caryclark@google.com | 235f56a | 2012-09-14 14:19:30 +0000 | [diff] [blame] | 1 | // Another approach is to start with the implicit form of one curve and solve |
| 2 | // (seek implicit coefficients in QuadraticParameter.cpp |
| 3 | // by substituting in the parametric form of the other. |
| 4 | // The downside of this approach is that early rejects are difficult to come by. |
| 5 | // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
| 6 | |
| 7 | |
| 8 | #include "CurveIntersection.h" |
| 9 | #include "Intersections.h" |
| 10 | #include "QuadraticParameterization.h" |
| 11 | #include "QuarticRoot.h" |
| 12 | #include "QuadraticUtilities.h" |
| 13 | |
| 14 | /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
| 15 | * and given x = at^2 + bt + c (the parameterized form) |
| 16 | * y = dt^2 + et + f |
skia.committer@gmail.com | 055c7c2 | 2012-09-15 02:01:41 +0000 | [diff] [blame^] | 17 | * then |
caryclark@google.com | 235f56a | 2012-09-14 14:19:30 +0000 | [diff] [blame] | 18 | * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
| 19 | */ |
| 20 | |
| 21 | static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4]) { |
| 22 | double a, b, c; |
| 23 | set_abc(&q2[0].x, a, b, c); |
| 24 | double d, e, f; |
| 25 | set_abc(&q2[0].y, d, e, f); |
| 26 | const double t4 = i.x2() * a * a |
| 27 | + i.xy() * a * d |
| 28 | + i.y2() * d * d; |
| 29 | const double t3 = 2 * i.x2() * a * b |
| 30 | + i.xy() * (a * e + b * d) |
| 31 | + 2 * i.y2() * d * e; |
| 32 | const double t2 = i.x2() * (b * b + 2 * a * c) |
| 33 | + i.xy() * (c * d + b * e + a * f) |
| 34 | + i.y2() * (e * e + 2 * d * f) |
| 35 | + i.x() * a |
| 36 | + i.y() * d; |
| 37 | const double t1 = 2 * i.x2() * b * c |
| 38 | + i.xy() * (c * e + b * f) |
| 39 | + 2 * i.y2() * e * f |
| 40 | + i.x() * b |
| 41 | + i.y() * e; |
| 42 | const double t0 = i.x2() * c * c |
| 43 | + i.xy() * c * f |
| 44 | + i.y2() * f * f |
| 45 | + i.x() * c |
| 46 | + i.y() * f |
| 47 | + i.c(); |
| 48 | return quarticRoots(t4, t3, t2, t1, t0, roots); |
| 49 | } |
| 50 | |
| 51 | static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) { |
| 52 | int index; |
| 53 | for (index = 0; index < count; ++index) { |
| 54 | if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
| 55 | continue; |
| 56 | } |
| 57 | double t = 1 - roots[index]; |
| 58 | if (approximately_less_than_zero(t)) { |
| 59 | t = 0; |
| 60 | } else if (approximately_greater_than_one(t)) { |
| 61 | t = 1; |
| 62 | } |
| 63 | i.insertOne(t, side); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
| 68 | QuadImplicitForm i1(q1); |
| 69 | QuadImplicitForm i2(q2); |
| 70 | if (i1.implicit_match(i2)) { |
| 71 | // FIXME: compute T values |
| 72 | // compute the intersections of the ends to find the coincident span |
| 73 | bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); |
| 74 | double t; |
| 75 | if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { |
| 76 | i.addCoincident(t, 0); |
| 77 | } |
| 78 | if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { |
| 79 | i.addCoincident(t, 1); |
| 80 | } |
| 81 | useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); |
| 82 | if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { |
| 83 | i.addCoincident(0, t); |
| 84 | } |
| 85 | if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { |
| 86 | i.addCoincident(1, t); |
| 87 | } |
| 88 | assert(i.fCoincidentUsed <= 2); |
| 89 | return i.fCoincidentUsed > 0; |
| 90 | } |
| 91 | double roots1[4], roots2[4]; |
| 92 | int rootCount = findRoots(i2, q1, roots1); |
| 93 | // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
| 94 | int rootCount2 = findRoots(i1, q2, roots2); |
| 95 | assert(rootCount == rootCount2); |
| 96 | addValidRoots(roots1, rootCount, 0, i); |
| 97 | addValidRoots(roots2, rootCount, 1, i); |
| 98 | _Point pts[4]; |
| 99 | bool matches[4]; |
| 100 | int index; |
| 101 | for (index = 0; index < i.fUsed2; ++index) { |
| 102 | xy_at_t(q2, i.fT[1][index], pts[index].x, pts[index].y); |
| 103 | matches[index] = false; |
| 104 | } |
| 105 | for (index = 0; index < i.fUsed; ) { |
| 106 | _Point xy; |
| 107 | xy_at_t(q1, i.fT[0][index], xy.x, xy.y); |
| 108 | for (int inner = 0; inner < i.fUsed2; ++inner) { |
| 109 | if (approximately_equal(pts[inner].x, xy.x) && approximately_equal(pts[inner].y, xy.y)) { |
| 110 | matches[index] = true; |
| 111 | goto next; |
| 112 | } |
| 113 | } |
| 114 | if (--i.fUsed > index) { |
| 115 | memmove(&i.fT[0][index], &i.fT[0][index + 1], (i.fUsed - index) * sizeof(i.fT[0][0])); |
| 116 | continue; |
| 117 | } |
| 118 | next: |
| 119 | ++index; |
| 120 | } |
| 121 | for (index = 0; index < i.fUsed2; ) { |
| 122 | if (!matches[index]) { |
| 123 | if (--i.fUsed2 > index) { |
| 124 | memmove(&i.fT[1][index], &i.fT[1][index + 1], (i.fUsed2 - index) * sizeof(i.fT[1][0])); |
| 125 | continue; |
| 126 | } |
| 127 | } |
| 128 | ++index; |
| 129 | } |
| 130 | assert(i.insertBalanced()); |
| 131 | return i.intersected(); |
| 132 | } |