blob: 101aac7474d2aa579e78e1ef3440af75c7c11f84 [file] [log] [blame]
bungeman@google.come8f05922012-08-16 16:13:40 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkFloatUtils_DEFINED
9#define SkFloatUtils_DEFINED
10
11#include "SkTypes.h"
12#include <limits.h>
13#include <float.h>
14
15template <size_t size>
16class SkTypeWithSize {
17public:
18 // Prevents using SkTypeWithSize<N> with non-specialized N.
19 typedef void UInt;
20};
21
22template <>
23class SkTypeWithSize<32> {
24public:
25 typedef uint32_t UInt;
26};
27
28template <>
29class SkTypeWithSize<64> {
30public:
31 typedef uint64_t UInt;
32};
33
34template <typename RawType>
35struct SkNumericLimits {
36 static const int digits = 0;
37};
38
39template <>
40struct SkNumericLimits<double> {
41 static const int digits = DBL_MANT_DIG;
42};
43
44template <>
45struct SkNumericLimits<float> {
46 static const int digits = FLT_MANT_DIG;
47};
48
49//See
50//http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299
51//http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
52//http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
53
54template <typename RawType, unsigned int ULPs>
55class SkFloatingPoint {
56public:
57 /** Bits is a unsigned integer the same size as the floating point number. */
58 typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits;
59
60 /** # of bits in a number. */
61 static const size_t kBitCount = CHAR_BIT * sizeof(RawType);
62
63 /** # of fraction bits in a number. */
64 static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1;
65
66 /** # of exponent bits in a number. */
67 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
68
69 /** The mask for the sign bit. */
70 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
71
72 /** The mask for the fraction bits. */
73 static const Bits kFractionBitMask =
74 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
75
76 /** The mask for the exponent bits. */
77 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
78
79 /** How many ULP's (Units in the Last Place) to tolerate when comparing. */
80 static const size_t kMaxUlps = ULPs;
81
82 /**
83 * Constructs a FloatingPoint from a raw floating-point number.
84 *
85 * On an Intel CPU, passing a non-normalized NAN (Not a Number)
86 * around may change its bits, although the new value is guaranteed
87 * to be also a NAN. Therefore, don't expect this constructor to
88 * preserve the bits in x when x is a NAN.
89 */
90 explicit SkFloatingPoint(const RawType& x) { fU.value = x; }
91
92 /** Returns the exponent bits of this number. */
93 Bits exponent_bits() const { return kExponentBitMask & fU.bits; }
94
95 /** Returns the fraction bits of this number. */
96 Bits fraction_bits() const { return kFractionBitMask & fU.bits; }
97
98 /** Returns true iff this is NAN (not a number). */
99 bool is_nan() const {
100 // It's a NAN if both of the folloowing are true:
101 // * the exponent bits are all ones
102 // * the fraction bits are not all zero.
103 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
104 }
105
106 /**
107 * Returns true iff this number is at most kMaxUlps ULP's away from ths.
108 * In particular, this function:
109 * - returns false if either number is (or both are) NAN.
110 * - treats really large numbers as almost equal to infinity.
111 * - thinks +0.0 and -0.0 are 0 DLP's apart.
112 */
113 bool AlmostEquals(const SkFloatingPoint& rhs) const {
114 // Any comparison operation involving a NAN must return false.
115 if (is_nan() || rhs.is_nan()) return false;
116
117 const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits,
118 rhs.fU.bits);
119 //SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist));
120 return dist <= kMaxUlps;
121 }
122
123private:
124 /** The data type used to store the actual floating-point number. */
125 union FloatingPointUnion {
126 /** The raw floating-point number. */
127 RawType value;
128 /** The bits that represent the number. */
129 Bits bits;
130 };
131
132 /**
133 * Converts an integer from the sign-and-magnitude representation to
134 * the biased representation. More precisely, let N be 2 to the
135 * power of (kBitCount - 1), an integer x is represented by the
136 * unsigned number x + N.
137 *
138 * For instance,
139 *
140 * -N + 1 (the most negative number representable using
141 * sign-and-magnitude) is represented by 1;
142 * 0 is represented by N; and
143 * N - 1 (the biggest number representable using
144 * sign-and-magnitude) is represented by 2N - 1.
145 *
146 * Read http://en.wikipedia.org/wiki/Signed_number_representations
147 * for more details on signed number representations.
148 */
149 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
150 if (kSignBitMask & sam) {
151 // sam represents a negative number.
152 return ~sam + 1;
153 } else {
154 // sam represents a positive number.
155 return kSignBitMask | sam;
156 }
157 }
158
159 /**
160 * Given two numbers in the sign-and-magnitude representation,
161 * returns the distance between them as an unsigned number.
162 */
163 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
164 const Bits &sam2) {
165 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
166 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
167 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
168 }
169
170 FloatingPointUnion fU;
171};
172
173#endif