krajcevski | ae61440 | 2014-06-10 14:52:28 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkTextureCompressor.h" |
| 9 | |
| 10 | #include "SkBitmap.h" |
| 11 | #include "SkData.h" |
| 12 | #include "SkEndian.h" |
| 13 | |
| 14 | //////////////////////////////////////////////////////////////////////////////// |
| 15 | // |
| 16 | // Utility Functions |
| 17 | // |
| 18 | //////////////////////////////////////////////////////////////////////////////// |
| 19 | |
| 20 | // Absolute difference between two values. More correct than SkTAbs(a - b) |
| 21 | // because it works on unsigned values. |
| 22 | template <typename T> inline T abs_diff(const T &a, const T &b) { |
| 23 | return (a > b) ? (a - b) : (b - a); |
| 24 | } |
| 25 | |
| 26 | //////////////////////////////////////////////////////////////////////////////// |
| 27 | // |
| 28 | // LATC compressor |
| 29 | // |
| 30 | //////////////////////////////////////////////////////////////////////////////// |
| 31 | |
| 32 | // Return the squared minimum error cost of approximating 'pixel' using the |
| 33 | // provided palette. Return this in the middle 16 bits of the integer. Return |
| 34 | // the best index in the palette for this pixel in the bottom 8 bits. |
| 35 | static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { |
| 36 | int minIndex = 0; |
| 37 | uint8_t error = abs_diff(palette[0], pixel); |
| 38 | for (int i = 1; i < 8; ++i) { |
| 39 | uint8_t diff = abs_diff(palette[i], pixel); |
| 40 | if (diff < error) { |
| 41 | minIndex = i; |
| 42 | error = diff; |
| 43 | } |
| 44 | } |
| 45 | uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error); |
| 46 | SkASSERT(minIndex >= 0 && minIndex < 8); |
| 47 | return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex); |
| 48 | } |
| 49 | |
| 50 | // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| 51 | // values LUM0 and LUM1, and an index into the generated palette. LATC constructs |
| 52 | // a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| 53 | // |
| 54 | // LUM0, if lum0 > lum1 and code(x,y) == 0 |
| 55 | // LUM1, if lum0 > lum1 and code(x,y) == 1 |
| 56 | // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
| 57 | // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
| 58 | // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
| 59 | // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
| 60 | // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
| 61 | // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
| 62 | // |
| 63 | // LUM0, if lum0 <= lum1 and code(x,y) == 0 |
| 64 | // LUM1, if lum0 <= lum1 and code(x,y) == 1 |
| 65 | // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
| 66 | // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
| 67 | // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
| 68 | // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| 69 | // 0, if lum0 <= lum1 and code(x,y) == 6 |
| 70 | // 255, if lum0 <= lum1 and code(x,y) == 7 |
| 71 | // |
| 72 | // We compute the LATC palette using the following simple algorithm: |
| 73 | // 1. Choose the minimum and maximum values in the block as LUM0 and LUM1 |
| 74 | // 2. Figure out which of the two possible palettes is better. |
| 75 | |
| 76 | static uint64_t compress_latc_block(uint8_t block[16]) { |
| 77 | // Just do a simple min/max but choose which of the |
| 78 | // two palettes is better |
| 79 | uint8_t maxVal = 0; |
| 80 | uint8_t minVal = 255; |
| 81 | for (int i = 0; i < 16; ++i) { |
| 82 | maxVal = SkMax32(maxVal, block[i]); |
| 83 | minVal = SkMin32(minVal, block[i]); |
| 84 | } |
| 85 | |
| 86 | // Generate palettes |
| 87 | uint8_t palettes[2][8]; |
| 88 | |
| 89 | // Straight linear ramp |
| 90 | palettes[0][0] = maxVal; |
| 91 | palettes[0][1] = minVal; |
| 92 | for (int i = 1; i < 7; ++i) { |
| 93 | palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7; |
| 94 | } |
| 95 | |
| 96 | // Smaller linear ramp with min and max byte values at the end. |
| 97 | palettes[1][0] = minVal; |
| 98 | palettes[1][1] = maxVal; |
| 99 | for (int i = 1; i < 5; ++i) { |
| 100 | palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5; |
| 101 | } |
| 102 | palettes[1][6] = 0; |
| 103 | palettes[1][7] = 255; |
| 104 | |
| 105 | // Figure out which of the two is better: |
| 106 | // - accumError holds the accumulated error for each pixel from |
| 107 | // the associated palette |
| 108 | // - indices holds the best indices for each palette in the |
| 109 | // bottom 48 (16*3) bits. |
| 110 | uint32_t accumError[2] = { 0, 0 }; |
| 111 | uint64_t indices[2] = { 0, 0 }; |
krajcevski | 2b310e4 | 2014-06-11 12:26:49 -0700 | [diff] [blame^] | 112 | for (int i = 15; i >= 0; --i) { |
krajcevski | ae61440 | 2014-06-10 14:52:28 -0700 | [diff] [blame] | 113 | // For each palette: |
| 114 | // 1. Retreive the result of this pixel |
| 115 | // 2. Store the error in accumError |
| 116 | // 3. Store the minimum palette index in indices. |
| 117 | for (int p = 0; p < 2; ++p) { |
| 118 | uint32_t result = compute_error(block[i], palettes[p]); |
| 119 | accumError[p] += (result >> 8); |
| 120 | indices[p] <<= 3; |
krajcevski | 2b310e4 | 2014-06-11 12:26:49 -0700 | [diff] [blame^] | 121 | indices[p] |= result & 7; |
krajcevski | ae61440 | 2014-06-10 14:52:28 -0700 | [diff] [blame] | 122 | } |
| 123 | } |
| 124 | |
| 125 | SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48)); |
| 126 | SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48)); |
| 127 | |
| 128 | uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1; |
| 129 | |
| 130 | // Assemble the compressed block. |
| 131 | uint64_t result = 0; |
| 132 | |
| 133 | // Jam the first two palette entries into the bottom 16 bits of |
| 134 | // a 64 bit integer. Based on the palette that we chose, one will |
| 135 | // be larger than the other and it will select the proper palette. |
| 136 | result |= static_cast<uint64_t>(palettes[paletteIdx][0]); |
| 137 | result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8; |
| 138 | |
| 139 | // Jam the indices into the top 48 bits. |
| 140 | result |= indices[paletteIdx] << 16; |
| 141 | |
| 142 | // We assume everything is little endian, if it's not then make it so. |
| 143 | return SkEndian_SwapLE64(result); |
| 144 | } |
| 145 | |
| 146 | static SkData *compress_a8_to_latc(const SkBitmap &bm) { |
| 147 | // LATC compressed texels down into square 4x4 blocks |
| 148 | static const int kLATCBlockSize = 4; |
| 149 | |
| 150 | // Make sure that our data is well-formed enough to be |
| 151 | // considered for LATC compression |
| 152 | if (bm.width() == 0 || bm.height() == 0 || |
| 153 | (bm.width() % kLATCBlockSize) != 0 || |
| 154 | (bm.height() % kLATCBlockSize) != 0 || |
| 155 | (bm.colorType() != kAlpha_8_SkColorType)) { |
| 156 | return NULL; |
| 157 | } |
| 158 | |
| 159 | // The LATC format is 64 bits per 4x4 block. |
| 160 | static const int kLATCEncodedBlockSize = 8; |
| 161 | |
| 162 | int blocksX = bm.width() / kLATCBlockSize; |
| 163 | int blocksY = bm.height() / kLATCBlockSize; |
| 164 | |
| 165 | int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize; |
| 166 | uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSize)); |
| 167 | |
| 168 | uint8_t block[16]; |
| 169 | const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels()); |
| 170 | uint64_t* encPtr = dst; |
| 171 | for (int y = 0; y < blocksY; ++y) { |
| 172 | for (int x = 0; x < blocksX; ++x) { |
| 173 | memcpy(block, row + (kLATCBlockSize * x), 4); |
| 174 | memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4); |
| 175 | memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4); |
| 176 | memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4); |
| 177 | |
| 178 | *encPtr = compress_latc_block(block); |
| 179 | ++encPtr; |
| 180 | } |
| 181 | row += kLATCBlockSize * bm.rowBytes(); |
| 182 | } |
| 183 | |
| 184 | return SkData::NewFromMalloc(dst, compressedDataSize); |
| 185 | } |
| 186 | |
| 187 | //////////////////////////////////////////////////////////////////////////////// |
| 188 | |
| 189 | namespace SkTextureCompressor { |
| 190 | |
| 191 | typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap); |
| 192 | |
| 193 | SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
krajcevski | 2b310e4 | 2014-06-11 12:26:49 -0700 | [diff] [blame^] | 194 | SkAutoLockPixels alp(bitmap); |
| 195 | |
krajcevski | ae61440 | 2014-06-10 14:52:28 -0700 | [diff] [blame] | 196 | CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt]; |
| 197 | memset(kProcMap, 0, sizeof(kProcMap)); |
| 198 | |
| 199 | // Map available bitmap configs to compression functions |
| 200 | kProcMap[SkBitmap::kA8_Config][kLATC_Format] = compress_a8_to_latc; |
| 201 | |
| 202 | CompressBitmapProc proc = kProcMap[bitmap.colorType()][format]; |
| 203 | if (NULL != proc) { |
| 204 | return proc(bitmap); |
| 205 | } |
| 206 | |
| 207 | return NULL; |
| 208 | } |
| 209 | |
| 210 | } // namespace SkTextureCompressor |