| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkEmbossMask.h" |
| #include "SkFixed.h" |
| #include "SkMath.h" |
| |
| static inline int nonzero_to_one(int x) { |
| #if 0 |
| return x != 0; |
| #else |
| return ((unsigned)(x | -x)) >> 31; |
| #endif |
| } |
| |
| static inline int neq_to_one(int x, int max) { |
| #if 0 |
| return x != max; |
| #else |
| SkASSERT(x >= 0 && x <= max); |
| return ((unsigned)(x - max)) >> 31; |
| #endif |
| } |
| |
| static inline int neq_to_mask(int x, int max) { |
| #if 0 |
| return -(x != max); |
| #else |
| SkASSERT(x >= 0 && x <= max); |
| return (x - max) >> 31; |
| #endif |
| } |
| |
| static inline unsigned div255(unsigned x) { |
| SkASSERT(x <= (255*255)); |
| return x * ((1 << 24) / 255) >> 24; |
| } |
| |
| #define kDelta 32 // small enough to show off angle differences |
| |
| #include "SkEmbossMask_Table.h" |
| |
| #if defined(SK_BUILD_FOR_WIN32) && defined(SK_DEBUG) |
| |
| #include <stdio.h> |
| |
| void SkEmbossMask_BuildTable() { |
| // build it 0..127 x 0..127, so we use 2^15 - 1 in the numerator for our "fixed" table |
| |
| FILE* file = ::fopen("SkEmbossMask_Table.h", "w"); |
| SkASSERT(file); |
| ::fprintf(file, "#include \"SkTypes.h\"\n\n"); |
| ::fprintf(file, "static const U16 gInvSqrtTable[128 * 128] = {\n"); |
| for (int dx = 0; dx <= 255/2; dx++) { |
| for (int dy = 0; dy <= 255/2; dy++) { |
| if ((dy & 15) == 0) |
| ::fprintf(file, "\t"); |
| |
| uint16_t value = SkToU16((1 << 15) / SkSqrt32(dx * dx + dy * dy + kDelta*kDelta/4)); |
| |
| ::fprintf(file, "0x%04X", value); |
| if (dx * 128 + dy < 128*128-1) { |
| ::fprintf(file, ", "); |
| } |
| if ((dy & 15) == 15) { |
| ::fprintf(file, "\n"); |
| } |
| } |
| } |
| ::fprintf(file, "};\n#define kDeltaUsedToBuildTable\t%d\n", kDelta); |
| ::fclose(file); |
| } |
| |
| #endif |
| |
| void SkEmbossMask::Emboss(SkMask* mask, const SkEmbossMaskFilter::Light& light) { |
| SkASSERT(kDelta == kDeltaUsedToBuildTable); |
| |
| SkASSERT(mask->fFormat == SkMask::k3D_Format); |
| |
| int specular = light.fSpecular; |
| int ambient = light.fAmbient; |
| SkFixed lx = SkScalarToFixed(light.fDirection[0]); |
| SkFixed ly = SkScalarToFixed(light.fDirection[1]); |
| SkFixed lz = SkScalarToFixed(light.fDirection[2]); |
| SkFixed lz_dot_nz = lz * kDelta; |
| int lz_dot8 = lz >> 8; |
| |
| size_t planeSize = mask->computeImageSize(); |
| uint8_t* alpha = mask->fImage; |
| uint8_t* multiply = (uint8_t*)alpha + planeSize; |
| uint8_t* additive = multiply + planeSize; |
| |
| int rowBytes = mask->fRowBytes; |
| int maxy = mask->fBounds.height() - 1; |
| int maxx = mask->fBounds.width() - 1; |
| |
| int prev_row = 0; |
| for (int y = 0; y <= maxy; y++) { |
| int next_row = neq_to_mask(y, maxy) & rowBytes; |
| |
| for (int x = 0; x <= maxx; x++) { |
| if (alpha[x]) { |
| int nx = alpha[x + neq_to_one(x, maxx)] - alpha[x - nonzero_to_one(x)]; |
| int ny = alpha[x + next_row] - alpha[x - prev_row]; |
| |
| SkFixed numer = lx * nx + ly * ny + lz_dot_nz; |
| int mul = ambient; |
| int add = 0; |
| |
| if (numer > 0) { // preflight when numer/denom will be <= 0 |
| #if 0 |
| int denom = SkSqrt32(nx * nx + ny * ny + kDelta*kDelta); |
| SkFixed dot = numer / denom; |
| dot >>= 8; // now dot is 2^8 instead of 2^16 |
| #else |
| // can use full numer, but then we need to call SkFixedMul, since |
| // numer is 24 bits, and our table is 12 bits |
| |
| // SkFixed dot = SkFixedMul(numer, gTable[]) >> 8 |
| SkFixed dot = (unsigned)(numer >> 4) * gInvSqrtTable[(SkAbs32(nx) >> 1 << 7) | (SkAbs32(ny) >> 1)] >> 20; |
| #endif |
| mul = SkFastMin32(mul + dot, 255); |
| |
| // now for the reflection |
| |
| // R = 2 (Light * Normal) Normal - Light |
| // hilite = R * Eye(0, 0, 1) |
| |
| int hilite = (2 * dot - lz_dot8) * lz_dot8 >> 8; |
| if (hilite > 0) { |
| // pin hilite to 255, since our fast math is also a little sloppy |
| hilite = SkClampMax(hilite, 255); |
| |
| // specular is 4.4 |
| // would really like to compute the fractional part of this |
| // and then possibly cache a 256 table for a given specular |
| // value in the light, and just pass that in to this function. |
| add = hilite; |
| for (int i = specular >> 4; i > 0; --i) { |
| add = div255(add * hilite); |
| } |
| } |
| } |
| multiply[x] = SkToU8(mul); |
| additive[x] = SkToU8(add); |
| |
| // multiply[x] = 0xFF; |
| // additive[x] = 0; |
| // ((uint8_t*)alpha)[x] = alpha[x] * multiply[x] >> 8; |
| } |
| } |
| alpha += rowBytes; |
| multiply += rowBytes; |
| additive += rowBytes; |
| prev_row = rowBytes; |
| } |
| } |