blob: 02de98f1d66e162896078bffbca391ae8b21126d [file] [log] [blame]
egdaniela22ea182014-06-11 06:51:51 -07001/*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkDashPathPriv.h"
9#include "SkPathMeasure.h"
10
11static inline int is_even(int x) {
12 return (~x) << 31;
13}
14
15static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
16 int32_t* index, int count) {
17 for (int i = 0; i < count; ++i) {
18 if (phase > intervals[i]) {
19 phase -= intervals[i];
20 } else {
21 *index = i;
22 return intervals[i] - phase;
23 }
24 }
25 // If we get here, phase "appears" to be larger than our length. This
26 // shouldn't happen with perfect precision, but we can accumulate errors
27 // during the initial length computation (rounding can make our sum be too
28 // big or too small. In that event, we just have to eat the error here.
29 *index = 0;
30 return intervals[0];
31}
32
33void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
34 SkScalar* initialDashLength, int32_t* initialDashIndex,
35 SkScalar* intervalLength, SkScalar* adjustedPhase) {
36 SkScalar len = 0;
37 for (int i = 0; i < count; i++) {
38 len += intervals[i];
39 }
40 *intervalLength = len;
41
42 // watch out for values that might make us go out of bounds
43 if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
44
45 // Adjust phase to be between 0 and len, "flipping" phase if negative.
46 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
47 if (adjustedPhase) {
48 if (phase < 0) {
49 phase = -phase;
50 if (phase > len) {
51 phase = SkScalarMod(phase, len);
52 }
53 phase = len - phase;
54
55 // Due to finite precision, it's possible that phase == len,
56 // even after the subtract (if len >>> phase), so fix that here.
57 // This fixes http://crbug.com/124652 .
58 SkASSERT(phase <= len);
59 if (phase == len) {
60 phase = 0;
61 }
62 } else if (phase >= len) {
63 phase = SkScalarMod(phase, len);
64 }
65 *adjustedPhase = phase;
66 }
67 SkASSERT(phase >= 0 && phase < len);
68
69 *initialDashLength = find_first_interval(intervals, phase,
70 initialDashIndex, count);
71
72 SkASSERT(*initialDashLength >= 0);
73 SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
74 } else {
75 *initialDashLength = -1; // signal bad dash intervals
76 }
77}
78
79static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
80 SkScalar radius = SkScalarHalf(rec.getWidth());
81 if (0 == radius) {
82 radius = SK_Scalar1; // hairlines
83 }
84 if (SkPaint::kMiter_Join == rec.getJoin()) {
85 radius = SkScalarMul(radius, rec.getMiter());
86 }
87 rect->outset(radius, radius);
88}
89
90// Only handles lines for now. If returns true, dstPath is the new (smaller)
91// path. If returns false, then dstPath parameter is ignored.
92static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
93 const SkRect* cullRect, SkScalar intervalLength,
94 SkPath* dstPath) {
95 if (NULL == cullRect) {
96 return false;
97 }
98
99 SkPoint pts[2];
100 if (!srcPath.isLine(pts)) {
101 return false;
102 }
103
104 SkRect bounds = *cullRect;
105 outset_for_stroke(&bounds, rec);
106
107 SkScalar dx = pts[1].x() - pts[0].x();
108 SkScalar dy = pts[1].y() - pts[0].y();
109
110 // just do horizontal lines for now (lazy)
111 if (dy) {
112 return false;
113 }
114
115 SkScalar minX = pts[0].fX;
116 SkScalar maxX = pts[1].fX;
117
egdaniela22ea182014-06-11 06:51:51 -0700118 if (dx < 0) {
119 SkTSwap(minX, maxX);
120 }
121
robertphillips9f2251c2014-11-04 13:33:50 -0800122 SkASSERT(minX < maxX);
123 if (maxX < bounds.fLeft || minX > bounds.fRight) {
124 return false;
125 }
126
egdaniela22ea182014-06-11 06:51:51 -0700127 // Now we actually perform the chop, removing the excess to the left and
128 // right of the bounds (keeping our new line "in phase" with the dash,
129 // hence the (mod intervalLength).
130
131 if (minX < bounds.fLeft) {
132 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
133 intervalLength);
134 }
135 if (maxX > bounds.fRight) {
136 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
137 intervalLength);
138 }
139
140 SkASSERT(maxX >= minX);
141 if (dx < 0) {
142 SkTSwap(minX, maxX);
143 }
144 pts[0].fX = minX;
145 pts[1].fX = maxX;
146
147 dstPath->moveTo(pts[0]);
148 dstPath->lineTo(pts[1]);
149 return true;
150}
151
152class SpecialLineRec {
153public:
154 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
155 int intervalCount, SkScalar intervalLength) {
156 if (rec->isHairlineStyle() || !src.isLine(fPts)) {
157 return false;
158 }
159
160 // can relax this in the future, if we handle square and round caps
161 if (SkPaint::kButt_Cap != rec->getCap()) {
162 return false;
163 }
164
165 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
166
167 fTangent = fPts[1] - fPts[0];
168 if (fTangent.isZero()) {
169 return false;
170 }
171
172 fPathLength = pathLength;
173 fTangent.scale(SkScalarInvert(pathLength));
174 fTangent.rotateCCW(&fNormal);
175 fNormal.scale(SkScalarHalf(rec->getWidth()));
176
177 // now estimate how many quads will be added to the path
178 // resulting segments = pathLen * intervalCount / intervalLen
179 // resulting points = 4 * segments
180
181 SkScalar ptCount = SkScalarMulDiv(pathLength,
182 SkIntToScalar(intervalCount),
183 intervalLength);
184 int n = SkScalarCeilToInt(ptCount) << 2;
185 dst->incReserve(n);
186
187 // we will take care of the stroking
188 rec->setFillStyle();
189 return true;
190 }
191
192 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
193 SkASSERT(d0 < fPathLength);
194 // clamp the segment to our length
195 if (d1 > fPathLength) {
196 d1 = fPathLength;
197 }
198
199 SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
200 SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
201 SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
202 SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
203
204 SkPoint pts[4];
205 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
206 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
207 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
208 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
209
210 path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
211 }
212
213private:
214 SkPoint fPts[2];
215 SkVector fTangent;
216 SkVector fNormal;
217 SkScalar fPathLength;
218};
219
220
221bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
222 const SkRect* cullRect, const SkScalar aIntervals[],
223 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
224 SkScalar intervalLength) {
225
226 // we do nothing if the src wants to be filled, or if our dashlength is 0
227 if (rec->isFillStyle() || initialDashLength < 0) {
228 return false;
229 }
230
231 const SkScalar* intervals = aIntervals;
232 SkScalar dashCount = 0;
233 int segCount = 0;
234
235 SkPath cullPathStorage;
236 const SkPath* srcPtr = &src;
237 if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
238 srcPtr = &cullPathStorage;
239 }
240
241 SpecialLineRec lineRec;
242 bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
243
244 SkPathMeasure meas(*srcPtr, false);
245
246 do {
247 bool skipFirstSegment = meas.isClosed();
248 bool addedSegment = false;
249 SkScalar length = meas.getLength();
250 int index = initialDashIndex;
251
252 // Since the path length / dash length ratio may be arbitrarily large, we can exert
253 // significant memory pressure while attempting to build the filtered path. To avoid this,
254 // we simply give up dashing beyond a certain threshold.
255 //
256 // The original bug report (http://crbug.com/165432) is based on a path yielding more than
257 // 90 million dash segments and crashing the memory allocator. A limit of 1 million
258 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
259 // maximum dash memory overhead at roughly 17MB per path.
260 static const SkScalar kMaxDashCount = 1000000;
261 dashCount += length * (count >> 1) / intervalLength;
262 if (dashCount > kMaxDashCount) {
263 dst->reset();
264 return false;
265 }
266
267 // Using double precision to avoid looping indefinitely due to single precision rounding
268 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
269 double distance = 0;
270 double dlen = initialDashLength;
271
272 while (distance < length) {
273 SkASSERT(dlen >= 0);
274 addedSegment = false;
275 if (is_even(index) && dlen > 0 && !skipFirstSegment) {
276 addedSegment = true;
277 ++segCount;
278
279 if (specialLine) {
280 lineRec.addSegment(SkDoubleToScalar(distance),
281 SkDoubleToScalar(distance + dlen),
282 dst);
283 } else {
284 meas.getSegment(SkDoubleToScalar(distance),
285 SkDoubleToScalar(distance + dlen),
286 dst, true);
287 }
288 }
289 distance += dlen;
290
291 // clear this so we only respect it the first time around
292 skipFirstSegment = false;
293
294 // wrap around our intervals array if necessary
295 index += 1;
296 SkASSERT(index <= count);
297 if (index == count) {
298 index = 0;
299 }
300
301 // fetch our next dlen
302 dlen = intervals[index];
303 }
304
305 // extend if we ended on a segment and we need to join up with the (skipped) initial segment
306 if (meas.isClosed() && is_even(initialDashIndex) &&
307 initialDashLength > 0) {
308 meas.getSegment(0, initialDashLength, dst, !addedSegment);
309 ++segCount;
310 }
311 } while (meas.nextContour());
312
313 if (segCount > 1) {
314 dst->setConvexity(SkPath::kConcave_Convexity);
315 }
316
317 return true;
318}
319
320bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
321 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
322 SkScalar initialDashLength = 0;
323 int32_t initialDashIndex = 0;
324 SkScalar intervalLength = 0;
325 CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
326 &initialDashLength, &initialDashIndex, &intervalLength);
327 return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
328 initialDashIndex, intervalLength);
329}