blob: e2bc0fc42cfb17e284335972234d0c41a043eb18 [file] [log] [blame]
ο»Ώ/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "sk_tool_utils.h"
#include "sk_tool_utils_flags.h"
#include "Resources.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkCommonFlags.h"
#include "SkPoint3.h"
#include "SkShader.h"
#include "SkTestScalerContext.h"
#include "SkTextBlob.h"
DEFINE_bool(portableFonts, false, "Use portable fonts");
namespace sk_tool_utils {
/* these are the default fonts chosen by Chrome for serif, sans-serif, and monospace */
static const char* gStandardFontNames[][3] = {
{ "Times", "Helvetica", "Courier" }, // Mac
{ "Times New Roman", "Helvetica", "Courier" }, // iOS
{ "Times New Roman", "Arial", "Courier New" }, // Win
{ "Times New Roman", "Arial", "Monospace" }, // Ubuntu
{ "serif", "sans-serif", "monospace" }, // Android
{ "Tinos", "Arimo", "Cousine" } // ChromeOS
};
const char* platform_font_name(const char* name) {
SkString platform = major_platform_os_name();
int index;
if (!strcmp(name, "serif")) {
index = 0;
} else if (!strcmp(name, "san-serif")) {
index = 1;
} else if (!strcmp(name, "monospace")) {
index = 2;
} else {
return name;
}
if (platform.equals("Mac")) {
return gStandardFontNames[0][index];
}
if (platform.equals("iOS")) {
return gStandardFontNames[1][index];
}
if (platform.equals("Win")) {
return gStandardFontNames[2][index];
}
if (platform.equals("Ubuntu")) {
return gStandardFontNames[3][index];
}
if (platform.equals("Android")) {
return gStandardFontNames[4][index];
}
if (platform.equals("ChromeOS")) {
return gStandardFontNames[5][index];
}
return name;
}
const char* platform_os_emoji() {
const char* osName = platform_os_name();
if (!strcmp(osName, "Android") || !strcmp(osName, "Ubuntu")) {
return "CBDT";
}
if (!strncmp(osName, "Mac", 3)) {
return "SBIX";
}
return "";
}
void emoji_typeface(SkAutoTUnref<SkTypeface>* tf) {
if (!strcmp(sk_tool_utils::platform_os_emoji(), "CBDT")) {
tf->reset(GetResourceAsTypeface("/fonts/Funkster.ttf"));
return;
}
if (!strcmp(sk_tool_utils::platform_os_emoji(), "SBIX")) {
tf->reset(SkTypeface::CreateFromName("Apple Color Emoji", SkTypeface::kNormal));
return;
}
tf->reset(nullptr);
return;
}
const char* emoji_sample_text() {
if (!strcmp(sk_tool_utils::platform_os_emoji(), "CBDT")) {
return "Hamburgefons";
}
if (!strcmp(sk_tool_utils::platform_os_emoji(), "SBIX")) {
return "\xF0\x9F\x92\xB0" "\xF0\x9F\x8F\xA1" "\xF0\x9F\x8E\x85" // πŸ’°πŸ‘πŸŽ…
"\xF0\x9F\x8D\xAA" "\xF0\x9F\x8D\x95" "\xF0\x9F\x9A\x80" // πŸͺπŸ•πŸš€
"\xF0\x9F\x9A\xBB" "\xF0\x9F\x92\xA9" "\xF0\x9F\x93\xB7" // πŸš»πŸ’©πŸ“·
"\xF0\x9F\x93\xA6" // πŸ“¦
"\xF0\x9F\x87\xBA" "\xF0\x9F\x87\xB8" "\xF0\x9F\x87\xA6"; // πŸ‡ΊπŸ‡ΈπŸ‡¦
}
return "";
}
const char* platform_os_name() {
for (int index = 0; index < FLAGS_key.count(); index += 2) {
if (!strcmp("os", FLAGS_key[index])) {
return FLAGS_key[index + 1];
}
}
// when running SampleApp or dm without a --key pair, omit the platform name
return "";
}
// omit version number in returned value
SkString major_platform_os_name() {
SkString name;
for (int index = 0; index < FLAGS_key.count(); index += 2) {
if (!strcmp("os", FLAGS_key[index])) {
const char* platform = FLAGS_key[index + 1];
const char* end = platform;
while (*end && (*end < '0' || *end > '9')) {
++end;
}
name.append(platform, end - platform);
break;
}
}
return name;
}
const char* platform_extra_config(const char* config) {
for (int index = 0; index < FLAGS_key.count(); index += 2) {
if (!strcmp("extra_config", FLAGS_key[index]) && !strcmp(config, FLAGS_key[index + 1])) {
return config;
}
}
return "";
}
const char* colortype_name(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return "Unknown";
case kAlpha_8_SkColorType: return "Alpha_8";
case kIndex_8_SkColorType: return "Index_8";
case kARGB_4444_SkColorType: return "ARGB_4444";
case kRGB_565_SkColorType: return "RGB_565";
case kRGBA_8888_SkColorType: return "RGBA_8888";
case kBGRA_8888_SkColorType: return "BGRA_8888";
default:
SkASSERT(false);
return "unexpected colortype";
}
}
SkColor color_to_565(SkColor color) {
SkPMColor pmColor = SkPreMultiplyColor(color);
U16CPU color16 = SkPixel32ToPixel16(pmColor);
return SkPixel16ToColor(color16);
}
SkTypeface* create_portable_typeface(const char* name, SkTypeface::Style style) {
return create_font(name, style);
}
void set_portable_typeface(SkPaint* paint, const char* name, SkTypeface::Style style) {
SkTypeface* face = create_font(name, style);
SkSafeUnref(paint->setTypeface(face));
}
void write_pixels(SkCanvas* canvas, const SkBitmap& bitmap, int x, int y,
SkColorType colorType, SkAlphaType alphaType) {
SkBitmap tmp(bitmap);
tmp.lockPixels();
const SkImageInfo info = SkImageInfo::Make(tmp.width(), tmp.height(), colorType, alphaType);
canvas->writePixels(info, tmp.getPixels(), tmp.rowBytes(), x, y);
}
SkShader* create_checkerboard_shader(SkColor c1, SkColor c2, int size) {
SkBitmap bm;
bm.allocN32Pixels(2 * size, 2 * size);
bm.eraseColor(c1);
bm.eraseArea(SkIRect::MakeLTRB(0, 0, size, size), c2);
bm.eraseArea(SkIRect::MakeLTRB(size, size, 2 * size, 2 * size), c2);
return SkShader::CreateBitmapShader(
bm, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode);
}
SkBitmap create_checkerboard_bitmap(int w, int h, SkColor c1, SkColor c2, int checkSize) {
SkBitmap bitmap;
bitmap.allocN32Pixels(w, h);
SkCanvas canvas(bitmap);
sk_tool_utils::draw_checkerboard(&canvas, c1, c2, checkSize);
return bitmap;
}
void draw_checkerboard(SkCanvas* canvas, SkColor c1, SkColor c2, int size) {
SkPaint paint;
paint.setShader(create_checkerboard_shader(c1, c2, size))->unref();
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas->drawPaint(paint);
}
SkBitmap create_string_bitmap(int w, int h, SkColor c, int x, int y,
int textSize, const char* str) {
SkBitmap bitmap;
bitmap.allocN32Pixels(w, h);
SkCanvas canvas(bitmap);
SkPaint paint;
paint.setAntiAlias(true);
sk_tool_utils::set_portable_typeface(&paint);
paint.setColor(c);
paint.setTextSize(SkIntToScalar(textSize));
canvas.clear(0x00000000);
canvas.drawText(str, strlen(str), SkIntToScalar(x), SkIntToScalar(y), paint);
return bitmap;
}
void add_to_text_blob(SkTextBlobBuilder* builder, const char* text, const SkPaint& origPaint,
SkScalar x, SkScalar y) {
SkPaint paint(origPaint);
SkTDArray<uint16_t> glyphs;
size_t len = strlen(text);
glyphs.append(paint.textToGlyphs(text, len, nullptr));
paint.textToGlyphs(text, len, glyphs.begin());
paint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
const SkTextBlobBuilder::RunBuffer& run = builder->allocRun(paint, glyphs.count(), x, y,
nullptr);
memcpy(run.glyphs, glyphs.begin(), glyphs.count() * sizeof(uint16_t));
}
static inline void norm_to_rgb(SkBitmap* bm, int x, int y, const SkVector3& norm) {
SkASSERT(SkScalarNearlyEqual(norm.length(), 1.0f));
unsigned char r = static_cast<unsigned char>((0.5f * norm.fX + 0.5f) * 255);
unsigned char g = static_cast<unsigned char>((-0.5f * norm.fY + 0.5f) * 255);
unsigned char b = static_cast<unsigned char>((0.5f * norm.fZ + 0.5f) * 255);
*bm->getAddr32(x, y) = SkPackARGB32(0xFF, r, g, b);
}
void create_hemi_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
const SkPoint halfSize = SkPoint::Make(dst.width() / 2.0f, dst.height() / 2.0f);
SkVector3 norm;
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
norm.fX = (x + 0.5f - center.fX) / halfSize.fX;
norm.fY = (y + 0.5f - center.fY) / halfSize.fY;
SkScalar tmp = norm.fX * norm.fX + norm.fY * norm.fY;
if (tmp >= 1.0f) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
norm.fZ = sqrtf(1.0f - tmp);
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_frustum_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
SkIRect inner = dst;
inner.inset(dst.width()/4, dst.height()/4);
SkPoint3 norm;
const SkPoint3 left = SkPoint3::Make(-SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 up = SkPoint3::Make(0.0f, -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
const SkPoint3 right = SkPoint3::Make(SK_ScalarRoot2Over2, 0.0f, SK_ScalarRoot2Over2);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
if (inner.contains(x, y)) {
norm.set(0.0f, 0.0f, 1.0f);
} else {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? right : down; // LR corner
} else {
norm = locX > -locY ? right : up; // UR corner
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? left : down; // LL corner
} else {
norm = locX > locY ? up : left; // UL corner
}
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void create_tetra_normal_map(SkBitmap* bm, const SkIRect& dst) {
const SkPoint center = SkPoint::Make(dst.fLeft + (dst.width() / 2.0f),
dst.fTop + (dst.height() / 2.0f));
static const SkScalar k1OverRoot3 = 0.5773502692f;
SkPoint3 norm;
const SkPoint3 leftUp = SkPoint3::Make(-k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 rightUp = SkPoint3::Make(k1OverRoot3, -k1OverRoot3, k1OverRoot3);
const SkPoint3 down = SkPoint3::Make(0.0f, SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
for (int y = dst.fTop; y < dst.fBottom; ++y) {
for (int x = dst.fLeft; x < dst.fRight; ++x) {
SkScalar locX = x + 0.5f - center.fX;
SkScalar locY = y + 0.5f - center.fY;
if (locX >= 0.0f) {
if (locY > 0.0f) {
norm = locX >= locY ? rightUp : down; // LR corner
} else {
norm = rightUp;
}
} else {
if (locY > 0.0f) {
norm = -locX > locY ? leftUp : down; // LL corner
} else {
norm = leftUp;
}
}
norm_to_rgb(bm, x, y, norm);
}
}
}
void make_big_path(SkPath& path) {
#include "BigPathBench.inc"
}
static float gaussian2d_value(int x, int y, float sigma) {
// don't bother with the scale term since we're just going to normalize the
// kernel anyways
float temp = expf(-(x*x + y*y)/(2*sigma*sigma));
return temp;
}
static float* create_2d_kernel(float sigma, int* filterSize) {
// We will actually take 2*halfFilterSize+1 samples (i.e., our filter kernel
// sizes are always odd)
int halfFilterSize = SkScalarCeilToInt(6*sigma)/2;
int wh = *filterSize = 2*halfFilterSize + 1;
float* temp = new float[wh*wh];
float filterTot = 0.0f;
for (int yOff = 0; yOff < wh; ++yOff) {
for (int xOff = 0; xOff < wh; ++xOff) {
temp[yOff*wh+xOff] = gaussian2d_value(xOff-halfFilterSize, yOff-halfFilterSize, sigma);
filterTot += temp[yOff*wh+xOff];
}
}
// normalize the kernel
for (int yOff = 0; yOff < wh; ++yOff) {
for (int xOff = 0; xOff < wh; ++xOff) {
temp[yOff*wh+xOff] /= filterTot;
}
}
return temp;
}
static SkPMColor blur_pixel(const SkBitmap& bm, int x, int y, float* kernel, int wh) {
SkASSERT(wh & 0x1);
int halfFilterSize = (wh-1)/2;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int yOff = 0; yOff < wh; ++yOff) {
int ySamp = y + yOff - halfFilterSize;
if (ySamp < 0) {
ySamp = 0;
} else if (ySamp > bm.height()-1) {
ySamp = bm.height()-1;
}
for (int xOff = 0; xOff < wh; ++xOff) {
int xSamp = x + xOff - halfFilterSize;
if (xSamp < 0) {
xSamp = 0;
} else if (xSamp > bm.width()-1) {
xSamp = bm.width()-1;
}
float filter = kernel[yOff*wh + xOff];
SkPMColor c = *bm.getAddr32(xSamp, ySamp);
r += SkGetPackedR32(c) * filter;
g += SkGetPackedG32(c) * filter;
b += SkGetPackedB32(c) * filter;
}
}
U8CPU r8, g8, b8;
r8 = (U8CPU) (r+0.5f);
g8 = (U8CPU) (g+0.5f);
b8 = (U8CPU) (b+0.5f);
return SkPackARGB32(255, r8, g8, b8);
}
SkBitmap slow_blur(const SkBitmap& src, float sigma) {
SkBitmap dst;
dst.allocN32Pixels(src.width(), src.height(), true);
int wh;
SkAutoTDeleteArray<float> kernel(create_2d_kernel(sigma, &wh));
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
*dst.getAddr32(x, y) = blur_pixel(src, x, y, kernel.get(), wh);
}
}
return dst;
}
} // namespace sk_tool_utils