderTarget*>(target), &SkIRect::EmptyIRect());
return true;
};
auto getIntegerv = [this](GrGLenum query, GrGLint* value) {
GR_GL_GetIntegerv(this->glInterface(), query, value);
};
GrPixelConfig rtConfig = target->config();
return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget);
}
bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) {
auto bindRenderTarget = [this, rtConfig]() -> bool {
GrTextureDesc desc;
desc.fConfig = rtConfig;
desc.fWidth = desc.fHeight = 16;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
SkAutoTUnref<GrTexture> temp(this->createTexture(desc,
SkBudgeted::kNo));
if (!temp) {
return false;
}
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(temp->asRenderTarget());
this->flushRenderTarget(glrt, &SkIRect::EmptyIRect());
return true;
};
auto getIntegerv = [this](GrGLenum query, GrGLint* value) {
GR_GL_GetIntegerv(this->glInterface(), query, value);
};
return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget);
}
bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) {
if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) {
return this->readPixelsSupported(rt, readConfig);
} else {
GrPixelConfig config = surfaceForConfig->config();
return this->readPixelsSupported(config, readConfig);
}
}
static bool requires_srgb_conversion(GrPixelConfig a, GrPixelConfig b) {
if (GrPixelConfigIsSRGB(a)) {
return !GrPixelConfigIsSRGB(b) && !GrPixelConfigIsAlphaOnly(b);
} else if (GrPixelConfigIsSRGB(b)) {
return !GrPixelConfigIsSRGB(a) && !GrPixelConfigIsAlphaOnly(a);
}
return false;
}
bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes,
GrPixelConfig readConfig, DrawPreference* drawPreference,
ReadPixelTempDrawInfo* tempDrawInfo) {
GrPixelConfig srcConfig = srcSurface->config();
// These settings we will always want if a temp draw is performed.
tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag;
tempDrawInfo->fTempSurfaceDesc.fWidth = width;
tempDrawInfo->fTempSurfaceDesc.fHeight = height;
tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0;
tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL.
tempDrawInfo->fTempSurfaceFit = this->glCaps().partialFBOReadIsSlow() ? SkBackingFit::kExact
: SkBackingFit::kApprox;
// For now assume no swizzling, we may change that below.
tempDrawInfo->fSwizzle = GrSwizzle::RGBA();
// Depends on why we need/want a temp draw. Start off assuming no change, the surface we read
// from will be srcConfig and we will read readConfig pixels from it.
// Not that if we require a draw and return a non-renderable format for the temp surface the
// base class will fail for us.
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fReadConfig = readConfig;
if (requires_srgb_conversion(srcConfig, readConfig)) {
if (!this->readPixelsSupported(readConfig, readConfig)) {
return false;
}
// Draw to do srgb to linear conversion or vice versa.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig;
tempDrawInfo->fReadConfig = readConfig;
return true;
}
GrRenderTarget* srcAsRT = srcSurface->asRenderTarget();
if (!srcAsRT) {
// For now keep assuming the draw is not a format transformation, just a draw to get to a
// RT. We may add additional transformations below.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
}
if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig &&
this->readPixelsSupported(kBGRA_8888_GrPixelConfig, kBGRA_8888_GrPixelConfig)) {
tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadConfig = kBGRA_8888_GrPixelConfig;
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (this->glCaps().rgbaToBgraReadbackConversionsAreSlow() &&
GrBytesPerPixel(readConfig) == 4 &&
GrPixelConfigSwapRAndB(readConfig) == srcConfig &&
this->readPixelsSupported(srcSurface, srcConfig)) {
// Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa.
// Better to do a draw with a R/B swap and then read as the original config.
tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadConfig = srcConfig;
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
} else if (!this->readPixelsSupported(srcSurface, readConfig)) {
if (readConfig == kBGRA_8888_GrPixelConfig &&
this->glCaps().isConfigRenderable(kRGBA_8888_GrPixelConfig, false) &&
this->readPixelsSupported(kRGBA_8888_GrPixelConfig, kRGBA_8888_GrPixelConfig)) {
// We're trying to read BGRA but it's not supported. If RGBA is renderable and
// we can read it back, then do a swizzling draw to a RGBA and read it back (which
// will effectively be BGRA).
tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadConfig = kRGBA_8888_GrPixelConfig;
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else if (readConfig == kSBGRA_8888_GrPixelConfig &&
this->glCaps().isConfigRenderable(kSRGBA_8888_GrPixelConfig, false) &&
this->readPixelsSupported(kSRGBA_8888_GrPixelConfig, kSRGBA_8888_GrPixelConfig)) {
// We're trying to read sBGRA but it's not supported. If sRGBA is renderable and
// we can read it back, then do a swizzling draw to a sRGBA and read it back (which
// will effectively be sBGRA).
tempDrawInfo->fTempSurfaceDesc.fConfig = kSRGBA_8888_GrPixelConfig;
tempDrawInfo->fSwizzle = GrSwizzle::BGRA();
tempDrawInfo->fReadConfig = kSRGBA_8888_GrPixelConfig;
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
} else if (readConfig == kAlpha_8_GrPixelConfig) {
// onReadPixels implements a fallback for cases where we are want to read kAlpha_8,
// it's unsupported, but 32bit RGBA reads are supported.
// Don't attempt to do any srgb conversions since we only care about alpha.
GrPixelConfig cpuTempConfig = kRGBA_8888_GrPixelConfig;
if (GrPixelConfigIsSRGB(srcSurface->config())) {
cpuTempConfig = kSRGBA_8888_GrPixelConfig;
}
if (!this->readPixelsSupported(srcSurface, cpuTempConfig)) {
// If we can't read RGBA from the src try to draw to a kRGBA_8888 (or kSRGBA_8888)
// first and then onReadPixels will read that to a 32bit temporary buffer.
if (this->caps()->isConfigRenderable(cpuTempConfig, false)) {
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = cpuTempConfig;
tempDrawInfo->fReadConfig = kAlpha_8_GrPixelConfig;
} else {
return false;
}
} else {
SkASSERT(tempDrawInfo->fTempSurfaceDesc.fConfig == srcConfig);
SkASSERT(tempDrawInfo->fReadConfig == kAlpha_8_GrPixelConfig);
}
} else if (this->caps()->isConfigRenderable(readConfig, false) &&
this->readPixelsSupported(readConfig, readConfig)) {
// Do a draw to convert from the src config to the read config.
ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference);
tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig;
tempDrawInfo->fReadConfig = readConfig;
} else {
return false;
}
}
if (srcAsRT &&
read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig, rowBytes)) {
ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference);
}
return true;
}
bool GrGLGpu::onReadPixels(GrSurface* surface,
int left, int top,
int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes) {
SkASSERT(surface);
GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!renderTarget) {
return false;
}
// OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels.
if (requires_srgb_conversion(surface->config(), config)) {
return false;
}
// We have a special case fallback for reading eight bit alpha. We will read back all four 8
// bit channels as RGBA and then extract A.
if (!this->readPixelsSupported(renderTarget, config)) {
// Don't attempt to do any srgb conversions since we only care about alpha.
GrPixelConfig tempConfig = kRGBA_8888_GrPixelConfig;
if (GrPixelConfigIsSRGB(renderTarget->config())) {
tempConfig = kSRGBA_8888_GrPixelConfig;
}
if (kAlpha_8_GrPixelConfig == config &&
this->readPixelsSupported(renderTarget, tempConfig)) {
SkAutoTDeleteArray<uint32_t> temp(new uint32_t[width * height * 4]);
if (this->onReadPixels(renderTarget, left, top, width, height, tempConfig, temp.get(),
width*4)) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer);
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
dst[j*rowBytes + i] = (0xFF000000U & temp[j*width+i]) >> 24;
}
}
return true;
}
}
return false;
}
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getReadPixelsFormat(renderTarget->config(), config, &externalFormat,
&externalType)) {
return false;
}
bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin();
// resolve the render target if necessary
switch (renderTarget->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
this->flushRenderTarget(renderTarget, &SkIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->onResolveRenderTarget(renderTarget);
// we don't track the state of the READ FBO ID.
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID()));
break;
default:
SkFAIL("Unknown resolve type");
}
const GrGLIRect& glvp = renderTarget->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height, renderTarget->origin());
size_t bytesPerPixel = GrBytesPerPixel(config);
size_t tightRowBytes = bytesPerPixel * width;
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH,
static_cast<GrGLint>(rowBytes / bytesPerPixel)));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1));
}
GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(config)));
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
externalFormat, externalType, readDst));
if (readDstRowBytes != tightRowBytes) {
SkASSERT(this->glCaps().packRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0));
flipY = false;
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
SkASSERT(rowBytes == readDstRowBytes);
if (flipY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
SkASSERT(readDst != buffer);
SkASSERT(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
// const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (flipY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (!flipY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
return true;
}
GrGpuCommandBuffer* GrGLGpu::createCommandBuffer(
GrRenderTarget* target,
const GrGpuCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuCommandBuffer::LoadAndStoreInfo& stencilInfo) {
return new GrGLGpuCommandBuffer(this);
}
void GrGLGpu::finishDrawTarget() {
if (fPLSHasBeenUsed) {
/* There is an ARM driver bug where if we use PLS, and then draw a frame which does not
* use PLS, it leaves garbage all over the place. As a workaround, we use PLS in a
* trivial way every frame. And since we use it every frame, there's never a point at which
* it becomes safe to stop using this workaround once we start.
*/
this->disableScissor();
this->disableWindowRectangles();
// using PLS in the presence of MSAA results in GL_INVALID_OPERATION
this->flushHWAAState(nullptr, false, false);
SkASSERT(!fHWPLSEnabled);
SkASSERT(fMSAAEnabled != kYes_TriState);
GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE));
this->stampPLSSetupRect(SkRect::MakeXYWH(-100.0f, -100.0f, 0.01f, 0.01f));
GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE));
}
}
void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bounds, bool disableSRGB) {
SkASSERT(target);
uint32_t rtID = target->uniqueID();
if (fHWBoundRenderTargetUniqueID != rtID) {
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()));
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (kChromium_GrGLDriver != this->glContext().driver()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
}
#endif
fHWBoundRenderTargetUniqueID = rtID;
this->flushViewport(target->getViewport());
}
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(GrPixelConfigIsSRGB(target->config()) && !disableSRGB);
}
this->didWriteToSurface(target, bounds);
}
void GrGLGpu::flushFramebufferSRGB(bool enable) {
if (enable && kYes_TriState != fHWSRGBFramebuffer) {
GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kYes_TriState;
} else if (!enable && kNo_TriState != fHWSRGBFramebuffer) {
GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB));
fHWSRGBFramebuffer = kNo_TriState;
}
}
void GrGLGpu::flushViewport(const GrGLIRect& viewport) {
if (fHWViewport != viewport) {
viewport.pushToGLViewport(this->glInterface());
fHWViewport = viewport;
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if defined(SK_BUILD_FOR_MAC)
#include <AGL/agl.h>
#elif defined(SK_BUILD_FOR_WIN32)
#include <gl/GL.h>
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGLGpu::draw(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrMesh meshes[],
int meshCount) {
this->handleDirtyContext();
bool hasPoints = false;
for (int i = 0; i < meshCount; ++i) {
if (meshes[i].primitiveType() == kPoints_GrPrimitiveType) {
hasPoints = true;
break;
}
}
if (!this->flushGLState(pipeline, primProc, hasPoints)) {
return;
}
GrPixelLocalStorageState plsState = primProc.getPixelLocalStorageState();
if (!fHWPLSEnabled && plsState !=
GrPixelLocalStorageState::kDisabled_GrPixelLocalStorageState) {
GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE));
this->setupPixelLocalStorage(pipeline, primProc);
fHWPLSEnabled = true;
}
if (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) {
GrStencilSettings stencil;
stencil.setDisabled();
this->flushStencil(stencil);
}
for (int i = 0; i < meshCount; ++i) {
if (GrXferBarrierType barrierType = pipeline.xferBarrierType(*this->caps())) {
this->xferBarrier(pipeline.getRenderTarget(), barrierType);
}
const GrMesh& mesh = meshes[i];
GrMesh::Iterator iter;
const GrNonInstancedMesh* nonInstMesh = iter.init(mesh);
do {
size_t indexOffsetInBytes = 0;
this->setupGeometry(primProc, *nonInstMesh, &indexOffsetInBytes);
if (nonInstMesh->isIndexed()) {
GrGLvoid* indices =
reinterpret_cast<GrGLvoid*>(indexOffsetInBytes +
sizeof(uint16_t) * nonInstMesh->startIndex());
// info.startVertex() was accounted for by setupGeometry.
if (this->glCaps().drawRangeElementsSupport()) {
// We assume here that the batch that generated the mesh used the full
// 0..vertexCount()-1 range.
int start = 0;
int end = nonInstMesh->vertexCount() - 1;
GL_CALL(DrawRangeElements(gPrimitiveType2GLMode[nonInstMesh->primitiveType()],
start, end,
nonInstMesh->indexCount(),
GR_GL_UNSIGNED_SHORT,
indices));
} else {
GL_CALL(DrawElements(gPrimitiveType2GLMode[nonInstMesh->primitiveType()],
nonInstMesh->indexCount(),
GR_GL_UNSIGNED_SHORT,
indices));
}
} else {
// Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account
// for startVertex in the DrawElements case. So we always rely on setupGeometry to
// have accounted for startVertex.
GL_CALL(DrawArrays(gPrimitiveType2GLMode[nonInstMesh->primitiveType()], 0,
nonInstMesh->vertexCount()));
}
fStats.incNumDraws();
} while ((nonInstMesh = iter.next()));
}
if (fHWPLSEnabled && plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) {
// PLS draws always involve multiple draws, finishing up with a non-PLS
// draw that writes to the color buffer. That draw ends up here; we wait
// until after it is complete to actually disable PLS.
GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE));
fHWPLSEnabled = false;
this->disableScissor();
this->disableWindowRectangles();
}
#if SWAP_PER_DRAW
glFlush();
#if defined(SK_BUILD_FOR_MAC)
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif defined(SK_BUILD_FOR_WIN32)
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGLGpu::stampPLSSetupRect(const SkRect& bounds) {
SkASSERT(this->glCaps().glslCaps()->plsPathRenderingSupport());
if (!fPLSSetupProgram.fProgram) {
if (!this->createPLSSetupProgram()) {
SkDebugf("Failed to create PLS setup program.\n");
return;
}
}
GL_CALL(UseProgram(fPLSSetupProgram.fProgram));
this->fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = this->fHWVertexArrayState.bindInternalVertexArray(this);
attribs->set(this, 0, fPLSSetupProgram.fArrayBuffer, kVec2f_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
attribs->disableUnusedArrays(this, 0x1);
GL_CALL(Uniform4f(fPLSSetupProgram.fPosXformUniform, bounds.width(), bounds.height(),
bounds.left(), bounds.top()));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle());
this->flushColorWrite(true);
this->flushDrawFace(GrDrawFace::kBoth);
if (!fHWStencilSettings.isDisabled()) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
}
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
GL_CALL(UseProgram(fHWProgramID));
if (!fHWStencilSettings.isDisabled()) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
}
}
void GrGLGpu::setupPixelLocalStorage(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc) {
fPLSHasBeenUsed = true;
const SkRect& bounds =
static_cast<const GrPLSGeometryProcessor&>(primProc).getBounds();
// setup pixel local storage -- this means capturing and storing the current framebuffer color
// and initializing the winding counts to zero
GrRenderTarget* rt = pipeline.getRenderTarget();
SkScalar width = SkIntToScalar(rt->width());
SkScalar height = SkIntToScalar(rt->height());
// dst rect edges in NDC (-1 to 1)
// having some issues with rounding, just expand the bounds by 1 and trust the scissor to keep
// it contained properly
GrGLfloat dx0 = 2.0f * (bounds.left() - 1) / width - 1.0f;
GrGLfloat dx1 = 2.0f * (bounds.right() + 1) / width - 1.0f;
GrGLfloat dy0 = -2.0f * (bounds.top() - 1) / height + 1.0f;
GrGLfloat dy1 = -2.0f * (bounds.bottom() + 1) / height + 1.0f;
SkRect deviceBounds = SkRect::MakeXYWH(dx0, dy0, dx1 - dx0, dy1 - dy0);
GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM));
this->stampPLSSetupRect(deviceBounds);
}
void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target);
if (rt->needsResolve()) {
// Some extensions automatically resolves the texture when it is read.
if (this->glCaps().usesMSAARenderBuffers()) {
SkASSERT(rt->textureFBOID() != rt->renderFBOID());
fStats.incRenderTargetBinds();
fStats.incRenderTargetBinds();
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()));
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
const GrGLIRect& vp = rt->getViewport();
const SkIRect dirtyRect = rt->getResolveRect();
if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) {
// Apple's extension uses the scissor as the blit bounds.
GrScissorState scissorState;
scissorState.set(dirtyRect);
this->flushScissor(scissorState, vp, rt->origin());
this->disableWindowRectangles();
GL_CALL(ResolveMultisampleFramebuffer());
} else {
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height(), target->origin());
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
this->disableWindowRectangles();
GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
}
rt->flagAsResolved();
}
}
namespace {
GrGLenum gr_to_gl_stencil_op(GrStencilOp op) {
static const GrGLenum gTable[kGrStencilOpCount] = {
GR_GL_KEEP, // kKeep
GR_GL_ZERO, // kZero
GR_GL_REPLACE, // kReplace
GR_GL_INVERT, // kInvert
GR_GL_INCR_WRAP, // kIncWrap
GR_GL_DECR_WRAP, // kDecWrap
GR_GL_INCR, // kIncClamp
GR_GL_DECR, // kDecClamp
};
GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep);
GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero);
GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace);
GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert);
GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap);
GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap);
GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp);
GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp);
SkASSERT(op < (GrStencilOp)kGrStencilOpCount);
return gTable[(int)op];
}
void set_gl_stencil(const GrGLInterface* gl,
const GrStencilSettings::Face& face,
GrGLenum glFace) {
GrGLenum glFunc = GrToGLStencilFunc(face.fTest);
GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp);
GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp);
GrGLint ref = face.fRef;
GrGLint mask = face.fTestMask;
GrGLint writeMask = face.fWriteMask;
if (GR_GL_FRONT_AND_BACK == glFace) {
// we call the combined func just in case separate stencil is not
// supported.
GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask));
GR_GL_CALL(gl, StencilMask(writeMask));
GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp));
} else {
GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask));
GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask));
GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp));
}
}
}
void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) {
if (fHWStencilSettings != stencilSettings) {
if (stencilSettings.isDisabled()) {
if (kNo_TriState != fHWStencilTestEnabled) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kNo_TriState;
}
} else {
if (kYes_TriState != fHWStencilTestEnabled) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kYes_TriState;
}
}
if (!stencilSettings.isDisabled()) {
if (stencilSettings.isTwoSided()) {
SkASSERT(this->caps()->twoSidedStencilSupport());
set_gl_stencil(this->glInterface(),
stencilSettings.front(),
GR_GL_FRONT);
set_gl_stencil(this->glInterface(),
stencilSettings.back(),
GR_GL_BACK);
} else {
set_gl_stencil(this->glInterface(),
stencilSettings.front(),
GR_GL_FRONT_AND_BACK);
}
}
fHWStencilSettings = stencilSettings;
}
}
void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled) {
// rt is only optional if useHWAA is false.
SkASSERT(rt || !useHWAA);
SkASSERT(!useHWAA || rt->isStencilBufferMultisampled());
if (this->caps()->multisampleDisableSupport()) {
if (useHWAA) {
if (kYes_TriState != fMSAAEnabled) {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fMSAAEnabled = kNo_TriState;
}
}
}
if (0 != this->caps()->maxRasterSamples()) {
if (useHWAA && rt->isMixedSampled() && !stencilEnabled) {
// Since stencil is disabled and we want more samples than are in the color buffer, we
// need to tell the rasterizer explicitly how many to run.
if (kYes_TriState != fHWRasterMultisampleEnabled) {
GL_CALL(Enable(GR_GL_RASTER_MULTISAMPLE));
fHWRasterMultisampleEnabled = kYes_TriState;
}
if (rt->numStencilSamples() != fHWNumRasterSamples) {
SkASSERT(rt->numStencilSamples() <= this->caps()->maxRasterSamples());
GL_CALL(RasterSamples(rt->numStencilSamples(), GR_GL_TRUE));
fHWNumRasterSamples = rt->numStencilSamples();
}
} else {
if (kNo_TriState != fHWRasterMultisampleEnabled) {
GL_CALL(Disable(GR_GL_RASTER_MULTISAMPLE));
fHWRasterMultisampleEnabled = kNo_TriState;
}
}
} else {
SkASSERT(!useHWAA || !rt->isMixedSampled() || stencilEnabled);
}
}
void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) {
// Any optimization to disable blending should have already been applied and
// tweaked the equation to "add" or "subtract", and the coeffs to (1, 0).
GrBlendEquation equation = blendInfo.fEquation;
GrBlendCoeff srcCoeff = blendInfo.fSrcBlend;
GrBlendCoeff dstCoeff = blendInfo.fDstBlend;
bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff;
if (blendOff) {
if (kNo_TriState != fHWBlendState.fEnabled) {
GL_CALL(Disable(GR_GL_BLEND));
// Workaround for the ARM KHR_blend_equation_advanced blacklist issue
// https://code.google.com/p/skia/issues/detail?id=3943
if (kARM_GrGLVendor == this->ctxInfo().vendor() &&
GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Set to any basic blending equation.
GrBlendEquation blend_equation = kAdd_GrBlendEquation;
GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation]));
fHWBlendState.fEquation = blend_equation;
}
fHWBlendState.fEnabled = kNo_TriState;
}
return;
}
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (fHWBlendState.fEquation != equation) {
GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation]));
fHWBlendState.fEquation = equation;
}
if (GrBlendEquationIsAdvanced(equation)) {
SkASSERT(this->caps()->advancedBlendEquationSupport());
// Advanced equations have no other blend state.
return;
}
if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWBlendState.fSrcCoeff = srcCoeff;
fHWBlendState.fDstCoeff = dstCoeff;
}
if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) {
GrColor blendConst = blendInfo.fBlendConstant;
blendConst = swizzle.applyTo(blendConst);
if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) {
GrGLfloat c[4];
GrColorToRGBAFloat(blendConst, c);
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWBlendState.fConstColor = blendConst;
fHWBlendState.fConstColorValid = true;
}
}
}
static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) {
static const GrGLenum gWrapModes[] = {
GR_GL_CLAMP_TO_EDGE,
GR_GL_REPEAT,
GR_GL_MIRRORED_REPEAT
};
GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes));
GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode);
GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode);
GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode);
return gWrapModes[tm];
}
static GrGLenum get_component_enum_from_char(char component) {
switch (component) {
case 'r':
return GR_GL_RED;
case 'g':
return GR_GL_GREEN;
case 'b':
return GR_GL_BLUE;
case 'a':
return GR_GL_ALPHA;
default:
SkFAIL("Unsupported component");
return 0;
}
}
/** If texture swizzling is available using tex parameters then it is preferred over mangling
the generated shader code. This potentially allows greater reuse of cached shaders. */
static void get_tex_param_swizzle(GrPixelConfig config,
const GrGLCaps& caps,
GrGLenum* glSwizzle) {
const GrSwizzle& swizzle = caps.configSwizzle(config);
for (int i = 0; i < 4; ++i) {
glSwizzle[i] = get_component_enum_from_char(swizzle.c_str()[i]);
}
}
void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, bool allowSRGBInputs,
GrGLTexture* texture) {
SkASSERT(texture);
#ifdef SK_DEBUG
if (!this->caps()->npotTextureTileSupport()) {
const bool tileX = SkShader::kClamp_TileMode != params.getTileModeX();
const bool tileY = SkShader::kClamp_TileMode != params.getTileModeY();
if (tileX || tileY) {
const int w = texture->width();
const int h = texture->height();
SkASSERT(SkIsPow2(w) && SkIsPow2(h));
}
}
#endif
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (texRT) {
this->onResolveRenderTarget(texRT);
}
uint32_t textureID = texture->uniqueID();
GrGLenum target = texture->target();
if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) {
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(target, texture->textureID()));
fHWBoundTextureUniqueIDs[unitIdx] = textureID;
}
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(&timestamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
static GrGLenum glMinFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR_MIPMAP_LINEAR
};
static GrGLenum glMagFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR
};
GrTextureParams::FilterMode filterMode = params.filterMode();
if (GrTextureParams::kMipMap_FilterMode == filterMode) {
if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) {
filterMode = GrTextureParams::kBilerp_FilterMode;
}
}
newTexParams.fMinFilter = glMinFilterModes[filterMode];
newTexParams.fMagFilter = glMagFilterModes[filterMode];
if (GrPixelConfigIsSRGB(texture->config())) {
newTexParams.fSRGBDecode = allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT;
if (setAll || newTexParams.fSRGBDecode != oldTexParams.fSRGBDecode) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, newTexParams.fSRGBDecode));
}
}
#ifdef SK_DEBUG
// We were supposed to ensure MipMaps were up-to-date and built correctly before getting here.
if (GrTextureParams::kMipMap_FilterMode == filterMode) {
SkASSERT(!texture->texturePriv().mipMapsAreDirty());
if (GrPixelConfigIsSRGB(texture->config())) {
SkSourceGammaTreatment gammaTreatment = allowSRGBInputs ?
SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore;
SkASSERT(texture->texturePriv().gammaTreatment() == gammaTreatment);
}
}
#endif
newTexParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel();
newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX());
newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY());
get_tex_param_swizzle(texture->config(), this->glCaps(), newTexParams.fSwizzleRGBA);
if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter));
}
if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter));
}
if (setAll || newTexParams.fMaxMipMapLevel != oldTexParams.fMaxMipMapLevel) {
// These are not supported in ES2 contexts
if (this->glCaps().mipMapLevelAndLodControlSupport()) {
if (newTexParams.fMaxMipMapLevel != 0) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_LOD, 0));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, 0));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LOD,
newTexParams.fMaxMipMapLevel));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL,
newTexParams.fMaxMipMapLevel));
}
}
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT));
}
if (this->glCaps().textureSwizzleSupport() &&
(setAll || memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
this->setTextureSwizzle(unitIdx, target, newTexParams.fSwizzleRGBA);
}
texture->setCachedTexParams(newTexParams, this->getResetTimestamp());
}
void GrGLGpu::bindTexelBuffer(int unitIdx, GrPixelConfig texelConfig, GrGLBuffer* buffer) {
SkASSERT(this->glCaps().canUseConfigWithTexelBuffer(texelConfig));
SkASSERT(unitIdx >= 0 && unitIdx < fHWBufferTextures.count());
BufferTexture& buffTex = fHWBufferTextures[unitIdx];
if (!buffTex.fKnownBound) {
if (!buffTex.fTextureID) {
GL_CALL(GenTextures(1, &buffTex.fTextureID));
if (!buffTex.fTextureID) {
return;
}
}
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID));
buffTex.fKnownBound = true;
}
if (buffer->uniqueID() != buffTex.fAttachedBufferUniqueID ||
buffTex.fTexelConfig != texelConfig) {
this->setTextureUnit(unitIdx);
GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER,
this->glCaps().configSizedInternalFormat(texelConfig),
buffer->bufferID()));
buffTex.fTexelConfig = texelConfig;
buffTex.fAttachedBufferUniqueID = buffer->uniqueID();
if (this->glCaps().textureSwizzleSupport() &&
this->glCaps().configSwizzle(texelConfig) != buffTex.fSwizzle) {
GrGLenum glSwizzle[4];
get_tex_param_swizzle(texelConfig, this->glCaps(), glSwizzle);
this->setTextureSwizzle(unitIdx, GR_GL_TEXTURE_BUFFER, glSwizzle);
buffTex.fSwizzle = this->glCaps().configSwizzle(texelConfig);
}
buffer->setHasAttachedToTexture();
fHWMaxUsedBufferTextureUnit = SkTMax(unitIdx, fHWMaxUsedBufferTextureUnit);
}
}
void GrGLGpu::generateMipmaps(const GrTextureParams& params, bool allowSRGBInputs,
GrGLTexture* texture) {
SkASSERT(texture);
// First, figure out if we need mips for this texture at all:
GrTextureParams::FilterMode filterMode = params.filterMode();
if (GrTextureParams::kMipMap_FilterMode == filterMode) {
if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) {
filterMode = GrTextureParams::kBilerp_FilterMode;
}
}
if (GrTextureParams::kMipMap_FilterMode != filterMode) {
return;
}
// If this is an sRGB texture and the mips were previously built the "other" way
// (gamma-correct vs. not), then we need to rebuild them. We don't need to check for
// srgbSupport - we'll *never* get an sRGB pixel config if we don't support it.
SkSourceGammaTreatment gammaTreatment = allowSRGBInputs
? SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore;
if (GrPixelConfigIsSRGB(texture->config()) &&
gammaTreatment != texture->texturePriv().gammaTreatment()) {
texture->texturePriv().dirtyMipMaps(true);
}
// If the mips aren't dirty, we're done:
if (!texture->texturePriv().mipMapsAreDirty()) {
return;
}
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (texRT) {
this->onResolveRenderTarget(texRT);
}
GrGLenum target = texture->target();
this->setScratchTextureUnit();
GL_CALL(BindTexture(target, texture->textureID()));
// Configure sRGB decode, if necessary. This state is the only thing needed for the driver
// call (glGenerateMipmap) to work correctly. Our manual method dirties other state, too.
if (GrPixelConfigIsSRGB(texture->config())) {
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT,
allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT));
}
// Either do manual mipmap generation or (if that fails), just rely on the driver:
if (!this->generateMipmap(texture, allowSRGBInputs)) {
GL_CALL(GenerateMipmap(target));
}
texture->texturePriv().dirtyMipMaps(false);
texture->texturePriv().setMaxMipMapLevel(SkMipMap::ComputeLevelCount(
texture->width(), texture->height()));
texture->texturePriv().setGammaTreatment(gammaTreatment);
// We have potentially set lots of state on the texture. Easiest to dirty it all:
texture->textureParamsModified();
}
void GrGLGpu::setTextureSwizzle(int unitIdx, GrGLenum target, const GrGLenum swizzle[]) {
this->setTextureUnit(unitIdx);
if (this->glStandard() == kGLES_GrGLStandard) {
// ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA.
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2]));
GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3]));
} else {
GR_STATIC_ASSERT(sizeof(swizzle[0]) == sizeof(GrGLint));
GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA,
reinterpret_cast<const GrGLint*>(swizzle)));
}
}
void GrGLGpu::flushColorWrite(bool writeColor) {
if (!writeColor) {
if (kNo_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE,
GR_GL_FALSE, GR_GL_FALSE));
fHWWriteToColor = kNo_TriState;
}
} else {
if (kYes_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
}
}
}
void GrGLGpu::flushDrawFace(GrDrawFace face) {
if (fHWDrawFace != face) {
switch (face) {
case GrDrawFace::kCCW:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
break;
case GrDrawFace::kCW:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_FRONT));
break;
case GrDrawFace::kBoth:
GL_CALL(Disable(GR_GL_CULL_FACE));
break;
default:
SkFAIL("Unknown draw face.");
}
fHWDrawFace = face;
}
}
void GrGLGpu::setTextureUnit(int unit) {
SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count());
if (unit != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fHWActiveTextureUnitIdx = unit;
}
}
void GrGLGpu::setScratchTextureUnit() {
// Bind the last texture unit since it is the least likely to be used by GrGLProgram.
int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1;
if (lastUnitIdx != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx));
fHWActiveTextureUnitIdx = lastUnitIdx;
}
// clear out the this field so that if a program does use this unit it will rebind the correct
// texture.
fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID;
}
// Determines whether glBlitFramebuffer could be used between src and dst.
static inline bool can_blit_framebuffer(const GrSurface* dst,
const GrSurface* src,
const GrGLGpu* gpu) {
if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) &&
gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0)) {
switch (gpu->glCaps().blitFramebufferSupport()) {
case GrGLCaps::kNone_BlitFramebufferSupport:
return false;
case GrGLCaps::kNoScalingNoMirroring_BlitFramebufferSupport:
// Our copy surface doesn't support scaling so just check for mirroring.
if (dst->origin() != src->origin()) {
return false;
}
break;
case GrGLCaps::kFull_BlitFramebufferSupport:
break;
}
// ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match
// or the rects are not the same (not just the same size but have the same edges).
if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() &&
(src->desc().fSampleCnt > 0 || src->config() != dst->config())) {
return false;
}
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
if (dstTex && dstTex->target() != GR_GL_TEXTURE_2D) {
return false;
}
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(dst->asTexture());
if (srcTex && srcTex->target() != GR_GL_TEXTURE_2D) {
return false;
}
return true;
} else {
return false;
}
}
static inline bool can_copy_texsubimage(const GrSurface* dst,
const GrSurface* src,
const GrGLGpu* gpu) {
// Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage
// and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps
// many drivers would allow it to work, but ANGLE does not.
if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() &&
(kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) {
return false;
}
const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget());
// If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer)
// then we don't want to copy to the texture but to the MSAA buffer.
if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) {
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
// If the src is multisampled (and uses an extension where there is a separate MSAA
// renderbuffer) then it is an invalid operation to call CopyTexSubImage
if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) {
return false;
}
const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture());
// CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a
// texture.
if (!dstTex) {
return false;
}
const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture());
// Check that we could wrap the source in an FBO, that the dst is TEXTURE_2D, that no mirroring
// is required.
if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) &&
!GrPixelConfigIsCompressed(src->config()) &&
(!srcTex || srcTex->target() == GR_GL_TEXTURE_2D) &&
dstTex->target() == GR_GL_TEXTURE_2D &&
dst->origin() == src->origin()) {
return true;
} else {
return false;
}
}
// If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is
// relative to is output.
void GrGLGpu::bindSurfaceFBOForCopy(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport,
TempFBOTarget tempFBOTarget) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
if (!rt) {
SkASSERT(surface->asTexture());
GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID();
GrGLenum target = static_cast<GrGLTexture*>(surface->asTexture())->target();
GrGLuint* tempFBOID;
tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID;
if (0 == *tempFBOID) {
GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID));
}
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID));
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
target,
texID,
0));
viewport->fLeft = 0;
viewport->fBottom = 0;
viewport->fWidth = surface->width();
viewport->fHeight = surface->height();
} else {
fStats.incRenderTargetBinds();
GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID()));
*viewport = rt->getViewport();
}
}
void GrGLGpu::unbindTextureFBOForCopy(GrGLenum fboTarget, GrSurface* surface) {
// bindSurfaceFBOForCopy temporarily binds textures that are not render targets to
if (!surface->asRenderTarget()) {
SkASSERT(surface->asTexture());
GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target();
GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
textureTarget,
0,
0));
}
}
bool GrGLGpu::initDescForDstCopy(const GrRenderTarget* src, GrSurfaceDesc* desc) const {
// If the src is a texture, we can implement the blit as a draw assuming the config is
// renderable.
if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) {
desc->fOrigin = kDefault_GrSurfaceOrigin;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = src->config();
return true;
}
const GrGLTexture* srcTexture = static_cast<const GrGLTexture*>(src->asTexture());
if (srcTexture && srcTexture->target() != GR_GL_TEXTURE_2D) {
// Not supported for FBO blit or CopyTexSubImage
return false;
}
// We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are
// possible and we return false to fallback to creating a render target dst for render-to-
// texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo
// creation. It isn't clear that avoiding temporary fbo creation is actually optimal.
GrSurfaceOrigin originForBlitFramebuffer = kDefault_GrSurfaceOrigin;
if (this->glCaps().blitFramebufferSupport() ==
GrGLCaps::kNoScalingNoMirroring_BlitFramebufferSupport) {
originForBlitFramebuffer = src->origin();
}
// Check for format issues with glCopyTexSubImage2D
if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() &&
kBGRA_8888_GrPixelConfig == src->config()) {
// glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit
// then we set up for that, otherwise fail.
if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) {
desc->fOrigin = originForBlitFramebuffer;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = kBGRA_8888_GrPixelConfig;
return true;
}
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src);
if (srcRT->renderFBOID() != srcRT->textureFBOID()) {
// It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or
// fail.
if (this->caps()->isConfigRenderable(src->config(), false)) {
desc->fOrigin = originForBlitFramebuffer;
desc->fFlags = kRenderTarget_GrSurfaceFlag;
desc->fConfig = src->config();
return true;
}
return false;
}
// We'll do a CopyTexSubImage. Make the dst a plain old texture.
desc->fConfig = src->config();
desc->fOrigin = src->origin();
desc->fFlags = kNone_GrSurfaceFlags;
return true;
}
bool GrGLGpu::onCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
// None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the
// swizzle.
if (this->glCaps().glslCaps()->configOutputSwizzle(src->config()) !=
this->glCaps().glslCaps()->configOutputSwizzle(dst->config())) {
return false;
}
// Don't prefer copying as a draw if the dst doesn't already have a FBO object.
bool preferCopy = SkToBool(dst->asRenderTarget());
if (preferCopy && src->asTexture()) {
if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) {
return true;
}
}
if (can_copy_texsubimage(dst, src, this)) {
this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint);
return true;
}
if (can_blit_framebuffer(dst, src, this)) {
return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint);
}
if (!preferCopy && src->asTexture()) {
if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) {
return true;
}
}
return false;
}
bool GrGLGpu::createCopyProgram(int progIdx) {
const GrGLSLCaps* glslCaps = this->glCaps().glslCaps();
static const GrSLType kSamplerTypes[3] = { kTexture2DSampler_GrSLType,
kTextureExternalSampler_GrSLType,
kTexture2DRectSampler_GrSLType };
if (kTextureExternalSampler_GrSLType == kSamplerTypes[progIdx] &&
!this->glCaps().glslCaps()->externalTextureSupport()) {
return false;
}
if (kTexture2DRectSampler_GrSLType == kSamplerTypes[progIdx] &&
!this->glCaps().rectangleTextureSupport()) {
return false;
}
if (!fCopyProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fCopyProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
}
if (!fCopyProgramArrayBuffer) {
return false;
}
SkASSERT(!fCopyPrograms[progIdx].fProgram);
GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram());
if (!fCopyPrograms[progIdx].fProgram) {
return false;
}
const char* version = glslCaps->versionDeclString();
GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uTexture("u_texture", kSamplerTypes[progIdx],
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType,
GrShaderVar::kVaryingOut_TypeModifier);
GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType,
GrShaderVar::kOut_TypeModifier);
SkString vshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoord.addModifier("noperspective");
}
aVertex.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
uPosXform.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
vTexCoord.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Copy Program VS\n"
"void main() {"
" v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;"
" gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;"
" gl_Position.zw = vec2(0, 1);"
"}"
);
SkString fshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
if (kSamplerTypes[progIdx] == kTextureExternalSampler_GrSLType) {
fshaderTxt.appendf("#extension %s : require\n",
glslCaps->externalTextureExtensionString());
}
GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps,
&fshaderTxt);
vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
vTexCoord.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
uTexture.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(
"// Copy Program FS\n"
"void main() {"
" sk_FragColor = %s(u_texture, v_texCoord);"
"}",
GrGLSLTexture2DFunctionName(kVec2f_GrSLType, kSamplerTypes[progIdx], this->glslGeneration())
);
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, &str, &length, 1,
&fStats);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, &str, &length, 1,
&fStats);
GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram));
GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform"));
GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::createMipmapProgram(int progIdx) {
const bool oddWidth = SkToBool(progIdx & 0x2);
const bool oddHeight = SkToBool(progIdx & 0x1);
const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1);
const GrGLSLCaps* glslCaps = this->glCaps().glslCaps();
SkASSERT(!fMipmapPrograms[progIdx].fProgram);
GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram());
if (!fMipmapPrograms[progIdx].fProgram) {
return false;
}
const char* version = glslCaps->versionDeclString();
GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType,
GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType,
GrShaderVar::kUniform_TypeModifier);
// We need 1, 2, or 4 texture coordinates (depending on parity of each dimension):
GrGLSLShaderVar vTexCoords[] = {
GrGLSLShaderVar("v_texCoord0", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier),
GrGLSLShaderVar("v_texCoord1", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier),
GrGLSLShaderVar("v_texCoord2", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier),
GrGLSLShaderVar("v_texCoord3", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier),
};
GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType,
GrShaderVar::kOut_TypeModifier);
SkString vshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
vshaderTxt.appendf("#extension %s : require\n", extension);
}
vTexCoords[0].addModifier("noperspective");
vTexCoords[1].addModifier("noperspective");
vTexCoords[2].addModifier("noperspective");
vTexCoords[3].addModifier("noperspective");
}
aVertex.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
uTexCoordXform.appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].appendDecl(glslCaps, &vshaderTxt);
vshaderTxt.append(";");
}
vshaderTxt.append(
"// Mipmap Program VS\n"
"void main() {"
" gl_Position.xy = a_vertex * vec2(2, 2) - vec2(1, 1);"
" gl_Position.zw = vec2(0, 1);"
);
// Insert texture coordinate computation:
if (oddWidth && oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;"
" v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + vec2(u_texCoordXform.x, 0);"
" v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + vec2(0, u_texCoordXform.z);"
" v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;"
);
} else if (oddWidth) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * vec2(u_texCoordXform.y, 1);"
" v_texCoord1 = a_vertex.xy * vec2(u_texCoordXform.y, 1) + vec2(u_texCoordXform.x, 0);"
);
} else if (oddHeight) {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy * vec2(1, u_texCoordXform.w);"
" v_texCoord1 = a_vertex.xy * vec2(1, u_texCoordXform.w) + vec2(0, u_texCoordXform.z);"
);
} else {
vshaderTxt.append(
" v_texCoord0 = a_vertex.xy;"
);
}
vshaderTxt.append("}");
SkString fshaderTxt(version);
if (glslCaps->noperspectiveInterpolationSupport()) {
if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) {
fshaderTxt.appendf("#extension %s : require\n", extension);
}
}
GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps,
&fshaderTxt);
for (int i = 0; i < numTaps; ++i) {
vTexCoords[i].setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier);
vTexCoords[i].appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
}
uTexture.appendDecl(glslCaps, &fshaderTxt);
fshaderTxt.append(";");
const char* sampleFunction = GrGLSLTexture2DFunctionName(kVec2f_GrSLType,
kTexture2DSampler_GrSLType,
this->glslGeneration());
fshaderTxt.append(
"// Mipmap Program FS\n"
"void main() {"
);
if (oddWidth && oddHeight) {
fshaderTxt.appendf(
" sk_FragColor = (%s(u_texture, v_texCoord0) + %s(u_texture, v_texCoord1) + "
" %s(u_texture, v_texCoord2) + %s(u_texture, v_texCoord3)) * 0.25;",
sampleFunction, sampleFunction, sampleFunction, sampleFunction
);
} else if (oddWidth || oddHeight) {
fshaderTxt.appendf(
" sk_FragColor = (%s(u_texture, v_texCoord0) + %s(u_texture, v_texCoord1)) * 0.5;",
sampleFunction, sampleFunction
);
} else {
fshaderTxt.appendf(
" sk_FragColor = %s(u_texture, v_texCoord0);",
sampleFunction
);
}
fshaderTxt.append("}");
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_VERTEX_SHADER, &str, &length, 1,
&fStats);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram,
GR_GL_FRAGMENT_SHADER, &str, &length, 1,
&fStats);
GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram));
GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture"));
GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform,
GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform"));
GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
bool GrGLGpu::createWireRectProgram() {
if (!fWireRectArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 1,
1, 0
};
fWireRectArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
if (!fWireRectArrayBuffer) {
return false;
}
}
SkASSERT(!fWireRectProgram.fProgram);
GL_CALL_RET(fWireRectProgram.fProgram, CreateProgram());
if (!fWireRectProgram.fProgram) {
return false;
}
GrGLSLShaderVar uColor("u_color", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar uRect("u_rect", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier);
GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier);
const char* version = this->glCaps().glslCaps()->versionDeclString();
// The rect uniform specifies the rectangle in NDC space as a vec4 (left,top,right,bottom). The
// program is used with a vbo containing the unit square. Vertices are computed from the rect
// uniform using the 4 vbo vertices.
SkString vshaderTxt(version);
aVertex.appendDecl(this->glCaps().glslCaps(), &vshaderTxt);
vshaderTxt.append(";");
uRect.appendDecl(this->glCaps().glslCaps(), &vshaderTxt);
vshaderTxt.append(";");
vshaderTxt.append(
"// Wire Rect Program VS\n"
"void main() {"
" gl_Position.x = u_rect.x + a_vertex.x * (u_rect.z - u_rect.x);"
" gl_Position.y = u_rect.y + a_vertex.y * (u_rect.w - u_rect.y);"
" gl_Position.zw = vec2(0, 1);"
"}"
);
GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier);
SkString fshaderTxt(version);
GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision,
*this->glCaps().glslCaps(),
&fshaderTxt);
uColor.appendDecl(this->glCaps().glslCaps(), &fshaderTxt);
fshaderTxt.append(";");
fshaderTxt.appendf(
"// Write Rect Program FS\n"
"void main() {"
" sk_FragColor = %s;"
"}",
uColor.c_str()
);
const char* str;
GrGLint length;
str = vshaderTxt.c_str();
length = SkToInt(vshaderTxt.size());
GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram,
GR_GL_VERTEX_SHADER, &str, &length, 1,
&fStats);
str = fshaderTxt.c_str();
length = SkToInt(fshaderTxt.size());
GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram,
GR_GL_FRAGMENT_SHADER, &str, &length, 1,
&fStats);
GL_CALL(LinkProgram(fWireRectProgram.fProgram));
GL_CALL_RET(fWireRectProgram.fColorUniform,
GetUniformLocation(fWireRectProgram.fProgram, "u_color"));
GL_CALL_RET(fWireRectProgram.fRectUniform,
GetUniformLocation(fWireRectProgram.fProgram, "u_rect"));
GL_CALL(BindAttribLocation(fWireRectProgram.fProgram, 0, "a_vertex"));
GL_CALL(DeleteShader(vshader));
GL_CALL(DeleteShader(fshader));
return true;
}
void GrGLGpu::drawDebugWireRect(GrRenderTarget* rt, const SkIRect& rect, GrColor color) {
// TODO: This should swizzle the output to match dst's config, though it is a debugging
// visualization.
this->handleDirtyContext();
if (!fWireRectProgram.fProgram) {
if (!this->createWireRectProgram()) {
SkDebugf("Failed to create wire rect program.\n");
return;
}
}
int w = rt->width();
int h = rt->height();
// Compute the edges of the rectangle (top,left,right,bottom) in NDC space. Must consider
// whether the render target is flipped or not.
GrGLfloat edges[4];
edges[0] = SkIntToScalar(rect.fLeft) + 0.5f;
edges[2] = SkIntToScalar(rect.fRight) - 0.5f;
if (kBottomLeft_GrSurfaceOrigin == rt->origin()) {
edges[1] = h - (SkIntToScalar(rect.fTop) + 0.5f);
edges[3] = h - (SkIntToScalar(rect.fBottom) - 0.5f);
} else {
edges[1] = SkIntToScalar(rect.fTop) + 0.5f;
edges[3] = SkIntToScalar(rect.fBottom) - 0.5f;
}
edges[0] = 2 * edges[0] / w - 1.0f;
edges[1] = 2 * edges[1] / h - 1.0f;
edges[2] = 2 * edges[2] / w - 1.0f;
edges[3] = 2 * edges[3] / h - 1.0f;
GrGLfloat channels[4];
static const GrGLfloat scale255 = 1.f / 255.f;
channels[0] = GrColorUnpackR(color) * scale255;
channels[1] = GrColorUnpackG(color) * scale255;
channels[2] = GrColorUnpackB(color) * scale255;
channels[3] = GrColorUnpackA(color) * scale255;
GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(rt->asRenderTarget());
this->flushRenderTarget(glRT, &rect);
GL_CALL(UseProgram(fWireRectProgram.fProgram));
fHWProgramID = fWireRectProgram.fProgram;
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->set(this, 0, fWireRectArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat),
0);
attribs->disableUnusedArrays(this, 0x1);
GL_CALL(Uniform4fv(fWireRectProgram.fRectUniform, 1, edges));
GL_CALL(Uniform4fv(fWireRectProgram.fColorUniform, 1, channels));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushDrawFace(GrDrawFace::kBoth);
this->flushHWAAState(glRT, false, false);
this->disableScissor();
this->disableWindowRectangles();
GrStencilSettings stencil;
stencil.setDisabled();
this->flushStencil(stencil);
GL_CALL(DrawArrays(GR_GL_LINE_LOOP, 0, 4));
}
bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture());
int progIdx = TextureTargetToCopyProgramIdx(srcTex->target());
if (!fCopyPrograms[progIdx].fProgram) {
if (!this->createCopyProgram(progIdx)) {
SkDebugf("Failed to create copy program.\n");
return false;
}
}
int w = srcRect.width();
int h = srcRect.height();
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode);
this->bindTexture(0, params, true, srcTex);
GrGLIRect dstVP;
this->bindSurfaceFBOForCopy(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget);
this->flushViewport(dstVP);
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h);
GL_CALL(UseProgram(fCopyPrograms[progIdx].fProgram));
fHWProgramID = fCopyPrograms[progIdx].fProgram;
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->set(this, 0, fCopyProgramArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat),
0);
attribs->disableUnusedArrays(this, 0x1);
// dst rect edges in NDC (-1 to 1)
int dw = dst->width();
int dh = dst->height();
GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f;
GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f;
GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f;
GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f;
if (kBottomLeft_GrSurfaceOrigin == dst->origin()) {
dy0 = -dy0;
dy1 = -dy1;
}
GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft;
GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w);
GrGLfloat sy0 = (GrGLfloat)srcRect.fTop;
GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h);
int sh = src->height();
if (kBottomLeft_GrSurfaceOrigin == src->origin()) {
sy0 = sh - sy0;
sy1 = sh - sy1;
}
// src rect edges in normalized texture space (0 to 1) unless we're using a RECTANGLE texture.
GrGLenum srcTarget = srcTex->target();
if (GR_GL_TEXTURE_RECTANGLE != srcTarget) {
int sw = src->width();
sx0 /= sw;
sx1 /= sw;
sy0 /= sh;
sy1 /= sh;
}
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0));
GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform,
sx1 - sx0, sy1 - sy0, sx0, sy0));
GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0));
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushDrawFace(GrDrawFace::kBoth);
this->flushHWAAState(nullptr, false, false);
this->disableScissor();
this->disableWindowRectangles();
GrStencilSettings stencil;
stencil.setDisabled();
this->flushStencil(stencil);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, dst);
this->didWriteToSurface(dst, &dstRect);
return true;
}
void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_copy_texsubimage(dst, src, this));
GrGLIRect srcVP;
this->bindSurfaceFBOForCopy(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget);
GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture());
SkASSERT(dstTex);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
GrGLIRect srcGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
this->setScratchTextureUnit();
GL_CALL(BindTexture(dstTex->target(), dstTex->textureID()));
GrGLint dstY;
if (kBottomLeft_GrSurfaceOrigin == dst->origin()) {
dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight);
} else {
dstY = dstPoint.fY;
}
GL_CALL(CopyTexSubImage2D(dstTex->target(), 0,
dstPoint.fX, dstY,
srcGLRect.fLeft, srcGLRect.fBottom,
srcGLRect.fWidth, srcGLRect.fHeight));
this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, src);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, &dstRect);
}
bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(can_blit_framebuffer(dst, src, this));
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
if (dst == src) {
if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) {
return false;
}
}
GrGLIRect dstVP;
GrGLIRect srcVP;
this->bindSurfaceFBOForCopy(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget);
this->bindSurfaceFBOForCopy(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget);
// We modified the bound FBO
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
GrGLIRect srcGLRect;
GrGLIRect dstGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
dstGLRect.setRelativeTo(dstVP,
dstRect.fLeft,
dstRect.fTop,
dstRect.width(),
dstRect.height(),
dst->origin());
// BlitFrameBuffer respects the scissor, so disable it.
this->disableScissor();
this->disableWindowRectangles();
GrGLint srcY0;
GrGLint srcY1;
// Does the blit need to y-mirror or not?
if (src->origin() == dst->origin()) {
srcY0 = srcGLRect.fBottom;
srcY1 = srcGLRect.fBottom + srcGLRect.fHeight;
} else {
srcY0 = srcGLRect.fBottom + srcGLRect.fHeight;
srcY1 = srcGLRect.fBottom;
}
GL_CALL(BlitFramebuffer(srcGLRect.fLeft,
srcY0,
srcGLRect.fLeft + srcGLRect.fWidth,
srcY1,
dstGLRect.fLeft,
dstGLRect.fBottom,
dstGLRect.fLeft + dstGLRect.fWidth,
dstGLRect.fBottom + dstGLRect.fHeight,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
this->unbindTextureFBOForCopy(GR_GL_DRAW_FRAMEBUFFER, dst);
this->unbindTextureFBOForCopy(GR_GL_READ_FRAMEBUFFER, src);
this->didWriteToSurface(dst, &dstRect);
return true;
}
// Manual implementation of mipmap generation, to work around driver bugs w/sRGB.
// Uses draw calls to do a series of downsample operations to successive mips.
// If this returns false, then the calling code falls back to using glGenerateMipmap.
bool GrGLGpu::generateMipmap(GrGLTexture* texture, bool gammaCorrect) {
// Our iterative downsample requires the ability to limit which level we're sampling:
if (!this->glCaps().doManualMipmapping()) {
return false;
}
// Mipmaps are only supported on 2D textures:
if (GR_GL_TEXTURE_2D != texture->target()) {
return false;
}
// We need to be able to render to the texture for this to work:
if (!this->caps()->isConfigRenderable(texture->config(), false)) {
return false;
}
// If we're mipping an sRGB texture, we need to ensure FB sRGB is correct:
if (GrPixelConfigIsSRGB(texture->config())) {
// If we have write-control, just set the state that we want:
if (this->glCaps().srgbWriteControl()) {
this->flushFramebufferSRGB(gammaCorrect);
} else if (!gammaCorrect) {
// If we don't have write-control we can't do non-gamma-correct mipmapping:
return false;
}
}
int width = texture->width();
int height = texture->height();
int levelCount = SkMipMap::ComputeLevelCount(width, height) + 1;
// Define all mips, if we haven't previously done so:
if (0 == texture->texturePriv().maxMipMapLevel()) {
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(texture->config(), texture->config(),
&internalFormat, &externalFormat, &externalType)) {
return false;
}
for (GrGLint level = 1; level < levelCount; ++level) {
// Define the next mip:
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, level, internalFormat,
width, height, 0,
externalFormat, externalType, nullptr));
}
}
// Create (if necessary), then bind temporary FBO:
if (0 == fTempDstFBOID) {
GL_CALL(GenFramebuffers(1, &fTempDstFBOID));
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID));
fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID;
// Bind the texture, to get things configured for filtering.
// We'll be changing our base level further below:
this->setTextureUnit(0);
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
this->bindTexture(0, params, gammaCorrect, texture);
// Vertex data:
if (!fMipmapProgramArrayBuffer) {
static const GrGLfloat vdata[] = {
0, 0,
0, 1,
1, 0,
1, 1
};
fMipmapProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata),
kVertex_GrBufferType,
kStatic_GrAccessPattern, vdata));
}
if (!fMipmapProgramArrayBuffer) {
return false;
}
fHWVertexArrayState.setVertexArrayID(this, 0);
GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this);
attribs->set(this, 0, fMipmapProgramArrayBuffer, kVec2f_GrVertexAttribType,
2 * sizeof(GrGLfloat), 0);
attribs->disableUnusedArrays(this, 0x1);
// Set "simple" state once:
GrXferProcessor::BlendInfo blendInfo;
blendInfo.reset();
this->flushBlend(blendInfo, GrSwizzle::RGBA());
this->flushColorWrite(true);
this->flushDrawFace(GrDrawFace::kBoth);
this->flushHWAAState(nullptr, false, false);
this->disableScissor();
this->disableWindowRectangles();
GrStencilSettings stencil;
stencil.setDisabled();
this->flushStencil(stencil);
// Do all the blits:
width = texture->width();
height = texture->height();
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
for (GrGLint level = 1; level < levelCount; ++level) {
// Get and bind the program for this particular downsample (filter shape can vary):
int progIdx = TextureSizeToMipmapProgramIdx(width, height);
if (!fMipmapPrograms[progIdx].fProgram) {
if (!this->createMipmapProgram(progIdx)) {
SkDebugf("Failed to create mipmap program.\n");
return false;
}
}
GL_CALL(UseProgram(fMipmapPrograms[progIdx].fProgram));
fHWProgramID = fMipmapPrograms[progIdx].fProgram;
// Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h)
const float invWidth = 1.0f / width;
const float invHeight = 1.0f / height;
GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform,
invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight));
GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0));
// Only sample from previous mip
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1));
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, texture->textureID(), level));
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
viewport.fWidth = width;
viewport.fHeight = height;
this->flushViewport(viewport);
GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4));
}
// Unbind:
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, 0, 0));
return true;
}
void GrGLGpu::onGetMultisampleSpecs(GrRenderTarget* rt, const GrStencilSettings& stencil,
int* effectiveSampleCnt, SamplePattern* samplePattern) {
SkASSERT(!rt->isMixedSampled() || rt->renderTargetPriv().getStencilAttachment() ||
stencil.isDisabled());
this->flushStencil(stencil);
this->flushHWAAState(rt, true, !stencil.isDisabled());
this->flushRenderTarget(static_cast<GrGLRenderTarget*>(rt), &SkIRect::EmptyIRect());
if (0 != this->caps()->maxRasterSamples()) {
GR_GL_GetIntegerv(this->glInterface(), GR_GL_EFFECTIVE_RASTER_SAMPLES, effectiveSampleCnt);
} else {
GR_GL_GetIntegerv(this->glInterface(), GR_GL_SAMPLES, effectiveSampleCnt);
}
SkASSERT(*effectiveSampleCnt >= rt->desc().fSampleCnt);
if (this->caps()->sampleLocationsSupport()) {
samplePattern->reset(*effectiveSampleCnt);
for (int i = 0; i < *effectiveSampleCnt; ++i) {
GrGLfloat pos[2];
GL_CALL(GetMultisamplefv(GR_GL_SAMPLE_POSITION, i, pos));
if (kTopLeft_GrSurfaceOrigin == rt->origin()) {
(*samplePattern)[i].set(pos[0], pos[1]);
} else {
(*samplePattern)[i].set(pos[0], 1 - pos[1]);
}
}
}
}
void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) {
SkASSERT(type);
switch (type) {
case kTexture_GrXferBarrierType: {
GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt);
if (glrt->textureFBOID() != glrt->renderFBOID()) {
// The render target uses separate storage so no need for glTextureBarrier.
// FIXME: The render target will resolve automatically when its texture is bound,
// but we could resolve only the bounds that will be read if we do it here instead.
return;
}
SkASSERT(this->caps()->textureBarrierSupport());
GL_CALL(TextureBarrier());
return;
}
case kBlend_GrXferBarrierType:
SkASSERT(GrCaps::kAdvanced_BlendEquationSupport ==
this->caps()->blendEquationSupport());
GL_CALL(BlendBarrier());
return;
default: break; // placate compiler warnings that kNone not handled
}
}
GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h,
GrPixelConfig config, bool /*isRT*/) {
if (!this->caps()->isConfigTexturable(config)) {
return false;
}
GrGLTextureInfo* info = new GrGLTextureInfo;
info->fTarget = GR_GL_TEXTURE_2D;
info->fID = 0;
GL_CALL(GenTextures(1, &info->fID));
GL_CALL(ActiveTexture(GR_GL_TEXTURE0));
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1));
GL_CALL(BindTexture(info->fTarget, info->fID));
fHWBoundTextureUniqueIDs[0] = 0;
GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST));
GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE));
GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE));
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat,
&externalType)) {
delete info;
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
return 0;
#else
return reinterpret_cast<GrBackendObject>(nullptr);
#endif
}
GL_CALL(TexImage2D(info->fTarget, 0, internalFormat, w, h, 0, externalFormat,
externalType, pixels));
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
GrGLuint id = info->fID;
delete info;
return id;
#else
return reinterpret_cast<GrBackendObject>(info);
#endif
}
bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const {
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
GrGLuint texID = (GrGLuint)id;
#else
GrGLuint texID = reinterpret_cast<const GrGLTextureInfo*>(id)->fID;
#endif
GrGLboolean result;
GL_CALL_RET(result, IsTexture(texID));
return (GR_GL_TRUE == result);
}
void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id, bool abandonTexture) {
#ifdef SK_IGNORE_GL_TEXTURE_TARGET
GrGLuint texID = (GrGLuint)id;
#else
const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(id);
GrGLuint texID = info->fID;
#endif
if (!abandonTexture) {
GL_CALL(DeleteTextures(1, &texID));
}
#ifndef SK_IGNORE_GL_TEXTURE_TARGET
delete info;
#endif
}
void GrGLGpu::resetShaderCacheForTesting() const {
fProgramCache->abandon();
}
///////////////////////////////////////////////////////////////////////////////
GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu,
const GrBuffer* ibuf) {
GrGLAttribArrayState* attribState;
if (gpu->glCaps().isCoreProfile()) {
if (!fCoreProfileVertexArray) {
GrGLuint arrayID;
GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID));
int attrCount = gpu->glCaps().maxVertexAttributes();
fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount);
}
if (ibuf) {
attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf);
} else {
attribState = fCoreProfileVertexArray->bind(gpu);
}
} else {
if (ibuf) {
// bindBuffer implicitly binds VAO 0 when binding an index buffer.
gpu->bindBuffer(kIndex_GrBufferType, ibuf);
} else {
this->setVertexArrayID(gpu, 0);
}
int attrCount = gpu->glCaps().maxVertexAttributes();
if (fDefaultVertexArrayAttribState.count() != attrCount) {
fDefaultVertexArrayAttribState.resize(attrCount);
}
attribState = &fDefaultVertexArrayAttribState;
}
return attribState;
}
bool GrGLGpu::onMakeCopyForTextureParams(GrTexture* texture, const GrTextureParams& textureParams,
GrTextureProducer::CopyParams* copyParams) const {
if (textureParams.isTiled() ||
GrTextureParams::kMipMap_FilterMode == textureParams.filterMode()) {
GrGLTexture* glTexture = static_cast<GrGLTexture*>(texture);
if (GR_GL_TEXTURE_EXTERNAL == glTexture->target() ||
GR_GL_TEXTURE_RECTANGLE == glTexture->target()) {
copyParams->fFilter = GrTextureParams::kNone_FilterMode;
copyParams->fWidth = texture->width();
copyParams->fHeight = texture->height();
return true;
}
}
return false;
}