blob: 2593273c26fc2d9971fc929dc89287fc9346a900 [file] [log] [blame]
Chris Dalton419a94d2017-08-28 10:24:22 -06001/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
Chris Dalton383a2ef2018-01-08 17:21:41 -05008#include "GrCCGeometry.h"
Chris Dalton419a94d2017-08-28 10:24:22 -06009
10#include "GrTypes.h"
Chris Dalton7f578bf2017-09-05 16:46:48 -060011#include "GrPathUtils.h"
Chris Dalton419a94d2017-08-28 10:24:22 -060012#include <algorithm>
13#include <cmath>
14#include <cstdlib>
15
16// We convert between SkPoint and Sk2f freely throughout this file.
17GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
18GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
19GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
20
Chris Dalton383a2ef2018-01-08 17:21:41 -050021void GrCCGeometry::beginPath() {
Chris Daltonc1e59632017-09-05 00:30:07 -060022 SkASSERT(!fBuildingContour);
23 fVerbs.push_back(Verb::kBeginPath);
24}
25
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060026void GrCCGeometry::beginContour(const SkPoint& pt) {
Chris Daltonc1e59632017-09-05 00:30:07 -060027 SkASSERT(!fBuildingContour);
Chris Daltonc1e59632017-09-05 00:30:07 -060028 // Store the current verb count in the fTriangles field for now. When we close the contour we
29 // will use this value to calculate the actual number of triangles in its fan.
Chris Dalton9f2dab02018-04-18 14:07:03 -060030 fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0};
Chris Daltonc1e59632017-09-05 00:30:07 -060031
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060032 fPoints.push_back(pt);
Chris Daltonc1e59632017-09-05 00:30:07 -060033 fVerbs.push_back(Verb::kBeginContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060034 fCurrAnchorPoint = pt;
Chris Daltonc1e59632017-09-05 00:30:07 -060035
Chris Dalton383a2ef2018-01-08 17:21:41 -050036 SkDEBUGCODE(fBuildingContour = true);
Chris Daltonc1e59632017-09-05 00:30:07 -060037}
38
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060039void GrCCGeometry::lineTo(const SkPoint& pt) {
Chris Daltonc1e59632017-09-05 00:30:07 -060040 SkASSERT(fBuildingContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -060041 fPoints.push_back(pt);
42 fVerbs.push_back(Verb::kLineTo);
43}
44
45void GrCCGeometry::appendLine(const Sk2f& endpt) {
46 endpt.store(&fPoints.push_back());
Chris Daltonc1e59632017-09-05 00:30:07 -060047 fVerbs.push_back(Verb::kLineTo);
48}
49
Chris Dalton419a94d2017-08-28 10:24:22 -060050static inline Sk2f normalize(const Sk2f& n) {
51 Sk2f nn = n*n;
52 return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
53}
54
55static inline float dot(const Sk2f& a, const Sk2f& b) {
56 float product[2];
57 (a * b).store(product);
58 return product[0] + product[1];
59}
60
Chris Daltonb0601a42018-04-10 00:23:45 -060061static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
62 float tolerance = 1/16.f) { // 1/16 of a pixel.
63 Sk2f l = p2 - p0; // Line from p0 -> p2.
Chris Dalton900cd052017-09-07 10:36:51 -060064
Chris Daltonb0601a42018-04-10 00:23:45 -060065 // lwidth = Manhattan width of l.
66 Sk2f labs = l.abs();
67 float lwidth = labs[0] + labs[1];
Chris Dalton900cd052017-09-07 10:36:51 -060068
Chris Daltonb0601a42018-04-10 00:23:45 -060069 // d = |p1 - p0| dot | l.y|
70 // |-l.x| = distance from p1 to l.
71 Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l);
72 float d = dd[0] - dd[1];
Chris Dalton900cd052017-09-07 10:36:51 -060073
Chris Daltonb0601a42018-04-10 00:23:45 -060074 // We are collinear if a box with radius "tolerance", centered on p1, touches the line l.
75 // To decide this, we check if the distance from p1 to the line is less than the distance from
76 // p1 to the far corner of this imaginary box, along that same normal vector.
77 // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l:
78 //
79 // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n)
80 //
81 // Which reduces to:
82 //
83 // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance
84 // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance
85 //
86 // Use "<=" in case l == 0.
87 return std::abs(d) <= lwidth * tolerance;
88}
89
90static inline bool are_collinear(const SkPoint P[4], float tolerance = 1/16.f) { // 1/16 of a pixel.
91 Sk4f Px, Py; // |Px Py| |p0 - p3|
92 Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3|
93 Px -= Px[3]; // |. . | |p2 - p3|
94 Py -= Py[3]; // |. . | | 0 |
95
96 // Find [lx, ly] = the line from p3 to the furthest-away point from p3.
97 Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point.
98 int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1;
99 lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2;
100 float lx = Px[lidx], ly = Py[lidx];
101 float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly].
102
103 // |Px Py|
104 // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero).
105 // |. . | |-lx|
106 // |. . |
107 Sk4f d = Px*ly - Py*lx;
108
109 // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l.
110 // (See the rationale for this formula in the above, 3-point version of this function.)
111 // Use "<=" in case l == 0.
112 return (d.abs() <= lwidth * tolerance).allTrue();
Chris Dalton900cd052017-09-07 10:36:51 -0600113}
114
Chris Dalton419a94d2017-08-28 10:24:22 -0600115// Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600116static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0,
117 const Sk2f& endPt, const Sk2f& tan1) {
Chris Dalton419a94d2017-08-28 10:24:22 -0600118 Sk2f v = endPt - startPt;
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600119 float dot0 = dot(tan0, v);
120 float dot1 = dot(tan1, v);
Chris Dalton419a94d2017-08-28 10:24:22 -0600121
122 // A small, negative tolerance handles floating-point error in the case when one tangent
123 // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
124 float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
125 return dot0 >= tolerance && dot1 >= tolerance;
126}
127
Chris Dalton9f2dab02018-04-18 14:07:03 -0600128template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b,
129 const SkNx<N,float>& t) {
Chris Dalton419a94d2017-08-28 10:24:22 -0600130 return SkNx_fma(t, b - a, a);
131}
132
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600133void GrCCGeometry::quadraticTo(const SkPoint P[3]) {
Chris Daltonc1e59632017-09-05 00:30:07 -0600134 SkASSERT(fBuildingContour);
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600135 SkASSERT(P[0] == fPoints.back());
136 Sk2f p0 = Sk2f::Load(P);
137 Sk2f p1 = Sk2f::Load(P+1);
138 Sk2f p2 = Sk2f::Load(P+2);
Chris Daltonc1e59632017-09-05 00:30:07 -0600139
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600140 // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break
141 // The monotonic chopping math.
142 if (are_collinear(p0, p1, p2)) {
143 this->appendLine(p2);
144 return;
145 }
Chris Dalton419a94d2017-08-28 10:24:22 -0600146
Chris Daltonb3a69592018-04-18 14:10:22 -0600147 this->appendQuadratics(p0, p1, p2);
Chris Dalton29011a22017-09-28 12:08:33 -0600148}
149
Chris Daltonb3a69592018-04-18 14:10:22 -0600150inline void GrCCGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
Chris Dalton419a94d2017-08-28 10:24:22 -0600151 Sk2f tan0 = p1 - p0;
152 Sk2f tan1 = p2 - p1;
Chris Dalton29011a22017-09-28 12:08:33 -0600153
Chris Dalton419a94d2017-08-28 10:24:22 -0600154 // This should almost always be this case for well-behaved curves in the real world.
Chris Dalton43646532017-12-07 12:47:02 -0700155 if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
Chris Daltonb3a69592018-04-18 14:10:22 -0600156 this->appendMonotonicQuadratic(p0, p1, p2);
Chris Daltonc1e59632017-09-05 00:30:07 -0600157 return;
Chris Dalton419a94d2017-08-28 10:24:22 -0600158 }
159
160 // Chop the curve into two segments with equal curvature. To do this we find the T value whose
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600161 // tangent angle is halfway between tan0 and tan1.
Chris Dalton419a94d2017-08-28 10:24:22 -0600162 Sk2f n = normalize(tan0) - normalize(tan1);
163
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600164 // The midtangent can be found where (dQ(t) dot n) = 0:
Chris Dalton419a94d2017-08-28 10:24:22 -0600165 //
166 // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n |
167 // | -2*p0 + 2*p1 | | . |
168 //
169 // = | 2*t 1 | * | tan1 - tan0 | * | n |
170 // | 2*tan0 | | . |
171 //
172 // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
173 //
174 // t = (tan0 dot n) / ((tan0 - tan1) dot n)
175 Sk2f dQ1n = (tan0 - tan1) * n;
176 Sk2f dQ0n = tan0 * n;
177 Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
178 t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
179
180 Sk2f p01 = SkNx_fma(t, tan0, p0);
181 Sk2f p12 = SkNx_fma(t, tan1, p1);
182 Sk2f p012 = lerp(p01, p12, t);
183
Chris Daltonb3a69592018-04-18 14:10:22 -0600184 this->appendMonotonicQuadratic(p0, p01, p012);
185 this->appendMonotonicQuadratic(p012, p12, p2);
Chris Dalton43646532017-12-07 12:47:02 -0700186}
187
Chris Daltonb3a69592018-04-18 14:10:22 -0600188inline void GrCCGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
Chris Dalton43646532017-12-07 12:47:02 -0700189 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
190 if (are_collinear(p0, p1, p2)) {
Chris Daltonb3a69592018-04-18 14:10:22 -0600191 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600192 this->appendLine(p2);
Chris Dalton43646532017-12-07 12:47:02 -0700193 return;
194 }
195
Chris Daltonb3a69592018-04-18 14:10:22 -0600196 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
Chris Dalton43646532017-12-07 12:47:02 -0700197 p1.store(&fPoints.push_back());
Chris Daltonc1e59632017-09-05 00:30:07 -0600198 p2.store(&fPoints.push_back());
Chris Dalton43646532017-12-07 12:47:02 -0700199 fVerbs.push_back(Verb::kMonotonicQuadraticTo);
200 ++fCurrContourTallies.fQuadratics;
Chris Daltonc1e59632017-09-05 00:30:07 -0600201}
202
Chris Daltonb3a69592018-04-18 14:10:22 -0600203static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
204 Sk2f aa = a*a;
205 aa += SkNx_shuffle<1,0>(aa);
206 SkASSERT(aa[0] == aa[1]);
207
208 Sk2f bb = b*b;
209 bb += SkNx_shuffle<1,0>(bb);
210 SkASSERT(bb[0] == bb[1]);
211
212 return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
213}
214
215static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
216 const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) {
217 *tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
218 *tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1);
219}
220
221static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
222 const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1,
223 Sk2f* c) {
224 Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
225 Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3);
226 *c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
227 return ((c1 - c2).abs() <= 1).allTrue();
228}
229
Chris Dalton7f578bf2017-09-05 16:46:48 -0600230using ExcludedTerm = GrPathUtils::ExcludedTerm;
Chris Daltonc1e59632017-09-05 00:30:07 -0600231
Chris Daltonb3a69592018-04-18 14:10:22 -0600232// Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be
233// chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is
234// guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M).
Chris Dalton7f578bf2017-09-05 16:46:48 -0600235//
Chris Daltonb3a69592018-04-18 14:10:22 -0600236// 'chops' will be filled with 4 T values. The segments between T0..T1 and T2..T3 must be drawn with
237// flat lines instead of cubics.
Chris Dalton7f578bf2017-09-05 16:46:48 -0600238//
239// A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
240// for both in SIMD.
Chris Daltonb3a69592018-04-18 14:10:22 -0600241static inline void find_chops_around_inflection_points(float padRadius, const Sk2f& t,
242 const Sk2f& s, const SkMatrix& CIT,
243 ExcludedTerm skipTerm,
244 SkSTArray<4, float>* chops) {
245 SkASSERT(chops->empty());
Chris Dalton7f578bf2017-09-05 16:46:48 -0600246 SkASSERT(padRadius >= 0);
Chris Daltonc1e59632017-09-05 00:30:07 -0600247
Chris Dalton7f578bf2017-09-05 16:46:48 -0600248 Sk2f Clx = s*s*s;
249 Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
250
251 Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
252 Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
253
Chris Daltonb3a69592018-04-18 14:10:22 -0600254 Sk2f pad = padRadius * (Lx.abs() + Ly.abs());
255 pad = (pad * s >= 0).thenElse(pad, -pad);
256 pad = Sk2f(std::cbrt(pad[0]), std::cbrt(pad[1]));
Chris Dalton7f578bf2017-09-05 16:46:48 -0600257
Chris Daltonb3a69592018-04-18 14:10:22 -0600258 Sk2f leftT = (t - pad) / s;
259 Sk2f rightT = (t + pad) / s;
260 Sk2f::Store2(chops->push_back_n(4), leftT, rightT);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600261}
262
263static inline void swap_if_greater(float& a, float& b) {
264 if (a > b) {
265 std::swap(a, b);
266 }
267}
268
Chris Daltonb3a69592018-04-18 14:10:22 -0600269// Finds where to chop a non-loop around its intersection point. The resulting cubic segments will
270// be chopped such that a box of radius 'padRadius', centered at any point along the curve segment,
271// is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M).
Chris Dalton7f578bf2017-09-05 16:46:48 -0600272//
Chris Daltonb3a69592018-04-18 14:10:22 -0600273// 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be
274// drawn with quadratic splines instead of cubics.
Chris Dalton7f578bf2017-09-05 16:46:48 -0600275//
Chris Daltonb3a69592018-04-18 14:10:22 -0600276// A loop intersection falls at two different T values, so this method takes Sk2f and computes the
277// padding for both in SIMD.
278static inline void find_chops_around_loop_intersection(float padRadius, const Sk2f& t,
279 const Sk2f& s, const SkMatrix& CIT,
280 ExcludedTerm skipTerm,
281 SkSTArray<4, float>* chops) {
282 SkASSERT(chops->empty());
Chris Dalton7f578bf2017-09-05 16:46:48 -0600283 SkASSERT(padRadius >= 0);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600284
Chris Daltonb3a69592018-04-18 14:10:22 -0600285 Sk2f T2 = t/s;
Chris Dalton7f578bf2017-09-05 16:46:48 -0600286 Sk2f T1 = SkNx_shuffle<1,0>(T2);
287 Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
288 Sk2f Lx = Cl * CIT[3] + CIT[0];
289 Sk2f Ly = Cl * CIT[4] + CIT[1];
290
291 Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
292 Sk2f q = (1.f/3) * (T2 - T1);
293
294 Sk2f qqq = q*q*q;
295 Sk2f discr = qqq*bloat*2 + bloat*bloat;
296
297 float numRoots[2], D[2];
298 (discr < 0).thenElse(3, 1).store(numRoots);
299 (T2 - q).store(D);
300
301 // Values for calculating one root.
302 float R[2], QQ[2];
303 if ((discr >= 0).anyTrue()) {
304 Sk2f r = qqq + bloat;
305 Sk2f s = r.abs() + discr.sqrt();
306 (r > 0).thenElse(-s, s).store(R);
307 (q*q).store(QQ);
Chris Daltonc1e59632017-09-05 00:30:07 -0600308 }
309
Chris Dalton7f578bf2017-09-05 16:46:48 -0600310 // Values for calculating three roots.
311 float P[2], cosTheta3[2];
312 if ((discr < 0).anyTrue()) {
313 (q.abs() * -2).store(P);
314 ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
Chris Daltonc1e59632017-09-05 00:30:07 -0600315 }
316
Chris Dalton7f578bf2017-09-05 16:46:48 -0600317 for (int i = 0; i < 2; ++i) {
318 if (1 == numRoots[i]) {
Chris Daltonb3a69592018-04-18 14:10:22 -0600319 // When there is only one root, line L chops from root..1, line M chops from 0..root.
320 if (1 == i) {
321 chops->push_back(0);
322 }
Chris Dalton7f578bf2017-09-05 16:46:48 -0600323 float A = cbrtf(R[i]);
324 float B = A != 0 ? QQ[i]/A : 0;
Chris Daltonb3a69592018-04-18 14:10:22 -0600325 chops->push_back(A + B + D[i]);
326 if (0 == i) {
327 chops->push_back(1);
328 }
Chris Daltonc1e59632017-09-05 00:30:07 -0600329 continue;
330 }
331
Chris Dalton7f578bf2017-09-05 16:46:48 -0600332 static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
333 float theta = std::acos(cosTheta3[i]) * (1.f/3);
Chris Daltonb3a69592018-04-18 14:10:22 -0600334 float roots[3] = {P[i] * std::cos(theta) + D[i],
335 P[i] * std::cos(theta + k2PiOver3) + D[i],
336 P[i] * std::cos(theta - k2PiOver3) + D[i]};
Chris Daltonc1e59632017-09-05 00:30:07 -0600337
Chris Dalton7f578bf2017-09-05 16:46:48 -0600338 // Sort the three roots.
Chris Daltonb3a69592018-04-18 14:10:22 -0600339 swap_if_greater(roots[0], roots[1]);
340 swap_if_greater(roots[1], roots[2]);
341 swap_if_greater(roots[0], roots[1]);
342
343 // Line L chops around the first 2 roots, line M chops around the second 2.
344 chops->push_back_n(2, &roots[i]);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600345 }
346}
347
Chris Daltonb3a69592018-04-18 14:10:22 -0600348void GrCCGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) {
349 SkASSERT(fBuildingContour);
350 SkASSERT(P[0] == fPoints.back());
Chris Dalton29011a22017-09-28 12:08:33 -0600351
Chris Daltonb3a69592018-04-18 14:10:22 -0600352 // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small).
353 // Flat curves can break the math below.
354 if (are_collinear(P)) {
355 this->lineTo(P[3]);
356 return;
357 }
Chris Dalton29011a22017-09-28 12:08:33 -0600358
Chris Daltonb3a69592018-04-18 14:10:22 -0600359 Sk2f p0 = Sk2f::Load(P);
360 Sk2f p1 = Sk2f::Load(P+1);
361 Sk2f p2 = Sk2f::Load(P+2);
362 Sk2f p3 = Sk2f::Load(P+3);
363
364 // Also detect near-quadratics ahead of time.
365 Sk2f tan0, tan1, c;
366 get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
367 if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) {
368 this->appendQuadratics(p0, c, p3);
369 return;
370 }
371
372 double tt[2], ss[2], D[4];
373 fCurrCubicType = SkClassifyCubic(P, tt, ss, D);
374 SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
375 Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
376 Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
377
378 SkMatrix CIT;
379 ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(P, &CIT);
380 SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
381 SkASSERT(0 == CIT[6]);
382 SkASSERT(0 == CIT[7]);
383 SkASSERT(1 == CIT[8]);
384
385 SkSTArray<4, float> chops;
386 if (SkCubicType::kLoop != fCurrCubicType) {
387 find_chops_around_inflection_points(inflectPad, t, s, CIT, skipTerm, &chops);
388 } else {
389 find_chops_around_loop_intersection(loopIntersectPad, t, s, CIT, skipTerm, &chops);
390 }
391 if (chops[1] >= chops[2]) {
392 // This just the means the KLM roots are so close that their paddings overlap. We will
393 // approximate the entire middle section, but still have it chopped midway. For loops this
394 // chop guarantees the append code only sees convex segments. Otherwise, it means we are (at
395 // least almost) a cusp and the chop makes sure we get a sharp point.
396 Sk2f ts = t * SkNx_shuffle<1,0>(s);
397 chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]);
398 }
399
400#ifdef SK_DEBUG
401 for (int i = 1; i < chops.count(); ++i) {
402 SkASSERT(chops[i] >= chops[i - 1]);
403 }
404#endif
405 this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count());
Chris Dalton29011a22017-09-28 12:08:33 -0600406}
407
Chris Daltonb3a69592018-04-18 14:10:22 -0600408static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
409 float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) {
410 Sk2f TT = T;
411 *ab = lerp(p0, p1, TT);
412 Sk2f bc = lerp(p1, p2, TT);
413 *cd = lerp(p2, p3, TT);
414 *abc = lerp(*ab, bc, TT);
415 *bcd = lerp(bc, *cd, TT);
416 *abcd = lerp(*abc, *bcd, TT);
417}
Chris Dalton29011a22017-09-28 12:08:33 -0600418
Chris Daltonb3a69592018-04-18 14:10:22 -0600419void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
420 const Sk2f& p2, const Sk2f& p3, const float chops[], int numChops,
421 float localT0, float localT1) {
422 if (numChops) {
423 SkASSERT(numChops > 0);
424 int midChopIdx = numChops/2;
425 float T = chops[midChopIdx];
426 // Chops alternate between literal and approximate mode.
427 AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1);
Chris Dalton29011a22017-09-28 12:08:33 -0600428
Chris Daltonb3a69592018-04-18 14:10:22 -0600429 if (T <= localT0) {
430 // T is outside 0..1. Append the right side only.
431 this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1],
432 numChops - midChopIdx - 1, localT0, localT1);
433 return;
434 }
435
436 if (T >= localT1) {
437 // T is outside 0..1. Append the left side only.
438 this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1);
439 return;
440 }
441
442 float localT = (T - localT0) / (localT1 - localT0);
443 Sk2f p01, p02, pT, p11, p12;
444 chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12);
445 this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T);
446 this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1],
447 numChops - midChopIdx - 1, T, localT1);
448 return;
449 }
450
451 this->appendCubics(mode, p0, p1, p2, p3);
452}
453
454void GrCCGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1,
455 const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) {
456 if ((p0 == p3).allTrue()) {
457 return;
458 }
459
460 if (SkCubicType::kLoop != fCurrCubicType) {
461 // Serpentines and cusps are always monotonic after chopping around inflection points.
462 SkASSERT(!SkCubicIsDegenerate(fCurrCubicType));
463
464 if (AppendCubicMode::kApproximate == mode) {
465 // This section passes through an inflection point, so we can get away with a flat line.
466 // This can cause some curves to feel slightly more flat when inspected rigorously back
467 // and forth against another renderer, but for now this seems acceptable given the
468 // simplicity.
469 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
470 this->appendLine(p3);
471 return;
472 }
473 } else {
474 Sk2f tan0, tan1;
475 get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1);
476
477 if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) {
478 this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
479 maxSubdivisions - 1);
480 return;
481 }
482
483 if (AppendCubicMode::kApproximate == mode) {
484 Sk2f c;
485 if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) {
486 this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1,
487 maxSubdivisions - 1);
488 return;
489 }
490
491 this->appendMonotonicQuadratic(p0, c, p3);
492 return;
493 }
494 }
495
496 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
497 // Since the cubic segment is known to be convex at this point, our flatness check is simple.
498 if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
499 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
500 this->appendLine(p3);
501 return;
502 }
503
504 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
505 p1.store(&fPoints.push_back());
506 p2.store(&fPoints.push_back());
507 p3.store(&fPoints.push_back());
508 fVerbs.push_back(Verb::kMonotonicCubicTo);
509 ++fCurrContourTallies.fCubics;
Chris Dalton29011a22017-09-28 12:08:33 -0600510}
511
Chris Dalton9f2dab02018-04-18 14:07:03 -0600512// Given a convex curve segment with the following order-2 tangent function:
513//
514// |C2x C2y|
515// tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y|
516// |C0x C0y|
517//
518// This function finds the T value whose tangent angle is halfway between the tangents at T=0 and
519// T=1 (tan0 and tan1).
520static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1,
521 float scale2, const Sk2f& C2,
522 float scale1, const Sk2f& C1,
523 float scale0, const Sk2f& C0) {
524 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
525 // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent.
526 //
527 // n dot midtangent = 0
528 //
529 Sk2f n = normalize(tan0) - normalize(tan1);
530
531 // Find the T value at the midtangent. This is a simple quadratic equation:
532 //
533 // midtangent dot n = 0
534 //
535 // (|t^2 t 1| * C) dot n = 0
536 //
537 // |t^2 t 1| dot C*n = 0
538 //
539 // First find coeffs = C*n.
540 Sk4f C[2];
541 Sk2f::Store4(C, C2, C1, C0, 0);
542 Sk4f coeffs = C[0]*n[0] + C[1]*n[1];
543 if (1 != scale2 || 1 != scale1 || 1 != scale0) {
544 coeffs *= Sk4f(scale2, scale1, scale0, 0);
545 }
546
547 // Now solve the quadratic.
548 float a = coeffs[0], b = coeffs[1], c = coeffs[2];
549 float discr = b*b - 4*a*c;
550 if (discr < 0) {
551 return 0; // This will only happen if the curve is a line.
552 }
553
554 // The roots are q/a and c/q. Pick the one closer to T=.5.
555 float q = -.5f * (b + copysignf(std::sqrt(discr), b));
556 float r = .5f*q*a;
557 return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q;
558}
559
Chris Daltonb3a69592018-04-18 14:10:22 -0600560inline void GrCCGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0,
561 const Sk2f& p1, const Sk2f& p2,
562 const Sk2f& p3, const Sk2f& tan0,
563 const Sk2f& tan1,
564 int maxFutureSubdivisions) {
Chris Dalton9f2dab02018-04-18 14:07:03 -0600565 float midT = find_midtangent(tan0, tan1, 3, p3 + (p1 - p2)*3 - p0,
566 6, p0 - p1*2 + p2,
567 3, p1 - p0);
568 // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
569 // near-flat cubics in cubicTo().)
570 if (!(midT > 0 && midT < 1)) {
571 // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1.
572 this->appendLine(p3);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600573 return;
574 }
575
Chris Daltonb3a69592018-04-18 14:10:22 -0600576 Sk2f p01, p02, pT, p11, p12;
577 chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12);
578 this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions);
579 this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions);
Chris Dalton7f578bf2017-09-05 16:46:48 -0600580}
581
Chris Dalton9f2dab02018-04-18 14:07:03 -0600582void GrCCGeometry::conicTo(const SkPoint P[3], float w) {
583 SkASSERT(fBuildingContour);
584 SkASSERT(P[0] == fPoints.back());
585 Sk2f p0 = Sk2f::Load(P);
586 Sk2f p1 = Sk2f::Load(P+1);
587 Sk2f p2 = Sk2f::Load(P+2);
588
589 // Don't crunch on the curve if it is nearly flat (or just very small). Collinear control points
590 // can break the midtangent-finding math below.
591 if (are_collinear(p0, p1, p2)) {
592 this->appendLine(p2);
593 return;
594 }
595
596 Sk2f tan0 = p1 - p0;
597 Sk2f tan1 = p2 - p1;
598 // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
599 // if we are only interested in a vector in the same *direction* as a given tangent line. Since
600 // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
601 // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
602 // function that we use to find the midtangent.
603 float midT = find_midtangent(tan0, tan1, 1, (w - 1) * (p2 - p0),
604 1, (p2 - p0) - 2*w*(p1 - p0),
605 1, w*(p1 - p0));
606 // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull
607 // near-linear conics above. And while w=0 is flat, it's not a line and has valid midtangents.)
608 if (!(midT > 0 && midT < 1)) {
609 // The conic is flat. Otherwise there would be a real midtangent inside T=0..1.
610 this->appendLine(p2);
611 return;
612 }
613
614 // Evaluate the conic at midT.
615 Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0);
616 Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w;
617 Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0);
618 Sk4f midT4 = midT;
619
620 Sk4f p3d01 = lerp(p3d0, p3d1, midT4);
621 Sk4f p3d12 = lerp(p3d1, p3d2, midT4);
622 Sk4f p3d012 = lerp(p3d01, p3d12, midT4);
623
624 Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2];
625
626 if (are_collinear(p0, midpoint, p2, 1) || // Check if the curve is within one pixel of flat.
627 ((midpoint - p1).abs() < 1).allTrue()) { // Check if the curve is almost a triangle.
628 // Draw the conic as a triangle instead. Our AA approximation won't do well if the curve
629 // gets wrapped too tightly, and if we get too close to p1 we will pick up artifacts from
630 // the implicit function's reflection.
631 this->appendLine(midpoint);
632 this->appendLine(p2);
633 return;
634 }
635
636 if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
637 // Chop the conic at midtangent to produce two monotonic segments.
638 Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt();
639 this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]);
640 this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]);
641 return;
642 }
643
644 this->appendMonotonicConic(p0, p1, p2, w);
645}
646
647void GrCCGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, float w) {
648 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
649
650 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
651 if (are_collinear(p0, p1, p2)) {
652 this->appendLine(p2);
653 return;
654 }
655
656 p1.store(&fPoints.push_back());
657 p2.store(&fPoints.push_back());
658 fConicWeights.push_back(w);
659 fVerbs.push_back(Verb::kMonotonicConicTo);
660 ++fCurrContourTallies.fConics;
661}
662
Chris Dalton383a2ef2018-01-08 17:21:41 -0500663GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
Chris Daltonc1e59632017-09-05 00:30:07 -0600664 SkASSERT(fBuildingContour);
665 SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
666
667 // The fTriangles field currently contains this contour's starting verb index. We can now
668 // use it to calculate the size of the contour's fan.
669 int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
Chris Dalton7ca3b7b2018-04-10 00:21:19 -0600670 if (fPoints.back() == fCurrAnchorPoint) {
Chris Daltonc1e59632017-09-05 00:30:07 -0600671 --fanSize;
672 fVerbs.push_back(Verb::kEndClosedContour);
673 } else {
674 fVerbs.push_back(Verb::kEndOpenContour);
675 }
676
677 fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
678
Chris Dalton383a2ef2018-01-08 17:21:41 -0500679 SkDEBUGCODE(fBuildingContour = false);
Chris Daltonc1e59632017-09-05 00:30:07 -0600680 return fCurrContourTallies;
Chris Dalton419a94d2017-08-28 10:24:22 -0600681}