hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkCurveMeasure.h" |
| 9 | |
| 10 | // for abs |
| 11 | #include <cmath> |
| 12 | |
| 13 | static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
| 14 | const Sk8f (&xCoeff)[3], |
| 15 | const Sk8f (&yCoeff)[3], |
| 16 | const SkSegType segType) { |
| 17 | Sk8f x; |
| 18 | Sk8f y; |
| 19 | switch (segType) { |
| 20 | case kQuad_SegType: |
| 21 | x = xCoeff[0]*ts + xCoeff[1]; |
| 22 | y = yCoeff[0]*ts + yCoeff[1]; |
| 23 | break; |
| 24 | case kLine_SegType: |
| 25 | SkDebugf("Unimplemented"); |
| 26 | break; |
| 27 | case kCubic_SegType: |
| 28 | x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; |
| 29 | y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; |
| 30 | break; |
| 31 | case kConic_SegType: |
| 32 | SkDebugf("Unimplemented"); |
| 33 | break; |
| 34 | default: |
| 35 | SkDebugf("Unimplemented"); |
| 36 | } |
| 37 | |
| 38 | x = x * x; |
| 39 | y = y * y; |
| 40 | |
| 41 | return (x + y).sqrt(); |
| 42 | } |
| 43 | ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
| 44 | : fSegType(segType) { |
| 45 | switch (fSegType) { |
| 46 | case kQuad_SegType: { |
| 47 | float Ax = pts[0].x(); |
| 48 | float Bx = pts[1].x(); |
| 49 | float Cx = pts[2].x(); |
| 50 | float Ay = pts[0].y(); |
| 51 | float By = pts[1].y(); |
| 52 | float Cy = pts[2].y(); |
| 53 | |
| 54 | // precompute coefficients for derivative |
| 55 | xCoeff[0] = Sk8f(2.0f*(Ax - 2*Bx + Cx)); |
| 56 | xCoeff[1] = Sk8f(2.0f*(Bx - Ax)); |
| 57 | |
| 58 | yCoeff[0] = Sk8f(2.0f*(Ay - 2*By + Cy)); |
| 59 | yCoeff[1] = Sk8f(2.0f*(By - Ay)); |
| 60 | } |
| 61 | break; |
| 62 | case kLine_SegType: |
| 63 | SkDEBUGF(("Unimplemented")); |
| 64 | break; |
| 65 | case kCubic_SegType: |
| 66 | { |
| 67 | float Ax = pts[0].x(); |
| 68 | float Bx = pts[1].x(); |
| 69 | float Cx = pts[2].x(); |
| 70 | float Dx = pts[3].x(); |
| 71 | float Ay = pts[0].y(); |
| 72 | float By = pts[1].y(); |
| 73 | float Cy = pts[2].y(); |
| 74 | float Dy = pts[3].y(); |
| 75 | |
| 76 | xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); |
| 77 | xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); |
| 78 | xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); |
| 79 | |
| 80 | yCoeff[0] = Sk8f(3.0f*(-Ay + 3.0f*(By - Cy) + Dy)); |
| 81 | yCoeff[1] = Sk8f(3.0f * -Ay + By + 2.0f*(Ay - 2.0f*By + Cy)); |
| 82 | yCoeff[2] = Sk8f(3.0f*(-Ay + By)); |
| 83 | } |
| 84 | break; |
| 85 | case kConic_SegType: |
| 86 | SkDEBUGF(("Unimplemented")); |
| 87 | break; |
| 88 | default: |
| 89 | SkDEBUGF(("Unimplemented")); |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | // We use Gaussian quadrature |
| 94 | // (https://en.wikipedia.org/wiki/Gaussian_quadrature) |
| 95 | // to approximate the arc length integral here, because it is amenable to SIMD. |
| 96 | SkScalar ArcLengthIntegrator::computeLength(SkScalar t) { |
| 97 | SkScalar length = 0.0f; |
| 98 | |
| 99 | Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType); |
| 100 | lengths = weights*lengths; |
| 101 | // is it faster or more accurate to sum and then multiply or vice versa? |
| 102 | lengths = lengths*(t*0.5f); |
| 103 | |
| 104 | // Why does SkNx index with ints? does negative index mean something? |
| 105 | for (int i = 0; i < 8; i++) { |
| 106 | length += lengths[i]; |
| 107 | } |
| 108 | return length; |
| 109 | } |
| 110 | |
| 111 | SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
| 112 | : fSegType(segType) { |
| 113 | switch (fSegType) { |
| 114 | case SkSegType::kQuad_SegType: |
| 115 | for (size_t i = 0; i < 3; i++) { |
| 116 | fPts[i] = pts[i]; |
| 117 | } |
| 118 | break; |
| 119 | case SkSegType::kLine_SegType: |
| 120 | SkDebugf("Unimplemented"); |
| 121 | break; |
| 122 | case SkSegType::kCubic_SegType: |
| 123 | for (size_t i = 0; i < 4; i++) { |
| 124 | fPts[i] = pts[i]; |
| 125 | } |
| 126 | break; |
| 127 | case SkSegType::kConic_SegType: |
| 128 | SkDebugf("Unimplemented"); |
| 129 | break; |
| 130 | default: |
| 131 | SkDEBUGF(("Unimplemented")); |
| 132 | break; |
| 133 | } |
| 134 | fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
| 135 | } |
| 136 | |
| 137 | SkScalar SkCurveMeasure::getLength() { |
| 138 | if (-1.0f == fLength) { |
| 139 | fLength = fIntegrator.computeLength(1.0f); |
| 140 | } |
| 141 | return fLength; |
| 142 | } |
| 143 | |
| 144 | // Given an arc length targetLength, we want to determine what t |
| 145 | // gives us the corresponding arc length along the curve. |
| 146 | // We do this by letting the arc length integral := f(t) and |
| 147 | // solving for the root of the equation f(t) - targetLength = 0 |
| 148 | // using Newton's method and lerp-bisection. |
| 149 | // The computationally expensive parts are the integral approximation |
| 150 | // at each step, and computing the derivative of the arc length integral, |
| 151 | // which is equal to the length of the tangent (so we have to do a sqrt). |
| 152 | |
| 153 | SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
| 154 | if (targetLength == 0.0f) { |
| 155 | return 0.0f; |
| 156 | } |
| 157 | |
| 158 | SkScalar currentLength = getLength(); |
| 159 | |
| 160 | if (SkScalarNearlyEqual(targetLength, currentLength)) { |
| 161 | return 1.0f; |
| 162 | } |
| 163 | |
| 164 | // initial estimate of t is percentage of total length |
| 165 | SkScalar currentT = targetLength / currentLength; |
| 166 | SkScalar prevT = -1.0f; |
| 167 | SkScalar newT; |
| 168 | |
| 169 | SkScalar minT = 0.0f; |
| 170 | SkScalar maxT = 1.0f; |
| 171 | |
| 172 | int iterations = 0; |
| 173 | while (iterations < kNewtonIters + kBisectIters) { |
| 174 | currentLength = fIntegrator.computeLength(currentT); |
| 175 | SkScalar lengthDiff = currentLength - targetLength; |
| 176 | |
| 177 | // Update root bounds. |
| 178 | // If lengthDiff is positive, we have overshot the target, so |
| 179 | // we know the current t is an upper bound, and similarly |
| 180 | // for the lower bound. |
| 181 | if (lengthDiff > 0.0f) { |
| 182 | if (currentT < maxT) { |
| 183 | maxT = currentT; |
| 184 | } |
| 185 | } else { |
| 186 | if (currentT > minT) { |
| 187 | minT = currentT; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | // We have a tolerance on both the absolute value of the difference and |
| 192 | // on the t value |
| 193 | // because we may not have enough precision in the t to get close enough |
| 194 | // in the length. |
| 195 | if ((std::abs(lengthDiff) < kTolerance) || |
| 196 | (std::abs(prevT - currentT) < kTolerance)) { |
| 197 | break; |
| 198 | } |
| 199 | |
| 200 | prevT = currentT; |
| 201 | if (iterations < kNewtonIters) { |
| 202 | // TODO(hstern) switch here on curve type. |
| 203 | // This is just newton's formula. |
| 204 | SkScalar dt = evaluateQuadDerivative(currentT).length(); |
| 205 | newT = currentT - (lengthDiff / dt); |
| 206 | |
| 207 | // If newT is out of bounds, bisect inside newton. |
| 208 | if ((newT < 0.0f) || (newT > 1.0f)) { |
| 209 | newT = (minT + maxT) * 0.5f; |
| 210 | } |
| 211 | } else if (iterations < kNewtonIters + kBisectIters) { |
| 212 | if (lengthDiff > 0.0f) { |
| 213 | maxT = currentT; |
| 214 | } else { |
| 215 | minT = currentT; |
| 216 | } |
| 217 | // TODO(hstern) do a lerp here instead of a bisection |
| 218 | newT = (minT + maxT) * 0.5f; |
| 219 | } else { |
| 220 | SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", |
| 221 | currentT, currentLength)); |
| 222 | break; |
| 223 | } |
| 224 | currentT = newT; |
| 225 | |
| 226 | SkASSERT(minT <= maxT); |
| 227 | |
| 228 | iterations++; |
| 229 | } |
| 230 | |
| 231 | // debug. is there an SKDEBUG or something for ifdefs? |
| 232 | fIters = iterations; |
| 233 | |
| 234 | return currentT; |
| 235 | } |
| 236 | |
| 237 | void SkCurveMeasure::getPosTan(SkScalar targetLength, SkPoint* pos, |
| 238 | SkVector* tan) { |
| 239 | SkScalar t = getTime(targetLength); |
| 240 | |
| 241 | if (pos) { |
| 242 | // TODO(hstern) switch here on curve type. |
| 243 | *pos = evaluateQuad(t); |
| 244 | } |
| 245 | if (tan) { |
| 246 | // TODO(hstern) switch here on curve type. |
| 247 | *tan = evaluateQuadDerivative(t); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | // this is why I feel that the ArcLengthIntegrator should be combined |
| 252 | // with some sort of evaluator that caches the constants computed from the |
| 253 | // control points. this is basically the same code in ArcLengthIntegrator |
| 254 | SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) { |
| 255 | SkScalar ti = 1.0f - t; |
| 256 | |
| 257 | SkScalar Ax = fPts[0].x(); |
| 258 | SkScalar Bx = fPts[1].x(); |
| 259 | SkScalar Cx = fPts[2].x(); |
| 260 | SkScalar Ay = fPts[0].y(); |
| 261 | SkScalar By = fPts[1].y(); |
| 262 | SkScalar Cy = fPts[2].y(); |
| 263 | |
| 264 | SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t; |
| 265 | SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t; |
| 266 | return SkPoint::Make(x, y); |
| 267 | } |
| 268 | |
| 269 | SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) { |
| 270 | SkScalar Ax = fPts[0].x(); |
| 271 | SkScalar Bx = fPts[1].x(); |
| 272 | SkScalar Cx = fPts[2].x(); |
| 273 | SkScalar Ay = fPts[0].y(); |
| 274 | SkScalar By = fPts[1].y(); |
| 275 | SkScalar Cy = fPts[2].y(); |
| 276 | |
| 277 | SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx); |
| 278 | SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy); |
| 279 | SkScalar ABx = 2.0f*(Bx - Ax); |
| 280 | SkScalar ABy = 2.0f*(By - Ay); |
| 281 | |
| 282 | return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy); |
| 283 | } |