bungeman@google.com | e8f0592 | 2012-08-16 16:13:40 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkFloatUtils_DEFINED |
| 9 | #define SkFloatUtils_DEFINED |
| 10 | |
| 11 | #include "SkTypes.h" |
| 12 | #include <limits.h> |
| 13 | #include <float.h> |
| 14 | |
| 15 | template <size_t size> |
| 16 | class SkTypeWithSize { |
| 17 | public: |
| 18 | // Prevents using SkTypeWithSize<N> with non-specialized N. |
| 19 | typedef void UInt; |
| 20 | }; |
| 21 | |
| 22 | template <> |
| 23 | class SkTypeWithSize<32> { |
| 24 | public: |
| 25 | typedef uint32_t UInt; |
| 26 | }; |
| 27 | |
| 28 | template <> |
| 29 | class SkTypeWithSize<64> { |
| 30 | public: |
| 31 | typedef uint64_t UInt; |
| 32 | }; |
| 33 | |
| 34 | template <typename RawType> |
| 35 | struct SkNumericLimits { |
| 36 | static const int digits = 0; |
| 37 | }; |
| 38 | |
| 39 | template <> |
| 40 | struct SkNumericLimits<double> { |
| 41 | static const int digits = DBL_MANT_DIG; |
| 42 | }; |
| 43 | |
| 44 | template <> |
| 45 | struct SkNumericLimits<float> { |
| 46 | static const int digits = FLT_MANT_DIG; |
| 47 | }; |
| 48 | |
| 49 | //See |
| 50 | //http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299 |
| 51 | //http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h |
| 52 | //http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm |
| 53 | |
| 54 | template <typename RawType, unsigned int ULPs> |
| 55 | class SkFloatingPoint { |
| 56 | public: |
| 57 | /** Bits is a unsigned integer the same size as the floating point number. */ |
| 58 | typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits; |
| 59 | |
| 60 | /** # of bits in a number. */ |
| 61 | static const size_t kBitCount = CHAR_BIT * sizeof(RawType); |
| 62 | |
| 63 | /** # of fraction bits in a number. */ |
| 64 | static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1; |
| 65 | |
| 66 | /** # of exponent bits in a number. */ |
| 67 | static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
| 68 | |
| 69 | /** The mask for the sign bit. */ |
| 70 | static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
| 71 | |
| 72 | /** The mask for the fraction bits. */ |
| 73 | static const Bits kFractionBitMask = |
| 74 | ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
| 75 | |
| 76 | /** The mask for the exponent bits. */ |
| 77 | static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
| 78 | |
| 79 | /** How many ULP's (Units in the Last Place) to tolerate when comparing. */ |
| 80 | static const size_t kMaxUlps = ULPs; |
| 81 | |
| 82 | /** |
| 83 | * Constructs a FloatingPoint from a raw floating-point number. |
| 84 | * |
| 85 | * On an Intel CPU, passing a non-normalized NAN (Not a Number) |
| 86 | * around may change its bits, although the new value is guaranteed |
| 87 | * to be also a NAN. Therefore, don't expect this constructor to |
| 88 | * preserve the bits in x when x is a NAN. |
| 89 | */ |
| 90 | explicit SkFloatingPoint(const RawType& x) { fU.value = x; } |
| 91 | |
| 92 | /** Returns the exponent bits of this number. */ |
| 93 | Bits exponent_bits() const { return kExponentBitMask & fU.bits; } |
| 94 | |
| 95 | /** Returns the fraction bits of this number. */ |
| 96 | Bits fraction_bits() const { return kFractionBitMask & fU.bits; } |
| 97 | |
| 98 | /** Returns true iff this is NAN (not a number). */ |
| 99 | bool is_nan() const { |
| 100 | // It's a NAN if both of the folloowing are true: |
| 101 | // * the exponent bits are all ones |
| 102 | // * the fraction bits are not all zero. |
| 103 | return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
| 104 | } |
| 105 | |
| 106 | /** |
| 107 | * Returns true iff this number is at most kMaxUlps ULP's away from ths. |
| 108 | * In particular, this function: |
| 109 | * - returns false if either number is (or both are) NAN. |
| 110 | * - treats really large numbers as almost equal to infinity. |
| 111 | * - thinks +0.0 and -0.0 are 0 DLP's apart. |
| 112 | */ |
| 113 | bool AlmostEquals(const SkFloatingPoint& rhs) const { |
| 114 | // Any comparison operation involving a NAN must return false. |
| 115 | if (is_nan() || rhs.is_nan()) return false; |
| 116 | |
| 117 | const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits, |
| 118 | rhs.fU.bits); |
| 119 | //SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist)); |
| 120 | return dist <= kMaxUlps; |
| 121 | } |
| 122 | |
| 123 | private: |
| 124 | /** The data type used to store the actual floating-point number. */ |
| 125 | union FloatingPointUnion { |
| 126 | /** The raw floating-point number. */ |
| 127 | RawType value; |
| 128 | /** The bits that represent the number. */ |
| 129 | Bits bits; |
| 130 | }; |
| 131 | |
| 132 | /** |
| 133 | * Converts an integer from the sign-and-magnitude representation to |
| 134 | * the biased representation. More precisely, let N be 2 to the |
| 135 | * power of (kBitCount - 1), an integer x is represented by the |
| 136 | * unsigned number x + N. |
| 137 | * |
| 138 | * For instance, |
| 139 | * |
| 140 | * -N + 1 (the most negative number representable using |
| 141 | * sign-and-magnitude) is represented by 1; |
| 142 | * 0 is represented by N; and |
| 143 | * N - 1 (the biggest number representable using |
| 144 | * sign-and-magnitude) is represented by 2N - 1. |
| 145 | * |
| 146 | * Read http://en.wikipedia.org/wiki/Signed_number_representations |
| 147 | * for more details on signed number representations. |
| 148 | */ |
| 149 | static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
| 150 | if (kSignBitMask & sam) { |
| 151 | // sam represents a negative number. |
| 152 | return ~sam + 1; |
| 153 | } else { |
| 154 | // sam represents a positive number. |
| 155 | return kSignBitMask | sam; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * Given two numbers in the sign-and-magnitude representation, |
| 161 | * returns the distance between them as an unsigned number. |
| 162 | */ |
| 163 | static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
| 164 | const Bits &sam2) { |
| 165 | const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
| 166 | const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
| 167 | return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
| 168 | } |
| 169 | |
| 170 | FloatingPointUnion fU; |
| 171 | }; |
| 172 | |
| 173 | #endif |