blob: 9e8c5feef03971298d017b6a46c1ce53f7260392 [file] [log] [blame]
humper@google.com138ebc32013-07-19 20:20:04 +00001#include "SkBitmapScaler.h"
2#include "SkBitmapFilter.h"
3#include "SkRect.h"
4#include "SkTArray.h"
5#include "SkErrorInternals.h"
6#include "SkConvolver.h"
7
8// SkResizeFilter ----------------------------------------------------------------
9
10// Encapsulates computation and storage of the filters required for one complete
11// resize operation.
12class SkResizeFilter {
13public:
14 SkResizeFilter(SkBitmapScaler::ResizeMethod method,
15 int srcFullWidth, int srcFullHeight,
16 int destWidth, int destHeight,
17 const SkIRect& destSubset,
reed@google.comfed04b32013-09-05 20:31:17 +000018 const SkConvolutionProcs& convolveProcs);
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000019 ~SkResizeFilter() {
20 SkDELETE( fBitmapFilter );
humper@google.com138ebc32013-07-19 20:20:04 +000021 }
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000022
humper@google.com138ebc32013-07-19 20:20:04 +000023 // Returns the filled filter values.
24 const SkConvolutionFilter1D& xFilter() { return fXFilter; }
25 const SkConvolutionFilter1D& yFilter() { return fYFilter; }
26
27private:
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000028
humper@google.com138ebc32013-07-19 20:20:04 +000029 SkBitmapFilter* fBitmapFilter;
30
31 // Computes one set of filters either horizontally or vertically. The caller
32 // will specify the "min" and "max" rather than the bottom/top and
33 // right/bottom so that the same code can be re-used in each dimension.
34 //
35 // |srcDependLo| and |srcDependSize| gives the range for the source
36 // depend rectangle (horizontally or vertically at the caller's discretion
37 // -- see above for what this means).
38 //
39 // Likewise, the range of destination values to compute and the scale factor
40 // for the transform is also specified.
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000041
humper@google.com138ebc32013-07-19 20:20:04 +000042 void computeFilters(int srcSize,
43 int destSubsetLo, int destSubsetSize,
44 float scale,
45 SkConvolutionFilter1D* output,
reed@google.comfed04b32013-09-05 20:31:17 +000046 const SkConvolutionProcs& convolveProcs);
humper@google.com138ebc32013-07-19 20:20:04 +000047
humper@google.com138ebc32013-07-19 20:20:04 +000048 SkConvolutionFilter1D fXFilter;
49 SkConvolutionFilter1D fYFilter;
50};
51
52SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
53 int srcFullWidth, int srcFullHeight,
54 int destWidth, int destHeight,
55 const SkIRect& destSubset,
reed@google.comfed04b32013-09-05 20:31:17 +000056 const SkConvolutionProcs& convolveProcs) {
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000057
humper@google.com138ebc32013-07-19 20:20:04 +000058 // method will only ever refer to an "algorithm method".
59 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
60 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
61
62 switch(method) {
63 case SkBitmapScaler::RESIZE_BOX:
64 fBitmapFilter = SkNEW(SkBoxFilter);
65 break;
66 case SkBitmapScaler::RESIZE_TRIANGLE:
67 fBitmapFilter = SkNEW(SkTriangleFilter);
68 break;
69 case SkBitmapScaler::RESIZE_MITCHELL:
70 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
71 break;
72 case SkBitmapScaler::RESIZE_HAMMING:
73 fBitmapFilter = SkNEW(SkHammingFilter);
74 break;
75 case SkBitmapScaler::RESIZE_LANCZOS3:
76 fBitmapFilter = SkNEW(SkLanczosFilter);
77 break;
78 default:
79 // NOTREACHED:
80 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
81 break;
82 }
skia.committer@gmail.com1f3c7382013-07-20 07:00:58 +000083
humper@google.com138ebc32013-07-19 20:20:04 +000084
85 float scaleX = static_cast<float>(destWidth) /
86 static_cast<float>(srcFullWidth);
87 float scaleY = static_cast<float>(destHeight) /
88 static_cast<float>(srcFullHeight);
89
90 this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
91 scaleX, &fXFilter, convolveProcs);
commit-bot@chromium.orgd10913b2014-03-06 19:10:44 +000092 if (srcFullWidth == srcFullHeight &&
93 destSubset.fLeft == destSubset.fTop &&
94 destSubset.width() == destSubset.height()&&
95 scaleX == scaleY) {
96 fYFilter = fXFilter;
97 } else {
98 this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
99 scaleY, &fYFilter, convolveProcs);
100 }
humper@google.com138ebc32013-07-19 20:20:04 +0000101}
102
103// TODO(egouriou): Take advantage of periods in the convolution.
104// Practical resizing filters are periodic outside of the border area.
105// For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
106// source become p pixels in the destination) will have a period of p.
107// A nice consequence is a period of 1 when downscaling by an integral
108// factor. Downscaling from typical display resolutions is also bound
109// to produce interesting periods as those are chosen to have multiple
110// small factors.
111// Small periods reduce computational load and improve cache usage if
112// the coefficients can be shared. For periods of 1 we can consider
113// loading the factors only once outside the borders.
114void SkResizeFilter::computeFilters(int srcSize,
115 int destSubsetLo, int destSubsetSize,
116 float scale,
117 SkConvolutionFilter1D* output,
reed@google.comfed04b32013-09-05 20:31:17 +0000118 const SkConvolutionProcs& convolveProcs) {
humper@google.com138ebc32013-07-19 20:20:04 +0000119 int destSubsetHi = destSubsetLo + destSubsetSize; // [lo, hi)
120
121 // When we're doing a magnification, the scale will be larger than one. This
122 // means the destination pixels are much smaller than the source pixels, and
123 // that the range covered by the filter won't necessarily cover any source
124 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
125 // some computations.
126 float clampedScale = SkTMin(1.0f, scale);
127
128 // This is how many source pixels from the center we need to count
129 // to support the filtering function.
130 float srcSupport = fBitmapFilter->width() / clampedScale;
131
132 // Speed up the divisions below by turning them into multiplies.
133 float invScale = 1.0f / scale;
134
135 SkTArray<float> filterValues(64);
136 SkTArray<short> fixedFilterValues(64);
137
138 // Loop over all pixels in the output range. We will generate one set of
139 // filter values for each one. Those values will tell us how to blend the
140 // source pixels to compute the destination pixel.
141 for (int destSubsetI = destSubsetLo; destSubsetI < destSubsetHi;
142 destSubsetI++) {
143 // Reset the arrays. We don't declare them inside so they can re-use the
144 // same malloc-ed buffer.
145 filterValues.reset();
146 fixedFilterValues.reset();
147
148 // This is the pixel in the source directly under the pixel in the dest.
149 // Note that we base computations on the "center" of the pixels. To see
150 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
151 // downscale should "cover" the pixels around the pixel with *its center*
152 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
153 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
154 float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
155
156 // Compute the (inclusive) range of source pixels the filter covers.
157 int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
158 int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
159
160 // Compute the unnormalized filter value at each location of the source
161 // it covers.
162 float filterSum = 0.0f; // Sub of the filter values for normalizing.
163 for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
164 curFilterPixel++) {
165 // Distance from the center of the filter, this is the filter coordinate
166 // in source space. We also need to consider the center of the pixel
167 // when comparing distance against 'srcPixel'. In the 5x downscale
168 // example used above the distance from the center of the filter to
169 // the pixel with coordinates (2, 2) should be 0, because its center
170 // is at (2.5, 2.5).
171 float srcFilterDist =
172 ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
173
174 // Since the filter really exists in dest space, map it there.
175 float destFilterDist = srcFilterDist * clampedScale;
176
177 // Compute the filter value at that location.
178 float filterValue = fBitmapFilter->evaluate(destFilterDist);
179 filterValues.push_back(filterValue);
180
181 filterSum += filterValue;
182 }
183 SkASSERT(!filterValues.empty());
184
185 // The filter must be normalized so that we don't affect the brightness of
186 // the image. Convert to normalized fixed point.
187 short fixedSum = 0;
188 for (int i = 0; i < filterValues.count(); i++) {
189 short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
190 fixedSum += curFixed;
191 fixedFilterValues.push_back(curFixed);
192 }
193
194 // The conversion to fixed point will leave some rounding errors, which
195 // we add back in to avoid affecting the brightness of the image. We
196 // arbitrarily add this to the center of the filter array (this won't always
197 // be the center of the filter function since it could get clipped on the
198 // edges, but it doesn't matter enough to worry about that case).
199 short leftovers = output->FloatToFixed(1.0f) - fixedSum;
200 fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
201
202 // Now it's ready to go.
203 output->AddFilter(srcBegin, &fixedFilterValues[0],
204 static_cast<int>(fixedFilterValues.count()));
205 }
206
reed@google.comfed04b32013-09-05 20:31:17 +0000207 if (convolveProcs.fApplySIMDPadding) {
208 convolveProcs.fApplySIMDPadding( output );
humper@google.com138ebc32013-07-19 20:20:04 +0000209 }
210}
211
212static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
213 SkBitmapScaler::ResizeMethod method) {
214 // Convert any "Quality Method" into an "Algorithm Method"
215 if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
216 method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
217 return method;
218 }
219 // The call to SkBitmapScalerGtv::Resize() above took care of
220 // GPU-acceleration in the cases where it is possible. So now we just
221 // pick the appropriate software method for each resize quality.
222 switch (method) {
223 // Users of RESIZE_GOOD are willing to trade a lot of quality to
224 // get speed, allowing the use of linear resampling to get hardware
225 // acceleration (SRB). Hence any of our "good" software filters
226 // will be acceptable, so we use a triangle.
227 case SkBitmapScaler::RESIZE_GOOD:
228 return SkBitmapScaler::RESIZE_TRIANGLE;
229 // Users of RESIZE_BETTER are willing to trade some quality in order
230 // to improve performance, but are guaranteed not to devolve to a linear
231 // resampling. In visual tests we see that Hamming-1 is not as good as
232 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
233 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
234 // an acceptable trade-off between quality and speed.
235 case SkBitmapScaler::RESIZE_BETTER:
236 return SkBitmapScaler::RESIZE_HAMMING;
237 default:
commit-bot@chromium.orgdcfaa732014-02-14 18:46:08 +0000238#ifdef SK_HIGH_QUALITY_IS_LANCZOS
239 return SkBitmapScaler::RESIZE_LANCZOS3;
240#else
humper@google.com138ebc32013-07-19 20:20:04 +0000241 return SkBitmapScaler::RESIZE_MITCHELL;
commit-bot@chromium.orgdcfaa732014-02-14 18:46:08 +0000242#endif
humper@google.com138ebc32013-07-19 20:20:04 +0000243 }
244}
245
246// static
reed@google.com1e182252013-07-24 20:10:42 +0000247bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
248 const SkBitmap& source,
249 ResizeMethod method,
250 int destWidth, int destHeight,
251 const SkIRect& destSubset,
reed@google.comfed04b32013-09-05 20:31:17 +0000252 const SkConvolutionProcs& convolveProcs,
reed@google.com1e182252013-07-24 20:10:42 +0000253 SkBitmap::Allocator* allocator) {
humper@google.com138ebc32013-07-19 20:20:04 +0000254 // Ensure that the ResizeMethod enumeration is sound.
255 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
256 (method <= RESIZE_LAST_QUALITY_METHOD)) ||
257 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
258 (method <= RESIZE_LAST_ALGORITHM_METHOD)));
259
260 SkIRect dest = { 0, 0, destWidth, destHeight };
261 if (!dest.contains(destSubset)) {
262 SkErrorInternals::SetError( kInvalidArgument_SkError,
263 "Sorry, you passed me a bitmap resize "
264 " method I have never heard of: %d",
265 method );
266 }
267
268 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
269 // return empty.
270 if (source.width() < 1 || source.height() < 1 ||
271 destWidth < 1 || destHeight < 1) {
reed@google.com1e182252013-07-24 20:10:42 +0000272 // todo: seems like we could handle negative dstWidth/Height, since that
273 // is just a negative scale (flip)
274 return false;
humper@google.com138ebc32013-07-19 20:20:04 +0000275 }
276
277 method = ResizeMethodToAlgorithmMethod(method);
278
279 // Check that we deal with an "algorithm methods" from this point onward.
280 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
281 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
282
283 SkAutoLockPixels locker(source);
reed@google.com1e182252013-07-24 20:10:42 +0000284 if (!source.readyToDraw() ||
commit-bot@chromium.org757ebd22014-04-10 22:36:34 +0000285 source.colorType() != kPMColor_SkColorType) {
reed@google.com1e182252013-07-24 20:10:42 +0000286 return false;
287 }
humper@google.com138ebc32013-07-19 20:20:04 +0000288
289 SkResizeFilter filter(method, source.width(), source.height(),
290 destWidth, destHeight, destSubset, convolveProcs);
291
292 // Get a source bitmap encompassing this touched area. We construct the
293 // offsets and row strides such that it looks like a new bitmap, while
294 // referring to the old data.
295 const unsigned char* sourceSubset =
296 reinterpret_cast<const unsigned char*>(source.getPixels());
297
298 // Convolve into the result.
299 SkBitmap result;
reed@google.com900ecf22014-02-20 20:55:37 +0000300 result.setConfig(SkImageInfo::MakeN32(destSubset.width(),
301 destSubset.height(),
302 source.alphaType()));
humper@google.com138ebc32013-07-19 20:20:04 +0000303 result.allocPixels(allocator, NULL);
reed@google.com1e182252013-07-24 20:10:42 +0000304 if (!result.readyToDraw()) {
305 return false;
306 }
humper@google.com138ebc32013-07-19 20:20:04 +0000307
308 BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
309 !source.isOpaque(), filter.xFilter(), filter.yFilter(),
310 static_cast<int>(result.rowBytes()),
311 static_cast<unsigned char*>(result.getPixels()),
312 convolveProcs, true);
313
reed@google.com1e182252013-07-24 20:10:42 +0000314 *resultPtr = result;
reed@google.comfa7fd802013-12-12 21:37:25 +0000315 resultPtr->lockPixels();
316 SkASSERT(NULL != resultPtr->getPixels());
reed@google.com1e182252013-07-24 20:10:42 +0000317 return true;
humper@google.com138ebc32013-07-19 20:20:04 +0000318}
319
320// static
reed@google.com1e182252013-07-24 20:10:42 +0000321bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
322 const SkBitmap& source,
323 ResizeMethod method,
324 int destWidth, int destHeight,
reed@google.comfed04b32013-09-05 20:31:17 +0000325 const SkConvolutionProcs& convolveProcs,
reed@google.com1e182252013-07-24 20:10:42 +0000326 SkBitmap::Allocator* allocator) {
humper@google.com138ebc32013-07-19 20:20:04 +0000327 SkIRect destSubset = { 0, 0, destWidth, destHeight };
reed@google.com1e182252013-07-24 20:10:42 +0000328 return Resize(resultPtr, source, method, destWidth, destHeight, destSubset,
humper@google.com138ebc32013-07-19 20:20:04 +0000329 convolveProcs, allocator);
330}