| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrAAConvexPathRenderer.h" |
| |
| #include "GrAAConvexTessellator.h" |
| #include "GrCaps.h" |
| #include "GrContext.h" |
| #include "GrDefaultGeoProcFactory.h" |
| #include "GrDrawOpTest.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrOpFlushState.h" |
| #include "GrPathUtils.h" |
| #include "GrPipelineBuilder.h" |
| #include "GrProcessor.h" |
| #include "SkGeometry.h" |
| #include "SkPathPriv.h" |
| #include "SkString.h" |
| #include "SkTraceEvent.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "glsl/GrGLSLVarying.h" |
| #include "glsl/GrGLSLVertexShaderBuilder.h" |
| #include "ops/GrMeshDrawOp.h" |
| |
| GrAAConvexPathRenderer::GrAAConvexPathRenderer() { |
| } |
| |
| struct Segment { |
| enum { |
| // These enum values are assumed in member functions below. |
| kLine = 0, |
| kQuad = 1, |
| } fType; |
| |
| // line uses one pt, quad uses 2 pts |
| SkPoint fPts[2]; |
| // normal to edge ending at each pt |
| SkVector fNorms[2]; |
| // is the corner where the previous segment meets this segment |
| // sharp. If so, fMid is a normalized bisector facing outward. |
| SkVector fMid; |
| |
| int countPoints() { |
| GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| return fType + 1; |
| } |
| const SkPoint& endPt() const { |
| GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| return fPts[fType]; |
| } |
| const SkPoint& endNorm() const { |
| GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| return fNorms[fType]; |
| } |
| }; |
| |
| typedef SkTArray<Segment, true> SegmentArray; |
| |
| static void center_of_mass(const SegmentArray& segments, SkPoint* c) { |
| SkScalar area = 0; |
| SkPoint center = {0, 0}; |
| int count = segments.count(); |
| SkPoint p0 = {0, 0}; |
| if (count > 2) { |
| // We translate the polygon so that the first point is at the origin. |
| // This avoids some precision issues with small area polygons far away |
| // from the origin. |
| p0 = segments[0].endPt(); |
| SkPoint pi; |
| SkPoint pj; |
| // the first and last iteration of the below loop would compute |
| // zeros since the starting / ending point is (0,0). So instead we start |
| // at i=1 and make the last iteration i=count-2. |
| pj = segments[1].endPt() - p0; |
| for (int i = 1; i < count - 1; ++i) { |
| pi = pj; |
| pj = segments[i + 1].endPt() - p0; |
| |
| SkScalar t = SkPoint::CrossProduct(pi, pj); |
| area += t; |
| center.fX += (pi.fX + pj.fX) * t; |
| center.fY += (pi.fY + pj.fY) * t; |
| } |
| } |
| |
| // If the poly has no area then we instead return the average of |
| // its points. |
| if (SkScalarNearlyZero(area)) { |
| SkPoint avg; |
| avg.set(0, 0); |
| for (int i = 0; i < count; ++i) { |
| const SkPoint& pt = segments[i].endPt(); |
| avg.fX += pt.fX; |
| avg.fY += pt.fY; |
| } |
| SkScalar denom = SK_Scalar1 / count; |
| avg.scale(denom); |
| *c = avg; |
| } else { |
| area *= 3; |
| area = SkScalarInvert(area); |
| center.scale(area); |
| // undo the translate of p0 to the origin. |
| *c = center + p0; |
| } |
| SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); |
| } |
| |
| static void compute_vectors(SegmentArray* segments, |
| SkPoint* fanPt, |
| SkPathPriv::FirstDirection dir, |
| int* vCount, |
| int* iCount) { |
| center_of_mass(*segments, fanPt); |
| int count = segments->count(); |
| |
| // Make the normals point towards the outside |
| SkPoint::Side normSide; |
| if (dir == SkPathPriv::kCCW_FirstDirection) { |
| normSide = SkPoint::kRight_Side; |
| } else { |
| normSide = SkPoint::kLeft_Side; |
| } |
| |
| *vCount = 0; |
| *iCount = 0; |
| // compute normals at all points |
| for (int a = 0; a < count; ++a) { |
| Segment& sega = (*segments)[a]; |
| int b = (a + 1) % count; |
| Segment& segb = (*segments)[b]; |
| |
| const SkPoint* prevPt = &sega.endPt(); |
| int n = segb.countPoints(); |
| for (int p = 0; p < n; ++p) { |
| segb.fNorms[p] = segb.fPts[p] - *prevPt; |
| segb.fNorms[p].normalize(); |
| segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); |
| prevPt = &segb.fPts[p]; |
| } |
| if (Segment::kLine == segb.fType) { |
| *vCount += 5; |
| *iCount += 9; |
| } else { |
| *vCount += 6; |
| *iCount += 12; |
| } |
| } |
| |
| // compute mid-vectors where segments meet. TODO: Detect shallow corners |
| // and leave out the wedges and close gaps by stitching segments together. |
| for (int a = 0; a < count; ++a) { |
| const Segment& sega = (*segments)[a]; |
| int b = (a + 1) % count; |
| Segment& segb = (*segments)[b]; |
| segb.fMid = segb.fNorms[0] + sega.endNorm(); |
| segb.fMid.normalize(); |
| // corner wedges |
| *vCount += 4; |
| *iCount += 6; |
| } |
| } |
| |
| struct DegenerateTestData { |
| DegenerateTestData() { fStage = kInitial; } |
| bool isDegenerate() const { return kNonDegenerate != fStage; } |
| enum { |
| kInitial, |
| kPoint, |
| kLine, |
| kNonDegenerate |
| } fStage; |
| SkPoint fFirstPoint; |
| SkVector fLineNormal; |
| SkScalar fLineC; |
| }; |
| |
| static const SkScalar kClose = (SK_Scalar1 / 16); |
| static const SkScalar kCloseSqd = kClose * kClose; |
| |
| static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { |
| switch (data->fStage) { |
| case DegenerateTestData::kInitial: |
| data->fFirstPoint = pt; |
| data->fStage = DegenerateTestData::kPoint; |
| break; |
| case DegenerateTestData::kPoint: |
| if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { |
| data->fLineNormal = pt - data->fFirstPoint; |
| data->fLineNormal.normalize(); |
| data->fLineNormal.setOrthog(data->fLineNormal); |
| data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); |
| data->fStage = DegenerateTestData::kLine; |
| } |
| break; |
| case DegenerateTestData::kLine: |
| if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { |
| data->fStage = DegenerateTestData::kNonDegenerate; |
| } |
| case DegenerateTestData::kNonDegenerate: |
| break; |
| default: |
| SkFAIL("Unexpected degenerate test stage."); |
| } |
| } |
| |
| static inline bool get_direction(const SkPath& path, const SkMatrix& m, |
| SkPathPriv::FirstDirection* dir) { |
| if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { |
| return false; |
| } |
| // check whether m reverses the orientation |
| SkASSERT(!m.hasPerspective()); |
| SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) - |
| m.get(SkMatrix::kMSkewX) * m.get(SkMatrix::kMSkewY); |
| if (det2x2 < 0) { |
| *dir = SkPathPriv::OppositeFirstDirection(*dir); |
| } |
| return true; |
| } |
| |
| static inline void add_line_to_segment(const SkPoint& pt, |
| SegmentArray* segments) { |
| segments->push_back(); |
| segments->back().fType = Segment::kLine; |
| segments->back().fPts[0] = pt; |
| } |
| |
| static inline void add_quad_segment(const SkPoint pts[3], |
| SegmentArray* segments) { |
| if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { |
| if (pts[0] != pts[2]) { |
| add_line_to_segment(pts[2], segments); |
| } |
| } else { |
| segments->push_back(); |
| segments->back().fType = Segment::kQuad; |
| segments->back().fPts[0] = pts[1]; |
| segments->back().fPts[1] = pts[2]; |
| } |
| } |
| |
| static inline void add_cubic_segments(const SkPoint pts[4], |
| SkPathPriv::FirstDirection dir, |
| SegmentArray* segments) { |
| SkSTArray<15, SkPoint, true> quads; |
| GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads); |
| int count = quads.count(); |
| for (int q = 0; q < count; q += 3) { |
| add_quad_segment(&quads[q], segments); |
| } |
| } |
| |
| static bool get_segments(const SkPath& path, |
| const SkMatrix& m, |
| SegmentArray* segments, |
| SkPoint* fanPt, |
| int* vCount, |
| int* iCount) { |
| SkPath::Iter iter(path, true); |
| // This renderer over-emphasizes very thin path regions. We use the distance |
| // to the path from the sample to compute coverage. Every pixel intersected |
| // by the path will be hit and the maximum distance is sqrt(2)/2. We don't |
| // notice that the sample may be close to a very thin area of the path and |
| // thus should be very light. This is particularly egregious for degenerate |
| // line paths. We detect paths that are very close to a line (zero area) and |
| // draw nothing. |
| DegenerateTestData degenerateData; |
| SkPathPriv::FirstDirection dir; |
| // get_direction can fail for some degenerate paths. |
| if (!get_direction(path, m, &dir)) { |
| return false; |
| } |
| |
| for (;;) { |
| SkPoint pts[4]; |
| SkPath::Verb verb = iter.next(pts, true, true); |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| m.mapPoints(pts, 1); |
| update_degenerate_test(°enerateData, pts[0]); |
| break; |
| case SkPath::kLine_Verb: { |
| m.mapPoints(&pts[1], 1); |
| update_degenerate_test(°enerateData, pts[1]); |
| add_line_to_segment(pts[1], segments); |
| break; |
| } |
| case SkPath::kQuad_Verb: |
| m.mapPoints(pts, 3); |
| update_degenerate_test(°enerateData, pts[1]); |
| update_degenerate_test(°enerateData, pts[2]); |
| add_quad_segment(pts, segments); |
| break; |
| case SkPath::kConic_Verb: { |
| m.mapPoints(pts, 3); |
| SkScalar weight = iter.conicWeight(); |
| SkAutoConicToQuads converter; |
| const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); |
| for (int i = 0; i < converter.countQuads(); ++i) { |
| update_degenerate_test(°enerateData, quadPts[2*i + 1]); |
| update_degenerate_test(°enerateData, quadPts[2*i + 2]); |
| add_quad_segment(quadPts + 2*i, segments); |
| } |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| m.mapPoints(pts, 4); |
| update_degenerate_test(°enerateData, pts[1]); |
| update_degenerate_test(°enerateData, pts[2]); |
| update_degenerate_test(°enerateData, pts[3]); |
| add_cubic_segments(pts, dir, segments); |
| break; |
| }; |
| case SkPath::kDone_Verb: |
| if (degenerateData.isDegenerate()) { |
| return false; |
| } else { |
| compute_vectors(segments, fanPt, dir, vCount, iCount); |
| return true; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| struct QuadVertex { |
| SkPoint fPos; |
| SkPoint fUV; |
| SkScalar fD0; |
| SkScalar fD1; |
| }; |
| |
| struct Draw { |
| Draw() : fVertexCnt(0), fIndexCnt(0) {} |
| int fVertexCnt; |
| int fIndexCnt; |
| }; |
| |
| typedef SkTArray<Draw, true> DrawArray; |
| |
| static void create_vertices(const SegmentArray& segments, |
| const SkPoint& fanPt, |
| DrawArray* draws, |
| QuadVertex* verts, |
| uint16_t* idxs) { |
| Draw* draw = &draws->push_back(); |
| // alias just to make vert/index assignments easier to read. |
| int* v = &draw->fVertexCnt; |
| int* i = &draw->fIndexCnt; |
| |
| int count = segments.count(); |
| for (int a = 0; a < count; ++a) { |
| const Segment& sega = segments[a]; |
| int b = (a + 1) % count; |
| const Segment& segb = segments[b]; |
| |
| // Check whether adding the verts for this segment to the current draw would cause index |
| // values to overflow. |
| int vCount = 4; |
| if (Segment::kLine == segb.fType) { |
| vCount += 5; |
| } else { |
| vCount += 6; |
| } |
| if (draw->fVertexCnt + vCount > (1 << 16)) { |
| verts += *v; |
| idxs += *i; |
| draw = &draws->push_back(); |
| v = &draw->fVertexCnt; |
| i = &draw->fIndexCnt; |
| } |
| |
| // FIXME: These tris are inset in the 1 unit arc around the corner |
| verts[*v + 0].fPos = sega.endPt(); |
| verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); |
| verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; |
| verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; |
| verts[*v + 0].fUV.set(0,0); |
| verts[*v + 1].fUV.set(0,-SK_Scalar1); |
| verts[*v + 2].fUV.set(0,-SK_Scalar1); |
| verts[*v + 3].fUV.set(0,-SK_Scalar1); |
| verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
| verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
| verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
| verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
| |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| idxs[*i + 3] = *v + 0; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| *v += 4; |
| *i += 6; |
| |
| if (Segment::kLine == segb.fType) { |
| verts[*v + 0].fPos = fanPt; |
| verts[*v + 1].fPos = sega.endPt(); |
| verts[*v + 2].fPos = segb.fPts[0]; |
| |
| verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; |
| verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; |
| |
| // we draw the line edge as a degenerate quad (u is 0, v is the |
| // signed distance to the edge) |
| SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, |
| verts[*v + 2].fPos); |
| verts[*v + 0].fUV.set(0, dist); |
| verts[*v + 1].fUV.set(0, 0); |
| verts[*v + 2].fUV.set(0, 0); |
| verts[*v + 3].fUV.set(0, -SK_Scalar1); |
| verts[*v + 4].fUV.set(0, -SK_Scalar1); |
| |
| verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
| verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
| verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
| verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
| verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; |
| |
| idxs[*i + 0] = *v + 3; |
| idxs[*i + 1] = *v + 1; |
| idxs[*i + 2] = *v + 2; |
| |
| idxs[*i + 3] = *v + 4; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| *i += 6; |
| |
| // Draw the interior fan if it exists. |
| // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| // with no interior, and that the resulting shared edge uses the same endpoints. |
| if (count >= 3) { |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| |
| *i += 3; |
| } |
| |
| *v += 5; |
| } else { |
| SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; |
| |
| SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; |
| midVec.normalize(); |
| |
| verts[*v + 0].fPos = fanPt; |
| verts[*v + 1].fPos = qpts[0]; |
| verts[*v + 2].fPos = qpts[2]; |
| verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; |
| verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; |
| verts[*v + 5].fPos = qpts[1] + midVec; |
| |
| SkScalar c = segb.fNorms[0].dot(qpts[0]); |
| verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; |
| verts[*v + 1].fD0 = 0.f; |
| verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; |
| verts[*v + 3].fD0 = -SK_ScalarMax/100; |
| verts[*v + 4].fD0 = -SK_ScalarMax/100; |
| verts[*v + 5].fD0 = -SK_ScalarMax/100; |
| |
| c = segb.fNorms[1].dot(qpts[2]); |
| verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; |
| verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; |
| verts[*v + 2].fD1 = 0.f; |
| verts[*v + 3].fD1 = -SK_ScalarMax/100; |
| verts[*v + 4].fD1 = -SK_ScalarMax/100; |
| verts[*v + 5].fD1 = -SK_ScalarMax/100; |
| |
| GrPathUtils::QuadUVMatrix toUV(qpts); |
| toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v); |
| |
| idxs[*i + 0] = *v + 3; |
| idxs[*i + 1] = *v + 1; |
| idxs[*i + 2] = *v + 2; |
| idxs[*i + 3] = *v + 4; |
| idxs[*i + 4] = *v + 3; |
| idxs[*i + 5] = *v + 2; |
| |
| idxs[*i + 6] = *v + 5; |
| idxs[*i + 7] = *v + 3; |
| idxs[*i + 8] = *v + 4; |
| |
| *i += 9; |
| |
| // Draw the interior fan if it exists. |
| // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| // with no interior, and that the resulting shared edge uses the same endpoints. |
| if (count >= 3) { |
| idxs[*i + 0] = *v + 0; |
| idxs[*i + 1] = *v + 2; |
| idxs[*i + 2] = *v + 1; |
| |
| *i += 3; |
| } |
| |
| *v += 6; |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
| * two components of the vertex attribute. Coverage is based on signed |
| * distance with negative being inside, positive outside. The edge is specified in |
| * window space (y-down). If either the third or fourth component of the interpolated |
| * vertex coord is > 0 then the pixel is considered outside the edge. This is used to |
| * attempt to trim to a portion of the infinite quad. |
| * Requires shader derivative instruction support. |
| */ |
| |
| class QuadEdgeEffect : public GrGeometryProcessor { |
| public: |
| |
| static sk_sp<GrGeometryProcessor> Make(GrColor color, const SkMatrix& localMatrix, |
| bool usesLocalCoords) { |
| return sk_sp<GrGeometryProcessor>(new QuadEdgeEffect(color, localMatrix, usesLocalCoords)); |
| } |
| |
| ~QuadEdgeEffect() override {} |
| |
| const char* name() const override { return "QuadEdge"; } |
| |
| const Attribute* inPosition() const { return fInPosition; } |
| const Attribute* inQuadEdge() const { return fInQuadEdge; } |
| GrColor color() const { return fColor; } |
| const SkMatrix& localMatrix() const { return fLocalMatrix; } |
| bool usesLocalCoords() const { return fUsesLocalCoords; } |
| |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() : fColor(GrColor_ILLEGAL) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(qe); |
| |
| GrGLSLVertToFrag v(kVec4f_GrSLType); |
| varyingHandler->addVarying("QuadEdge", &v); |
| vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // Setup pass through color |
| this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, |
| &fColorUniform); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, gpArgs, qe.inPosition()->fName); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| qe.inPosition()->fName, |
| qe.localMatrix(), |
| args.fFPCoordTransformHandler); |
| |
| fragBuilder->codeAppendf("float edgeAlpha;"); |
| |
| // keep the derivative instructions outside the conditional |
| fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); |
| fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); |
| fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); |
| // today we know z and w are in device space. We could use derivatives |
| fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), |
| v.fsIn()); |
| fragBuilder->codeAppendf ("} else {"); |
| fragBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," |
| " 2.0*%s.x*duvdy.x - duvdy.y);", |
| v.fsIn(), v.fsIn()); |
| fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), |
| v.fsIn()); |
| fragBuilder->codeAppendf("edgeAlpha = " |
| "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static inline void GenKey(const GrGeometryProcessor& gp, |
| const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>(); |
| b->add32(SkToBool(qee.usesLocalCoords() && qee.localMatrix().hasPerspective())); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp, |
| FPCoordTransformIter&& transformIter) override { |
| const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>(); |
| if (qe.color() != fColor) { |
| float c[4]; |
| GrColorToRGBAFloat(qe.color(), c); |
| pdman.set4fv(fColorUniform, 1, c); |
| fColor = qe.color(); |
| } |
| this->setTransformDataHelper(qe.fLocalMatrix, pdman, &transformIter); |
| } |
| |
| private: |
| GrColor fColor; |
| UniformHandle fColorUniform; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| QuadEdgeEffect(GrColor color, const SkMatrix& localMatrix, bool usesLocalCoords) |
| : fColor(color) |
| , fLocalMatrix(localMatrix) |
| , fUsesLocalCoords(usesLocalCoords) { |
| this->initClassID<QuadEdgeEffect>(); |
| fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType); |
| fInQuadEdge = &this->addVertexAttrib("inQuadEdge", kVec4f_GrVertexAttribType); |
| } |
| |
| const Attribute* fInPosition; |
| const Attribute* fInQuadEdge; |
| GrColor fColor; |
| SkMatrix fLocalMatrix; |
| bool fUsesLocalCoords; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrGeometryProcessor> QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { |
| // Doesn't work without derivative instructions. |
| return d->caps()->shaderCaps()->shaderDerivativeSupport() |
| ? QuadEdgeEffect::Make(GrRandomColor(d->fRandom), |
| GrTest::TestMatrix(d->fRandom), |
| d->fRandom->nextBool()) |
| : nullptr; |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
| return (args.fShaderCaps->shaderDerivativeSupport() && (GrAAType::kCoverage == args.fAAType) && |
| args.fShape->style().isSimpleFill() && !args.fShape->inverseFilled() && |
| args.fShape->knownToBeConvex()); |
| } |
| |
| // extract the result vertices and indices from the GrAAConvexTessellator |
| static void extract_verts(const GrAAConvexTessellator& tess, |
| void* vertices, |
| size_t vertexStride, |
| GrColor color, |
| uint16_t* idxs, |
| bool tweakAlphaForCoverage) { |
| intptr_t verts = reinterpret_cast<intptr_t>(vertices); |
| |
| for (int i = 0; i < tess.numPts(); ++i) { |
| *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); |
| } |
| |
| // Make 'verts' point to the colors |
| verts += sizeof(SkPoint); |
| for (int i = 0; i < tess.numPts(); ++i) { |
| if (tweakAlphaForCoverage) { |
| SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); |
| unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); |
| GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); |
| *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; |
| } else { |
| *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; |
| *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = |
| tess.coverage(i); |
| } |
| } |
| |
| for (int i = 0; i < tess.numIndices(); ++i) { |
| idxs[i] = tess.index(i); |
| } |
| } |
| |
| static sk_sp<GrGeometryProcessor> create_fill_gp(bool tweakAlphaForCoverage, |
| const SkMatrix& viewMatrix, |
| bool usesLocalCoords) { |
| using namespace GrDefaultGeoProcFactory; |
| |
| Coverage::Type coverageType; |
| if (tweakAlphaForCoverage) { |
| coverageType = Coverage::kSolid_Type; |
| } else { |
| coverageType = Coverage::kAttribute_Type; |
| } |
| LocalCoords::Type localCoordsType = |
| usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; |
| return MakeForDeviceSpace(Color::kPremulGrColorAttribute_Type, coverageType, localCoordsType, |
| viewMatrix); |
| } |
| |
| class AAConvexPathOp final : public GrLegacyMeshDrawOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| static std::unique_ptr<GrLegacyMeshDrawOp> Make(GrColor color, const SkMatrix& viewMatrix, |
| const SkPath& path) { |
| return std::unique_ptr<GrLegacyMeshDrawOp>(new AAConvexPathOp(color, viewMatrix, path)); |
| } |
| |
| const char* name() const override { return "AAConvexPathOp"; } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| string.appendf("Color: 0x%08x, Count: %d\n", fColor, fPaths.count()); |
| string.append(DumpPipelineInfo(*this->pipeline())); |
| string.append(INHERITED::dumpInfo()); |
| return string; |
| } |
| |
| private: |
| AAConvexPathOp(GrColor color, const SkMatrix& viewMatrix, const SkPath& path) |
| : INHERITED(ClassID()), fColor(color) { |
| fPaths.emplace_back(PathData{viewMatrix, path}); |
| this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, IsZeroArea::kNo); |
| } |
| |
| void getProcessorAnalysisInputs(GrProcessorAnalysisColor* color, |
| GrProcessorAnalysisCoverage* coverage) const override { |
| color->setToConstant(fColor); |
| *coverage = GrProcessorAnalysisCoverage::kSingleChannel; |
| } |
| |
| void applyPipelineOptimizations(const PipelineOptimizations& optimizations) override { |
| optimizations.getOverrideColorIfSet(&fColor); |
| |
| fUsesLocalCoords = optimizations.readsLocalCoords(); |
| fLinesOnly = SkPath::kLine_SegmentMask == fPaths[0].fPath.getSegmentMasks(); |
| fCanTweakAlphaForCoverage = optimizations.canTweakAlphaForCoverage(); |
| } |
| |
| void prepareLinesOnlyDraws(Target* target) const { |
| bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); |
| |
| // Setup GrGeometryProcessor |
| sk_sp<GrGeometryProcessor> gp(create_fill_gp( |
| canTweakAlphaForCoverage, this->viewMatrix(), this->usesLocalCoords())); |
| if (!gp) { |
| SkDebugf("Could not create GrGeometryProcessor\n"); |
| return; |
| } |
| |
| size_t vertexStride = gp->getVertexStride(); |
| |
| SkASSERT(canTweakAlphaForCoverage ? |
| vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : |
| vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); |
| |
| GrAAConvexTessellator tess; |
| |
| int instanceCount = fPaths.count(); |
| |
| for (int i = 0; i < instanceCount; i++) { |
| tess.rewind(); |
| |
| const PathData& args = fPaths[i]; |
| |
| if (!tess.tessellate(args.fViewMatrix, args.fPath)) { |
| continue; |
| } |
| |
| const GrBuffer* vertexBuffer; |
| int firstVertex; |
| |
| void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer, |
| &firstVertex); |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| const GrBuffer* indexBuffer; |
| int firstIndex; |
| |
| uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex); |
| if (!idxs) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| extract_verts(tess, verts, vertexStride, fColor, idxs, canTweakAlphaForCoverage); |
| |
| GrMesh mesh; |
| mesh.initIndexed(kTriangles_GrPrimitiveType, |
| vertexBuffer, indexBuffer, |
| firstVertex, firstIndex, |
| tess.numPts(), tess.numIndices()); |
| target->draw(gp.get(), this->pipeline(), mesh); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| #ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS |
| if (this->linesOnly()) { |
| this->prepareLinesOnlyDraws(target); |
| return; |
| } |
| #endif |
| |
| int instanceCount = fPaths.count(); |
| |
| SkMatrix invert; |
| if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { |
| SkDebugf("Could not invert viewmatrix\n"); |
| return; |
| } |
| |
| // Setup GrGeometryProcessor |
| sk_sp<GrGeometryProcessor> quadProcessor( |
| QuadEdgeEffect::Make(this->color(), invert, this->usesLocalCoords())); |
| |
| // TODO generate all segments for all paths and use one vertex buffer |
| for (int i = 0; i < instanceCount; i++) { |
| const PathData& args = fPaths[i]; |
| |
| // We use the fact that SkPath::transform path does subdivision based on |
| // perspective. Otherwise, we apply the view matrix when copying to the |
| // segment representation. |
| const SkMatrix* viewMatrix = &args.fViewMatrix; |
| |
| // We avoid initializing the path unless we have to |
| const SkPath* pathPtr = &args.fPath; |
| SkTLazy<SkPath> tmpPath; |
| if (viewMatrix->hasPerspective()) { |
| SkPath* tmpPathPtr = tmpPath.init(*pathPtr); |
| tmpPathPtr->setIsVolatile(true); |
| tmpPathPtr->transform(*viewMatrix); |
| viewMatrix = &SkMatrix::I(); |
| pathPtr = tmpPathPtr; |
| } |
| |
| int vertexCount; |
| int indexCount; |
| enum { |
| kPreallocSegmentCnt = 512 / sizeof(Segment), |
| kPreallocDrawCnt = 4, |
| }; |
| SkSTArray<kPreallocSegmentCnt, Segment, true> segments; |
| SkPoint fanPt; |
| |
| if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount, |
| &indexCount)) { |
| continue; |
| } |
| |
| const GrBuffer* vertexBuffer; |
| int firstVertex; |
| |
| size_t vertexStride = quadProcessor->getVertexStride(); |
| QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace( |
| vertexStride, vertexCount, &vertexBuffer, &firstVertex)); |
| |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| const GrBuffer* indexBuffer; |
| int firstIndex; |
| |
| uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); |
| if (!idxs) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| SkSTArray<kPreallocDrawCnt, Draw, true> draws; |
| create_vertices(segments, fanPt, &draws, verts, idxs); |
| |
| GrMesh mesh; |
| |
| for (int j = 0; j < draws.count(); ++j) { |
| const Draw& draw = draws[j]; |
| mesh.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, |
| firstVertex, firstIndex, draw.fVertexCnt, draw.fIndexCnt); |
| target->draw(quadProcessor.get(), this->pipeline(), mesh); |
| firstVertex += draw.fVertexCnt; |
| firstIndex += draw.fIndexCnt; |
| } |
| } |
| } |
| |
| bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { |
| AAConvexPathOp* that = t->cast<AAConvexPathOp>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (this->color() != that->color()) { |
| return false; |
| } |
| |
| SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
| if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| if (this->linesOnly() != that->linesOnly()) { |
| return false; |
| } |
| |
| // In the event of two ops, one who can tweak, one who cannot, we just fall back to not |
| // tweaking |
| if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { |
| fCanTweakAlphaForCoverage = false; |
| } |
| |
| fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| GrColor color() const { return fColor; } |
| bool linesOnly() const { return fLinesOnly; } |
| bool usesLocalCoords() const { return fUsesLocalCoords; } |
| bool canTweakAlphaForCoverage() const { return fCanTweakAlphaForCoverage; } |
| const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; } |
| |
| GrColor fColor; |
| bool fUsesLocalCoords; |
| bool fLinesOnly; |
| bool fCanTweakAlphaForCoverage; |
| |
| struct PathData { |
| SkMatrix fViewMatrix; |
| SkPath fPath; |
| }; |
| |
| SkSTArray<1, PathData, true> fPaths; |
| |
| typedef GrLegacyMeshDrawOp INHERITED; |
| }; |
| |
| bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { |
| GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), |
| "GrAAConvexPathRenderer::onDrawPath"); |
| SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled()); |
| SkASSERT(!args.fShape->isEmpty()); |
| |
| SkPath path; |
| args.fShape->asPath(&path); |
| |
| std::unique_ptr<GrLegacyMeshDrawOp> op = |
| AAConvexPathOp::Make(args.fPaint.getColor(), *args.fViewMatrix, path); |
| |
| GrPipelineBuilder pipelineBuilder(std::move(args.fPaint), args.fAAType); |
| pipelineBuilder.setUserStencil(args.fUserStencilSettings); |
| |
| args.fRenderTargetContext->addLegacyMeshDrawOp(std::move(pipelineBuilder), *args.fClip, |
| std::move(op)); |
| |
| return true; |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #if GR_TEST_UTILS |
| |
| DRAW_OP_TEST_DEFINE(AAConvexPathOp) { |
| GrColor color = GrRandomColor(random); |
| SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); |
| SkPath path = GrTest::TestPathConvex(random); |
| |
| return AAConvexPathOp::Make(color, viewMatrix, path); |
| } |
| |
| #endif |