blob: 6d77efc8a493e9a0c4b6fb9efe0de4b9db327781 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CurveIntersection.h"
#include "Intersections.h"
#include "IntersectionUtilities.h"
#include "LineIntersection.h"
#include "LineUtilities.h"
#include "QuadraticLineSegments.h"
#include "QuadraticUtilities.h"
#include <algorithm> // for swap
class QuadraticIntersections : public Intersections {
public:
QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
: quad1(q1)
, quad2(q2)
, intersections(i)
, depth(0)
, splits(0) {
}
bool intersect() {
double minT1, minT2, maxT1, maxT2;
if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
return false;
}
if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
return false;
}
quad1Divisions = 1 / subDivisions(quad1);
quad2Divisions = 1 / subDivisions(quad2);
int split;
if (maxT1 - minT1 < maxT2 - minT2) {
intersections.swap();
minT2 = 0;
maxT2 = 1;
split = maxT1 - minT1 > tClipLimit;
} else {
minT1 = 0;
maxT1 = 1;
split = (maxT2 - minT2 > tClipLimit) << 1;
}
return chop(minT1, maxT1, minT2, maxT2, split);
}
protected:
bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
bool t1IsLine = maxT1 - minT1 <= quad1Divisions;
bool t2IsLine = maxT2 - minT2 <= quad2Divisions;
if (t1IsLine | t2IsLine) {
return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine);
}
Quadratic smaller, larger;
// FIXME: carry last subdivide and reduceOrder result with quad
sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
double minT, maxT;
if (!bezier_clip(smaller, larger, minT, maxT)) {
if (approximately_equal(minT, maxT)) {
double smallT, largeT;
_Point q2pt, q1pt;
if (intersections.swapped()) {
largeT = interp(minT2, maxT2, minT);
xy_at_t(quad2, largeT, q2pt.x, q2pt.y);
xy_at_t(quad1, minT1, q1pt.x, q1pt.y);
if (approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)) {
smallT = minT1;
} else {
xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code
assert(approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y));
smallT = maxT1;
}
} else {
smallT = interp(minT1, maxT1, minT);
xy_at_t(quad1, smallT, q1pt.x, q1pt.y);
xy_at_t(quad2, minT2, q2pt.x, q2pt.y);
if (approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)) {
largeT = minT2;
} else {
xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code
assert(approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y));
largeT = maxT2;
}
}
intersections.add(smallT, largeT);
return true;
}
return false;
}
int split;
if (intersections.swapped()) {
double newMinT1 = interp(minT1, maxT1, minT);
double newMaxT1 = interp(minT1, maxT1, maxT);
split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
#define VERBOSE 0
#if VERBOSE
printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
splits, newMinT1, newMaxT1, minT1, maxT1, split);
#endif
minT1 = newMinT1;
maxT1 = newMaxT1;
} else {
double newMinT2 = interp(minT2, maxT2, minT);
double newMaxT2 = interp(minT2, maxT2, maxT);
split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
#if VERBOSE
printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
splits, newMinT2, newMaxT2, minT2, maxT2, split);
#endif
minT2 = newMinT2;
maxT2 = newMaxT2;
}
return chop(minT1, maxT1, minT2, maxT2, split);
}
bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2,
bool treat1AsLine, bool treat2AsLine)
{
_Line line1, line2;
if (intersections.swapped()) {
std::swap(treat1AsLine, treat2AsLine);
std::swap(minT1, minT2);
std::swap(maxT1, maxT2);
}
// do line/quadratic or even line/line intersection instead
if (treat1AsLine) {
xy_at_t(quad1, minT1, line1[0].x, line1[0].y);
xy_at_t(quad1, maxT1, line1[1].x, line1[1].y);
}
if (treat2AsLine) {
xy_at_t(quad2, minT2, line2[0].x, line2[0].y);
xy_at_t(quad2, maxT2, line2[1].x, line2[1].y);
}
int pts;
double smallT, largeT;
if (treat1AsLine & treat2AsLine) {
double t1[2], t2[2];
pts = ::intersect(line1, line2, t1, t2);
for (int index = 0; index < pts; ++index) {
smallT = interp(minT1, maxT1, t1[index]);
largeT = interp(minT2, maxT2, t2[index]);
if (pts == 2) {
intersections.addCoincident(smallT, largeT, true);
} else {
intersections.add(smallT, largeT);
}
}
} else {
Intersections lq;
pts = ::intersect(treat1AsLine ? quad2 : quad1,
treat1AsLine ? line1 : line2, lq);
bool coincident = false;
if (pts == 2) { // if the line and edge are coincident treat differently
_Point midQuad, midLine;
double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2;
xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y);
double lineT = t_at(treat1AsLine ? line1 : line2, midQuad);
xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y);
coincident = approximately_equal(midQuad.x, midLine.x)
&& approximately_equal(midQuad.y, midLine.y);
}
for (int index = 0; index < pts; ++index) {
smallT = lq.fT[0][index];
largeT = lq.fT[1][index];
if (treat1AsLine) {
smallT = interp(minT1, maxT1, smallT);
} else {
largeT = interp(minT2, maxT2, largeT);
}
if (coincident) {
intersections.addCoincident(smallT, largeT, true);
} else {
intersections.add(smallT, largeT);
}
}
}
return pts > 0;
}
bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
++depth;
intersections.swap();
if (split) {
++splits;
if (split & 2) {
double middle1 = (maxT1 + minT1) / 2;
intersect(minT1, middle1, minT2, maxT2);
intersect(middle1, maxT1, minT2, maxT2);
} else {
double middle2 = (maxT2 + minT2) / 2;
intersect(minT1, maxT1, minT2, middle2);
intersect(minT1, maxT1, middle2, maxT2);
}
--splits;
intersections.swap();
--depth;
return intersections.intersected();
}
bool result = intersect(minT1, maxT1, minT2, maxT2);
intersections.swap();
--depth;
return result;
}
private:
static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
const Quadratic& quad1;
const Quadratic& quad2;
Intersections& intersections;
int depth;
int splits;
double quad1Divisions; // line segments to approximate original within error
double quad2Divisions;
};
bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
if (implicit_matches(q1, q2)) {
// FIXME: compute T values
// compute the intersections of the ends to find the coincident span
bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
double t;
if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
i.addCoincident(t, 0, false);
}
if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
i.addCoincident(t, 1, false);
}
useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
i.addCoincident(0, t, false);
}
if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
i.addCoincident(1, t, false);
}
assert(i.fCoincidentUsed <= 2);
return i.fCoincidentUsed > 0;
}
QuadraticIntersections q(q1, q2, i);
return q.intersect();
}
// Another approach is to start with the implicit form of one curve and solve
// by substituting in the parametric form of the other.
// The downside of this approach is that early rejects are difficult to come by.
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
/*
given x^4 + ax^3 + bx^2 + cx + d
the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc)
use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3.
(x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d
s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4
u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2
v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2
r1 = (u + sqrt(u^2 - 4*s)) / 2
r2 = (u - sqrt(u^2 - 4*s)) / 2
r3 = (v + sqrt(v^2 - 4*t)) / 2
r4 = (v - sqrt(v^2 - 4*t)) / 2
*/
/* square root of complex number
http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers
Algebraic formula
When the number is expressed using Cartesian coordinates the following formula
can be used for the principal square root:[5][6]
sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2)
where the sign of the imaginary part of the root is taken to be same as the sign
of the imaginary part of the original number, and
r = abs(x + iy) = sqrt(x^2 + y^2)
is the absolute value or modulus of the original number. The real part of the
principal value is always non-negative.
The other square root is simply –1 times the principal square root; in other
words, the two square roots of a number sum to 0.
*/