blob: 85ad39998328133f7cfa87dbbf620e9281c15fc6 [file] [log] [blame]
epoger@google.comec3ed6a2011-07-28 14:26:00 +00001/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
reed@android.com8a1c16f2008-12-17 15:59:43 +00008#include "SkGeometry.h"
reed@android.com8a1c16f2008-12-17 15:59:43 +00009#include "SkMatrix.h"
10
kbr@chromium.org2e086192010-07-07 22:20:35 +000011bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
12 if (ambiguous) {
13 *ambiguous = false;
14 }
reed@android.com945a1392010-02-05 20:41:02 +000015 // Determine quick discards.
16 // Consider query line going exactly through point 0 to not
17 // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
kbr@chromium.org2e086192010-07-07 22:20:35 +000018 if (pt.fY == pts[0].fY) {
19 if (ambiguous) {
20 *ambiguous = true;
21 }
reed@android.com945a1392010-02-05 20:41:02 +000022 return false;
kbr@chromium.org2e086192010-07-07 22:20:35 +000023 }
reed@android.com945a1392010-02-05 20:41:02 +000024 if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
25 return false;
26 if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
27 return false;
28 if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
29 return false;
30 // Determine degenerate cases
31 if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
32 return false;
kbr@chromium.org2e086192010-07-07 22:20:35 +000033 if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
reed@android.com945a1392010-02-05 20:41:02 +000034 // We've already determined the query point lies within the
35 // vertical range of the line segment.
kbr@chromium.org2e086192010-07-07 22:20:35 +000036 if (pt.fX <= pts[0].fX) {
37 if (ambiguous) {
38 *ambiguous = (pt.fY == pts[1].fY);
39 }
40 return true;
41 }
42 return false;
43 }
44 // Ambiguity check
45 if (pt.fY == pts[1].fY) {
46 if (pt.fX <= pts[1].fX) {
47 if (ambiguous) {
48 *ambiguous = true;
49 }
50 return true;
51 }
52 return false;
53 }
reed@android.com945a1392010-02-05 20:41:02 +000054 // Full line segment evaluation
55 SkScalar delta_y = pts[1].fY - pts[0].fY;
56 SkScalar delta_x = pts[1].fX - pts[0].fX;
57 SkScalar slope = SkScalarDiv(delta_y, delta_x);
58 SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
59 // Solve for x coordinate at y = pt.fY
60 SkScalar x = SkScalarDiv(pt.fY - b, slope);
61 return pt.fX <= x;
62}
63
reed@android.com8a1c16f2008-12-17 15:59:43 +000064/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
65 involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
66 May also introduce overflow of fixed when we compute our setup.
67*/
reed@google.com8f4d2302013-12-17 16:44:46 +000068// #define DIRECT_EVAL_OF_POLYNOMIALS
reed@android.com8a1c16f2008-12-17 15:59:43 +000069
70////////////////////////////////////////////////////////////////////////
71
reed@google.com8f4d2302013-12-17 16:44:46 +000072static int is_not_monotonic(float a, float b, float c) {
73 float ab = a - b;
74 float bc = b - c;
75 if (ab < 0) {
76 bc = -bc;
reed@android.com8a1c16f2008-12-17 15:59:43 +000077 }
reed@google.com8f4d2302013-12-17 16:44:46 +000078 return ab == 0 || bc < 0;
79}
reed@android.com8a1c16f2008-12-17 15:59:43 +000080
81////////////////////////////////////////////////////////////////////////
82
83static bool is_unit_interval(SkScalar x)
84{
85 return x > 0 && x < SK_Scalar1;
86}
87
88static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
89{
90 SkASSERT(ratio);
91
92 if (numer < 0)
93 {
94 numer = -numer;
95 denom = -denom;
96 }
97
98 if (denom == 0 || numer == 0 || numer >= denom)
99 return 0;
100
101 SkScalar r = SkScalarDiv(numer, denom);
reed@android.com15161622010-03-08 17:44:42 +0000102 if (SkScalarIsNaN(r)) {
103 return 0;
104 }
reed@android.com8a1c16f2008-12-17 15:59:43 +0000105 SkASSERT(r >= 0 && r < SK_Scalar1);
106 if (r == 0) // catch underflow if numer <<<< denom
107 return 0;
108 *ratio = r;
109 return 1;
110}
111
112/** From Numerical Recipes in C.
113
114 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
115 x1 = Q / A
116 x2 = C / Q
117*/
118int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
119{
120 SkASSERT(roots);
121
122 if (A == 0)
123 return valid_unit_divide(-C, B, roots);
124
125 SkScalar* r = roots;
126
reed@android.com8a1c16f2008-12-17 15:59:43 +0000127 float R = B*B - 4*A*C;
reed@android.com15161622010-03-08 17:44:42 +0000128 if (R < 0 || SkScalarIsNaN(R)) { // complex roots
reed@android.com8a1c16f2008-12-17 15:59:43 +0000129 return 0;
reed@android.com15161622010-03-08 17:44:42 +0000130 }
reed@android.com8a1c16f2008-12-17 15:59:43 +0000131 R = sk_float_sqrt(R);
reed@android.com8a1c16f2008-12-17 15:59:43 +0000132
133 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
134 r += valid_unit_divide(Q, A, r);
135 r += valid_unit_divide(C, Q, r);
136 if (r - roots == 2)
137 {
138 if (roots[0] > roots[1])
139 SkTSwap<SkScalar>(roots[0], roots[1]);
140 else if (roots[0] == roots[1]) // nearly-equal?
141 r -= 1; // skip the double root
142 }
143 return (int)(r - roots);
144}
145
reed@google.com8f4d2302013-12-17 16:44:46 +0000146///////////////////////////////////////////////////////////////////////////////
147///////////////////////////////////////////////////////////////////////////////
reed@android.com8a1c16f2008-12-17 15:59:43 +0000148
149static SkScalar eval_quad(const SkScalar src[], SkScalar t)
150{
151 SkASSERT(src);
152 SkASSERT(t >= 0 && t <= SK_Scalar1);
153
154#ifdef DIRECT_EVAL_OF_POLYNOMIALS
155 SkScalar C = src[0];
156 SkScalar A = src[4] - 2 * src[2] + C;
157 SkScalar B = 2 * (src[2] - C);
158 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
159#else
160 SkScalar ab = SkScalarInterp(src[0], src[2], t);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000161 SkScalar bc = SkScalarInterp(src[2], src[4], t);
reed@android.com8a1c16f2008-12-17 15:59:43 +0000162 return SkScalarInterp(ab, bc, t);
163#endif
164}
165
166static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
167{
168 SkScalar A = src[4] - 2 * src[2] + src[0];
169 SkScalar B = src[2] - src[0];
170
171 return 2 * SkScalarMulAdd(A, t, B);
172}
173
174static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
175{
176 SkScalar A = src[4] - 2 * src[2] + src[0];
177 SkScalar B = src[2] - src[0];
178 return A + 2 * B;
179}
180
181void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
182{
183 SkASSERT(src);
184 SkASSERT(t >= 0 && t <= SK_Scalar1);
185
186 if (pt)
187 pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
188 if (tangent)
189 tangent->set(eval_quad_derivative(&src[0].fX, t),
190 eval_quad_derivative(&src[0].fY, t));
191}
192
193void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
194{
195 SkASSERT(src);
196
197 if (pt)
198 {
199 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
200 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
201 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
202 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
203 pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
204 }
205 if (tangent)
206 tangent->set(eval_quad_derivative_at_half(&src[0].fX),
207 eval_quad_derivative_at_half(&src[0].fY));
208}
209
210static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
211{
212 SkScalar ab = SkScalarInterp(src[0], src[2], t);
213 SkScalar bc = SkScalarInterp(src[2], src[4], t);
214
215 dst[0] = src[0];
216 dst[2] = ab;
217 dst[4] = SkScalarInterp(ab, bc, t);
218 dst[6] = bc;
219 dst[8] = src[4];
220}
221
222void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
223{
224 SkASSERT(t > 0 && t < SK_Scalar1);
225
226 interp_quad_coords(&src[0].fX, &dst[0].fX, t);
227 interp_quad_coords(&src[0].fY, &dst[0].fY, t);
228}
229
230void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
231{
232 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
233 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
234 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
235 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
236
237 dst[0] = src[0];
238 dst[1].set(x01, y01);
239 dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
240 dst[3].set(x12, y12);
241 dst[4] = src[2];
242}
243
244/** Quad'(t) = At + B, where
245 A = 2(a - 2b + c)
246 B = 2(b - a)
247 Solve for t, only if it fits between 0 < t < 1
248*/
249int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
250{
251 /* At + B == 0
252 t = -B / A
253 */
reed@android.com8a1c16f2008-12-17 15:59:43 +0000254 return valid_unit_divide(a - b, a - b - b + c, tValue);
reed@android.com8a1c16f2008-12-17 15:59:43 +0000255}
256
reed@android.comfc25abd2009-01-15 14:38:33 +0000257static inline void flatten_double_quad_extrema(SkScalar coords[14])
reed@android.com8a1c16f2008-12-17 15:59:43 +0000258{
259 coords[2] = coords[6] = coords[4];
260}
261
reed@android.com8a1c16f2008-12-17 15:59:43 +0000262/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
reed@android.com77f0ef72009-11-17 18:47:52 +0000263 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
264 */
reed@android.com8a1c16f2008-12-17 15:59:43 +0000265int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
266{
267 SkASSERT(src);
268 SkASSERT(dst);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000269
reed@android.com8a1c16f2008-12-17 15:59:43 +0000270#if 0
271 static bool once = true;
272 if (once)
273 {
274 once = false;
275 SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
276 SkPoint d[6];
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000277
reed@android.com8a1c16f2008-12-17 15:59:43 +0000278 int n = SkChopQuadAtYExtrema(s, d);
279 SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
280 }
281#endif
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000282
reed@android.com8a1c16f2008-12-17 15:59:43 +0000283 SkScalar a = src[0].fY;
284 SkScalar b = src[1].fY;
285 SkScalar c = src[2].fY;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000286
reed@android.com8a1c16f2008-12-17 15:59:43 +0000287 if (is_not_monotonic(a, b, c))
288 {
289 SkScalar tValue;
290 if (valid_unit_divide(a - b, a - b - b + c, &tValue))
291 {
292 SkChopQuadAt(src, dst, tValue);
293 flatten_double_quad_extrema(&dst[0].fY);
294 return 1;
295 }
296 // if we get here, we need to force dst to be monotonic, even though
297 // we couldn't compute a unit_divide value (probably underflow).
298 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
299 }
300 dst[0].set(src[0].fX, a);
301 dst[1].set(src[1].fX, b);
302 dst[2].set(src[2].fX, c);
303 return 0;
304}
305
reed@android.com77f0ef72009-11-17 18:47:52 +0000306/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
307 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
308 */
309int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
310{
311 SkASSERT(src);
312 SkASSERT(dst);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000313
reed@android.com77f0ef72009-11-17 18:47:52 +0000314 SkScalar a = src[0].fX;
315 SkScalar b = src[1].fX;
316 SkScalar c = src[2].fX;
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000317
reed@android.com77f0ef72009-11-17 18:47:52 +0000318 if (is_not_monotonic(a, b, c)) {
319 SkScalar tValue;
320 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
321 SkChopQuadAt(src, dst, tValue);
322 flatten_double_quad_extrema(&dst[0].fX);
323 return 1;
324 }
325 // if we get here, we need to force dst to be monotonic, even though
326 // we couldn't compute a unit_divide value (probably underflow).
327 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
328 }
329 dst[0].set(a, src[0].fY);
330 dst[1].set(b, src[1].fY);
331 dst[2].set(c, src[2].fY);
332 return 0;
333}
334
reed@android.com8a1c16f2008-12-17 15:59:43 +0000335// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
336// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
337// F''(t) = 2 (a - 2b + c)
338//
339// A = 2 (b - a)
340// B = 2 (a - 2b + c)
341//
342// Maximum curvature for a quadratic means solving
343// Fx' Fx'' + Fy' Fy'' = 0
344//
345// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
346//
egdaniel@google.com5383a752013-07-12 20:15:34 +0000347float SkFindQuadMaxCurvature(const SkPoint src[3]) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000348 SkScalar Ax = src[1].fX - src[0].fX;
349 SkScalar Ay = src[1].fY - src[0].fY;
350 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
351 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
352 SkScalar t = 0; // 0 means don't chop
353
reed@android.com8a1c16f2008-12-17 15:59:43 +0000354 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
egdaniel@google.com5383a752013-07-12 20:15:34 +0000355 return t;
356}
reed@android.com8a1c16f2008-12-17 15:59:43 +0000357
egdaniel@google.com5383a752013-07-12 20:15:34 +0000358int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
359{
360 SkScalar t = SkFindQuadMaxCurvature(src);
361 if (t == 0) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000362 memcpy(dst, src, 3 * sizeof(SkPoint));
363 return 1;
egdaniel@google.com5383a752013-07-12 20:15:34 +0000364 } else {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000365 SkChopQuadAt(src, dst, t);
366 return 2;
367 }
368}
369
reed@google.com8f4d2302013-12-17 16:44:46 +0000370#define SK_ScalarTwoThirds (0.666666666f)
reed@google.com6fc321a2011-07-27 13:54:36 +0000371
372void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
373 const SkScalar scale = SK_ScalarTwoThirds;
374 dst[0] = src[0];
375 dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
376 src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
377 dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
378 src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
379 dst[3] = src[2];
reed@android.com945a1392010-02-05 20:41:02 +0000380}
381
reed@android.com8a1c16f2008-12-17 15:59:43 +0000382////////////////////////////////////////////////////////////////////////////////////////
383///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
384////////////////////////////////////////////////////////////////////////////////////////
385
386static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
387{
388 coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
389 coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
390 coeff[2] = 3*(pt[2] - pt[0]);
391 coeff[3] = pt[0];
392}
393
394void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
395{
396 SkASSERT(pts);
397
398 if (cx)
399 get_cubic_coeff(&pts[0].fX, cx);
400 if (cy)
401 get_cubic_coeff(&pts[0].fY, cy);
402}
403
404static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
405{
406 SkASSERT(src);
407 SkASSERT(t >= 0 && t <= SK_Scalar1);
408
409 if (t == 0)
410 return src[0];
411
412#ifdef DIRECT_EVAL_OF_POLYNOMIALS
413 SkScalar D = src[0];
414 SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
415 SkScalar B = 3*(src[4] - src[2] - src[2] + D);
416 SkScalar C = 3*(src[2] - D);
417
418 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
419#else
420 SkScalar ab = SkScalarInterp(src[0], src[2], t);
421 SkScalar bc = SkScalarInterp(src[2], src[4], t);
422 SkScalar cd = SkScalarInterp(src[4], src[6], t);
423 SkScalar abc = SkScalarInterp(ab, bc, t);
424 SkScalar bcd = SkScalarInterp(bc, cd, t);
425 return SkScalarInterp(abc, bcd, t);
426#endif
427}
428
429/** return At^2 + Bt + C
430*/
431static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
432{
433 SkASSERT(t >= 0 && t <= SK_Scalar1);
434
435 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
436}
437
438static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
439{
440 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
441 SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
442 SkScalar C = src[2] - src[0];
443
444 return eval_quadratic(A, B, C, t);
445}
446
447static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
448{
449 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
450 SkScalar B = src[4] - 2 * src[2] + src[0];
451
452 return SkScalarMulAdd(A, t, B);
453}
454
455void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
456{
457 SkASSERT(src);
458 SkASSERT(t >= 0 && t <= SK_Scalar1);
459
460 if (loc)
461 loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
462 if (tangent)
463 tangent->set(eval_cubic_derivative(&src[0].fX, t),
464 eval_cubic_derivative(&src[0].fY, t));
465 if (curvature)
466 curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
467 eval_cubic_2ndDerivative(&src[0].fY, t));
468}
469
470/** Cubic'(t) = At^2 + Bt + C, where
471 A = 3(-a + 3(b - c) + d)
472 B = 6(a - 2b + c)
473 C = 3(b - a)
474 Solve for t, keeping only those that fit betwee 0 < t < 1
475*/
476int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
477{
reed@android.com8a1c16f2008-12-17 15:59:43 +0000478 // we divide A,B,C by 3 to simplify
479 SkScalar A = d - a + 3*(b - c);
480 SkScalar B = 2*(a - b - b + c);
481 SkScalar C = b - a;
482
483 return SkFindUnitQuadRoots(A, B, C, tValues);
484}
485
486static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
487{
488 SkScalar ab = SkScalarInterp(src[0], src[2], t);
489 SkScalar bc = SkScalarInterp(src[2], src[4], t);
490 SkScalar cd = SkScalarInterp(src[4], src[6], t);
491 SkScalar abc = SkScalarInterp(ab, bc, t);
492 SkScalar bcd = SkScalarInterp(bc, cd, t);
493 SkScalar abcd = SkScalarInterp(abc, bcd, t);
494
495 dst[0] = src[0];
496 dst[2] = ab;
497 dst[4] = abc;
498 dst[6] = abcd;
499 dst[8] = bcd;
500 dst[10] = cd;
501 dst[12] = src[6];
502}
503
504void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
505{
506 SkASSERT(t > 0 && t < SK_Scalar1);
507
508 interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
509 interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
510}
511
reed@android.coma9640282009-08-28 20:06:54 +0000512/* http://code.google.com/p/skia/issues/detail?id=32
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000513
reed@android.coma9640282009-08-28 20:06:54 +0000514 This test code would fail when we didn't check the return result of
515 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
516 that after the first chop, the parameters to valid_unit_divide are equal
517 (thanks to finite float precision and rounding in the subtracts). Thus
518 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
519 up with 1.0, hence the need to check and just return the last cubic as
520 a degenerate clump of 4 points in the sampe place.
521
522 static void test_cubic() {
523 SkPoint src[4] = {
524 { 556.25000, 523.03003 },
525 { 556.23999, 522.96002 },
526 { 556.21997, 522.89001 },
527 { 556.21997, 522.82001 }
528 };
529 SkPoint dst[10];
530 SkScalar tval[] = { 0.33333334f, 0.99999994f };
531 SkChopCubicAt(src, dst, tval, 2);
532 }
533 */
534
reed@android.com8a1c16f2008-12-17 15:59:43 +0000535void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
536{
537#ifdef SK_DEBUG
538 {
539 for (int i = 0; i < roots - 1; i++)
540 {
541 SkASSERT(is_unit_interval(tValues[i]));
542 SkASSERT(is_unit_interval(tValues[i+1]));
543 SkASSERT(tValues[i] < tValues[i+1]);
544 }
545 }
546#endif
547
548 if (dst)
549 {
550 if (roots == 0) // nothing to chop
551 memcpy(dst, src, 4*sizeof(SkPoint));
552 else
553 {
554 SkScalar t = tValues[0];
555 SkPoint tmp[4];
556
557 for (int i = 0; i < roots; i++)
558 {
559 SkChopCubicAt(src, dst, t);
560 if (i == roots - 1)
561 break;
562
reed@android.com8a1c16f2008-12-17 15:59:43 +0000563 dst += 3;
reed@android.coma9640282009-08-28 20:06:54 +0000564 // have src point to the remaining cubic (after the chop)
reed@android.com8a1c16f2008-12-17 15:59:43 +0000565 memcpy(tmp, dst, 4 * sizeof(SkPoint));
566 src = tmp;
reed@android.coma9640282009-08-28 20:06:54 +0000567
568 // watch out in case the renormalized t isn't in range
569 if (!valid_unit_divide(tValues[i+1] - tValues[i],
570 SK_Scalar1 - tValues[i], &t)) {
571 // if we can't, just create a degenerate cubic
572 dst[4] = dst[5] = dst[6] = src[3];
573 break;
574 }
reed@android.com8a1c16f2008-12-17 15:59:43 +0000575 }
576 }
577 }
578}
579
580void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
581{
582 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
583 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
584 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
585 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
586 SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
587 SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
588
589 SkScalar x012 = SkScalarAve(x01, x12);
590 SkScalar y012 = SkScalarAve(y01, y12);
591 SkScalar x123 = SkScalarAve(x12, x23);
592 SkScalar y123 = SkScalarAve(y12, y23);
593
594 dst[0] = src[0];
595 dst[1].set(x01, y01);
596 dst[2].set(x012, y012);
597 dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
598 dst[4].set(x123, y123);
599 dst[5].set(x23, y23);
600 dst[6] = src[3];
601}
602
603static void flatten_double_cubic_extrema(SkScalar coords[14])
604{
605 coords[4] = coords[8] = coords[6];
606}
607
608/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
609 the resulting beziers are monotonic in Y. This is called by the scan converter.
610 Depending on what is returned, dst[] is treated as follows
611 0 dst[0..3] is the original cubic
612 1 dst[0..3] and dst[3..6] are the two new cubics
613 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
614 If dst == null, it is ignored and only the count is returned.
615*/
reed@android.combb135862009-11-18 13:47:40 +0000616int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000617 SkScalar tValues[2];
reed@android.combb135862009-11-18 13:47:40 +0000618 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
619 src[3].fY, tValues);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000620
reed@android.com8a1c16f2008-12-17 15:59:43 +0000621 SkChopCubicAt(src, dst, tValues, roots);
reed@android.combb135862009-11-18 13:47:40 +0000622 if (dst && roots > 0) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000623 // we do some cleanup to ensure our Y extrema are flat
624 flatten_double_cubic_extrema(&dst[0].fY);
reed@android.combb135862009-11-18 13:47:40 +0000625 if (roots == 2) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000626 flatten_double_cubic_extrema(&dst[3].fY);
reed@android.combb135862009-11-18 13:47:40 +0000627 }
628 }
629 return roots;
630}
631
632int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
633 SkScalar tValues[2];
634 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
635 src[3].fX, tValues);
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000636
reed@android.combb135862009-11-18 13:47:40 +0000637 SkChopCubicAt(src, dst, tValues, roots);
638 if (dst && roots > 0) {
639 // we do some cleanup to ensure our Y extrema are flat
640 flatten_double_cubic_extrema(&dst[0].fX);
641 if (roots == 2) {
642 flatten_double_cubic_extrema(&dst[3].fX);
643 }
reed@android.com8a1c16f2008-12-17 15:59:43 +0000644 }
645 return roots;
646}
647
648/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
649
650 Inflection means that curvature is zero.
651 Curvature is [F' x F''] / [F'^3]
652 So we solve F'x X F''y - F'y X F''y == 0
653 After some canceling of the cubic term, we get
654 A = b - a
655 B = c - 2b + a
656 C = d - 3c + 3b - a
657 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
658*/
659int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
660{
661 SkScalar Ax = src[1].fX - src[0].fX;
662 SkScalar Ay = src[1].fY - src[0].fY;
663 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
664 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
665 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
666 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000667
reed@google.com8f4d2302013-12-17 16:44:46 +0000668 return SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
reed@android.com8a1c16f2008-12-17 15:59:43 +0000669}
670
671int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
672{
673 SkScalar tValues[2];
674 int count = SkFindCubicInflections(src, tValues);
675
676 if (dst)
677 {
678 if (count == 0)
679 memcpy(dst, src, 4 * sizeof(SkPoint));
680 else
681 SkChopCubicAt(src, dst, tValues, count);
682 }
683 return count + 1;
684}
685
686template <typename T> void bubble_sort(T array[], int count)
687{
688 for (int i = count - 1; i > 0; --i)
689 for (int j = i; j > 0; --j)
690 if (array[j] < array[j-1])
691 {
692 T tmp(array[j]);
693 array[j] = array[j-1];
694 array[j-1] = tmp;
695 }
696}
697
reed@android.com8a1c16f2008-12-17 15:59:43 +0000698// newton refinement
699#if 0
700static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
701{
702 // x1 = x0 - f(t) / f'(t)
703
704 SkFP T = SkScalarToFloat(root);
705 SkFP N, D;
706
707 // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
708 D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
709 D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
710 D = SkFPAdd(D, coeff[2]);
711
712 if (D == 0)
713 return root;
714
715 // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
716 N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
717 N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
718 N = SkFPAdd(N, SkFPMul(T, coeff[2]));
719 N = SkFPAdd(N, coeff[3]);
720
721 if (N)
722 {
723 SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
724
725 if (delta)
726 root -= delta;
727 }
728 return root;
729}
730#endif
731
reed@google.com087d5aa2012-02-29 20:59:24 +0000732/**
733 * Given an array and count, remove all pair-wise duplicates from the array,
734 * keeping the existing sorting, and return the new count
735 */
736static int collaps_duplicates(float array[], int count) {
reed@google.com087d5aa2012-02-29 20:59:24 +0000737 for (int n = count; n > 1; --n) {
738 if (array[0] == array[1]) {
739 for (int i = 1; i < n; ++i) {
740 array[i - 1] = array[i];
741 }
742 count -= 1;
743 } else {
744 array += 1;
745 }
746 }
747 return count;
748}
749
750#ifdef SK_DEBUG
751
752#define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
753
754static void test_collaps_duplicates() {
755 static bool gOnce;
756 if (gOnce) { return; }
757 gOnce = true;
758 const float src0[] = { 0 };
759 const float src1[] = { 0, 0 };
760 const float src2[] = { 0, 1 };
761 const float src3[] = { 0, 0, 0 };
762 const float src4[] = { 0, 0, 1 };
763 const float src5[] = { 0, 1, 1 };
764 const float src6[] = { 0, 1, 2 };
765 const struct {
766 const float* fData;
767 int fCount;
768 int fCollapsedCount;
769 } data[] = {
770 { TEST_COLLAPS_ENTRY(src0), 1 },
771 { TEST_COLLAPS_ENTRY(src1), 1 },
772 { TEST_COLLAPS_ENTRY(src2), 2 },
773 { TEST_COLLAPS_ENTRY(src3), 1 },
774 { TEST_COLLAPS_ENTRY(src4), 2 },
775 { TEST_COLLAPS_ENTRY(src5), 2 },
776 { TEST_COLLAPS_ENTRY(src6), 3 },
777 };
778 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
779 float dst[3];
780 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
781 int count = collaps_duplicates(dst, data[i].fCount);
782 SkASSERT(data[i].fCollapsedCount == count);
783 for (int j = 1; j < count; ++j) {
784 SkASSERT(dst[j-1] < dst[j]);
785 }
786 }
787}
788#endif
789
reed@google.com3c128402013-12-16 14:17:40 +0000790static SkScalar SkScalarCubeRoot(SkScalar x) {
791 return sk_float_pow(x, 0.3333333f);
792}
793
reed@android.com8a1c16f2008-12-17 15:59:43 +0000794/* Solve coeff(t) == 0, returning the number of roots that
795 lie withing 0 < t < 1.
796 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000797
reed@google.com087d5aa2012-02-29 20:59:24 +0000798 Eliminates repeated roots (so that all tValues are distinct, and are always
799 in increasing order.
reed@android.com8a1c16f2008-12-17 15:59:43 +0000800*/
reed@google.com3c128402013-12-16 14:17:40 +0000801static int solve_cubic_polynomial(const SkScalar coeff[4], SkScalar tValues[3])
reed@android.com8a1c16f2008-12-17 15:59:43 +0000802{
reed@android.com8a1c16f2008-12-17 15:59:43 +0000803 if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic
804 {
805 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
806 }
807
reed@google.com3c128402013-12-16 14:17:40 +0000808 SkScalar a, b, c, Q, R;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000809
810 {
811 SkASSERT(coeff[0] != 0);
812
reed@google.com3c128402013-12-16 14:17:40 +0000813 SkScalar inva = SkScalarInvert(coeff[0]);
814 a = coeff[1] * inva;
815 b = coeff[2] * inva;
816 c = coeff[3] * inva;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000817 }
reed@google.com3c128402013-12-16 14:17:40 +0000818 Q = (a*a - b*3) / 9;
819 R = (2*a*a*a - 9*a*b + 27*c) / 54;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000820
reed@google.com3c128402013-12-16 14:17:40 +0000821 SkScalar Q3 = Q * Q * Q;
822 SkScalar R2MinusQ3 = R * R - Q3;
823 SkScalar adiv3 = a / 3;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000824
825 SkScalar* roots = tValues;
826 SkScalar r;
827
reed@google.com3c128402013-12-16 14:17:40 +0000828 if (R2MinusQ3 < 0) // we have 3 real roots
reed@android.com8a1c16f2008-12-17 15:59:43 +0000829 {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000830 float theta = sk_float_acos(R / sk_float_sqrt(Q3));
831 float neg2RootQ = -2 * sk_float_sqrt(Q);
832
833 r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
834 if (is_unit_interval(r))
835 *roots++ = r;
836
837 r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
838 if (is_unit_interval(r))
839 *roots++ = r;
840
841 r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
842 if (is_unit_interval(r))
843 *roots++ = r;
844
reed@google.com087d5aa2012-02-29 20:59:24 +0000845 SkDEBUGCODE(test_collaps_duplicates();)
846
reed@android.com8a1c16f2008-12-17 15:59:43 +0000847 // now sort the roots
reed@google.com087d5aa2012-02-29 20:59:24 +0000848 int count = (int)(roots - tValues);
849 SkASSERT((unsigned)count <= 3);
850 bubble_sort(tValues, count);
851 count = collaps_duplicates(tValues, count);
852 roots = tValues + count; // so we compute the proper count below
reed@android.com8a1c16f2008-12-17 15:59:43 +0000853 }
854 else // we have 1 real root
855 {
reed@google.com3c128402013-12-16 14:17:40 +0000856 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
857 A = SkScalarCubeRoot(A);
858 if (R > 0)
859 A = -A;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000860
861 if (A != 0)
reed@google.com3c128402013-12-16 14:17:40 +0000862 A += Q / A;
863 r = A - adiv3;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000864 if (is_unit_interval(r))
865 *roots++ = r;
866 }
867
868 return (int)(roots - tValues);
869}
870
871/* Looking for F' dot F'' == 0
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000872
reed@android.com8a1c16f2008-12-17 15:59:43 +0000873 A = b - a
874 B = c - 2b + a
875 C = d - 3c + 3b - a
876
877 F' = 3Ct^2 + 6Bt + 3A
878 F'' = 6Ct + 6B
879
880 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
881*/
reed@google.com3c128402013-12-16 14:17:40 +0000882static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4])
reed@android.com8a1c16f2008-12-17 15:59:43 +0000883{
884 SkScalar a = src[2] - src[0];
885 SkScalar b = src[4] - 2 * src[2] + src[0];
886 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
887
reed@google.com3c128402013-12-16 14:17:40 +0000888 coeff[0] = c * c;
889 coeff[1] = 3 * b * c;
890 coeff[2] = 2 * b * b + c * a;
891 coeff[3] = a * b;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000892}
893
894// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
895//#define kMinTValueForChopping (SK_Scalar1 / 256)
896#define kMinTValueForChopping 0
897
898/* Looking for F' dot F'' == 0
rmistry@google.comfbfcd562012-08-23 18:09:54 +0000899
reed@android.com8a1c16f2008-12-17 15:59:43 +0000900 A = b - a
901 B = c - 2b + a
902 C = d - 3c + 3b - a
903
904 F' = 3Ct^2 + 6Bt + 3A
905 F'' = 6Ct + 6B
906
907 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
908*/
909int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
910{
reed@google.com3c128402013-12-16 14:17:40 +0000911 SkScalar coeffX[4], coeffY[4];
912 int i;
reed@android.com8a1c16f2008-12-17 15:59:43 +0000913
914 formulate_F1DotF2(&src[0].fX, coeffX);
915 formulate_F1DotF2(&src[0].fY, coeffY);
916
917 for (i = 0; i < 4; i++)
reed@google.com3c128402013-12-16 14:17:40 +0000918 coeffX[i] += coeffY[i];
reed@android.com8a1c16f2008-12-17 15:59:43 +0000919
920 SkScalar t[3];
921 int count = solve_cubic_polynomial(coeffX, t);
922 int maxCount = 0;
923
924 // now remove extrema where the curvature is zero (mins)
925 // !!!! need a test for this !!!!
926 for (i = 0; i < count; i++)
927 {
928 // if (not_min_curvature())
929 if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
930 tValues[maxCount++] = t[i];
931 }
932 return maxCount;
933}
934
935int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
936{
937 SkScalar t_storage[3];
938
939 if (tValues == NULL)
940 tValues = t_storage;
941
942 int count = SkFindCubicMaxCurvature(src, tValues);
943
egdaniel@google.com5383a752013-07-12 20:15:34 +0000944 if (dst) {
reed@android.com8a1c16f2008-12-17 15:59:43 +0000945 if (count == 0)
946 memcpy(dst, src, 4 * sizeof(SkPoint));
947 else
948 SkChopCubicAt(src, dst, tValues, count);
949 }
950 return count + 1;
951}
952
kbr@chromium.org2e086192010-07-07 22:20:35 +0000953bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
954 if (ambiguous) {
955 *ambiguous = false;
956 }
957
reed@android.com945a1392010-02-05 20:41:02 +0000958 // Find the minimum and maximum y of the extrema, which are the
959 // first and last points since this cubic is monotonic
960 SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
961 SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
962
963 if (pt.fY == cubic[0].fY
964 || pt.fY < min_y
965 || pt.fY > max_y) {
966 // The query line definitely does not cross the curve
kbr@chromium.org2e086192010-07-07 22:20:35 +0000967 if (ambiguous) {
968 *ambiguous = (pt.fY == cubic[0].fY);
969 }
reed@android.com945a1392010-02-05 20:41:02 +0000970 return false;
971 }
972
kbr@chromium.org2e086192010-07-07 22:20:35 +0000973 bool pt_at_extremum = (pt.fY == cubic[3].fY);
974
reed@android.com945a1392010-02-05 20:41:02 +0000975 SkScalar min_x =
976 SkMinScalar(
977 SkMinScalar(
978 SkMinScalar(cubic[0].fX, cubic[1].fX),
979 cubic[2].fX),
980 cubic[3].fX);
981 if (pt.fX < min_x) {
982 // The query line definitely crosses the curve
kbr@chromium.org2e086192010-07-07 22:20:35 +0000983 if (ambiguous) {
984 *ambiguous = pt_at_extremum;
985 }
reed@android.com945a1392010-02-05 20:41:02 +0000986 return true;
987 }
988
989 SkScalar max_x =
990 SkMaxScalar(
991 SkMaxScalar(
992 SkMaxScalar(cubic[0].fX, cubic[1].fX),
993 cubic[2].fX),
994 cubic[3].fX);
995 if (pt.fX > max_x) {
996 // The query line definitely does not cross the curve
997 return false;
998 }
999
1000 // Do a binary search to find the parameter value which makes y as
1001 // close as possible to the query point. See whether the query
1002 // line's origin is to the left of the associated x coordinate.
1003
1004 // kMaxIter is chosen as the number of mantissa bits for a float,
1005 // since there's no way we are going to get more precision by
1006 // iterating more times than that.
1007 const int kMaxIter = 23;
1008 SkPoint eval;
1009 int iter = 0;
1010 SkScalar upper_t;
1011 SkScalar lower_t;
1012 // Need to invert direction of t parameter if cubic goes up
1013 // instead of down
1014 if (cubic[3].fY > cubic[0].fY) {
1015 upper_t = SK_Scalar1;
commit-bot@chromium.org4b413c82013-11-25 19:44:07 +00001016 lower_t = 0;
reed@android.com945a1392010-02-05 20:41:02 +00001017 } else {
commit-bot@chromium.org4b413c82013-11-25 19:44:07 +00001018 upper_t = 0;
reed@android.com945a1392010-02-05 20:41:02 +00001019 lower_t = SK_Scalar1;
1020 }
1021 do {
1022 SkScalar t = SkScalarAve(upper_t, lower_t);
1023 SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
1024 if (pt.fY > eval.fY) {
1025 lower_t = t;
1026 } else {
1027 upper_t = t;
1028 }
1029 } while (++iter < kMaxIter
1030 && !SkScalarNearlyZero(eval.fY - pt.fY));
1031 if (pt.fX <= eval.fX) {
kbr@chromium.org2e086192010-07-07 22:20:35 +00001032 if (ambiguous) {
1033 *ambiguous = pt_at_extremum;
1034 }
reed@android.com945a1392010-02-05 20:41:02 +00001035 return true;
1036 }
1037 return false;
1038}
1039
kbr@chromium.org2e086192010-07-07 22:20:35 +00001040int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
reed@android.com945a1392010-02-05 20:41:02 +00001041 int num_crossings = 0;
1042 SkPoint monotonic_cubics[10];
1043 int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
kbr@chromium.org2e086192010-07-07 22:20:35 +00001044 if (ambiguous) {
1045 *ambiguous = false;
1046 }
1047 bool locally_ambiguous;
1048 if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
reed@android.com945a1392010-02-05 20:41:02 +00001049 ++num_crossings;
kbr@chromium.org2e086192010-07-07 22:20:35 +00001050 if (ambiguous) {
1051 *ambiguous |= locally_ambiguous;
1052 }
reed@android.com945a1392010-02-05 20:41:02 +00001053 if (num_monotonic_cubics > 0)
kbr@chromium.org2e086192010-07-07 22:20:35 +00001054 if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
reed@android.com945a1392010-02-05 20:41:02 +00001055 ++num_crossings;
kbr@chromium.org2e086192010-07-07 22:20:35 +00001056 if (ambiguous) {
1057 *ambiguous |= locally_ambiguous;
1058 }
reed@android.com945a1392010-02-05 20:41:02 +00001059 if (num_monotonic_cubics > 1)
kbr@chromium.org2e086192010-07-07 22:20:35 +00001060 if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
reed@android.com945a1392010-02-05 20:41:02 +00001061 ++num_crossings;
kbr@chromium.org2e086192010-07-07 22:20:35 +00001062 if (ambiguous) {
1063 *ambiguous |= locally_ambiguous;
1064 }
reed@android.com945a1392010-02-05 20:41:02 +00001065 return num_crossings;
1066}
reed@android.com8a1c16f2008-12-17 15:59:43 +00001067////////////////////////////////////////////////////////////////////////////////
1068
1069/* Find t value for quadratic [a, b, c] = d.
1070 Return 0 if there is no solution within [0, 1)
1071*/
1072static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
1073{
1074 // At^2 + Bt + C = d
1075 SkScalar A = a - 2 * b + c;
1076 SkScalar B = 2 * (b - a);
1077 SkScalar C = a - d;
1078
1079 SkScalar roots[2];
1080 int count = SkFindUnitQuadRoots(A, B, C, roots);
1081
1082 SkASSERT(count <= 1);
1083 return count == 1 ? roots[0] : 0;
1084}
1085
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001086/* given a quad-curve and a point (x,y), chop the quad at that point and place
skia.committer@gmail.com50df4d02013-09-28 07:01:33 +00001087 the new off-curve point and endpoint into 'dest'.
skia.committer@gmail.com9e1ec1a2013-07-10 07:00:58 +00001088 Should only return false if the computed pos is the start of the curve
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001089 (i.e. root == 0)
reed@android.com8a1c16f2008-12-17 15:59:43 +00001090*/
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001091static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest)
reed@android.com8a1c16f2008-12-17 15:59:43 +00001092{
1093 const SkScalar* base;
1094 SkScalar value;
1095
1096 if (SkScalarAbs(x) < SkScalarAbs(y)) {
1097 base = &quad[0].fX;
1098 value = x;
1099 } else {
1100 base = &quad[0].fY;
1101 value = y;
1102 }
1103
1104 // note: this returns 0 if it thinks value is out of range, meaning the
1105 // root might return something outside of [0, 1)
1106 SkScalar t = quad_solve(base[0], base[2], base[4], value);
1107
1108 if (t > 0)
1109 {
1110 SkPoint tmp[5];
1111 SkChopQuadAt(quad, tmp, t);
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001112 dest[0] = tmp[1];
robertphillips@google.comb0889a52013-09-27 17:05:59 +00001113 dest[1].set(x, y);
reed@android.com8a1c16f2008-12-17 15:59:43 +00001114 return true;
1115 } else {
1116 /* t == 0 means either the value triggered a root outside of [0, 1)
1117 For our purposes, we can ignore the <= 0 roots, but we want to
1118 catch the >= 1 roots (which given our caller, will basically mean
1119 a root of 1, give-or-take numerical instability). If we are in the
1120 >= 1 case, return the existing offCurve point.
rmistry@google.comfbfcd562012-08-23 18:09:54 +00001121
reed@android.com8a1c16f2008-12-17 15:59:43 +00001122 The test below checks to see if we are close to the "end" of the
1123 curve (near base[4]). Rather than specifying a tolerance, I just
1124 check to see if value is on to the right/left of the middle point
1125 (depending on the direction/sign of the end points).
1126 */
1127 if ((base[0] < base[4] && value > base[2]) ||
1128 (base[0] > base[4] && value < base[2])) // should root have been 1
1129 {
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001130 dest[0] = quad[1];
1131 dest[1].set(x, y);
reed@android.com8a1c16f2008-12-17 15:59:43 +00001132 return true;
1133 }
1134 }
1135 return false;
1136}
1137
1138static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
commit-bot@chromium.orgf91aaec2013-11-01 15:24:55 +00001139// The mid point of the quadratic arc approximation is half way between the two
1140// control points. The float epsilon adjustment moves the on curve point out by
1141// two bits, distributing the convex test error between the round rect approximation
1142// and the convex cross product sign equality test.
1143#define SK_MID_RRECT_OFFSET (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
1144 { SK_Scalar1, 0 },
1145 { SK_Scalar1, SK_ScalarTanPIOver8 },
1146 { SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
1147 { SK_ScalarTanPIOver8, SK_Scalar1 },
reed@android.com8a1c16f2008-12-17 15:59:43 +00001148
commit-bot@chromium.orgf91aaec2013-11-01 15:24:55 +00001149 { 0, SK_Scalar1 },
1150 { -SK_ScalarTanPIOver8, SK_Scalar1 },
1151 { -SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
1152 { -SK_Scalar1, SK_ScalarTanPIOver8 },
reed@android.com8a1c16f2008-12-17 15:59:43 +00001153
commit-bot@chromium.orgf91aaec2013-11-01 15:24:55 +00001154 { -SK_Scalar1, 0 },
1155 { -SK_Scalar1, -SK_ScalarTanPIOver8 },
1156 { -SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
1157 { -SK_ScalarTanPIOver8, -SK_Scalar1 },
reed@android.com8a1c16f2008-12-17 15:59:43 +00001158
commit-bot@chromium.orgf91aaec2013-11-01 15:24:55 +00001159 { 0, -SK_Scalar1 },
1160 { SK_ScalarTanPIOver8, -SK_Scalar1 },
1161 { SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
1162 { SK_Scalar1, -SK_ScalarTanPIOver8 },
reed@android.com8a1c16f2008-12-17 15:59:43 +00001163
commit-bot@chromium.orgf91aaec2013-11-01 15:24:55 +00001164 { SK_Scalar1, 0 }
1165#undef SK_MID_RRECT_OFFSET
reed@android.com8a1c16f2008-12-17 15:59:43 +00001166};
1167
1168int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1169 SkRotationDirection dir, const SkMatrix* userMatrix,
1170 SkPoint quadPoints[])
1171{
1172 // rotate by x,y so that uStart is (1.0)
1173 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1174 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1175
1176 SkScalar absX = SkScalarAbs(x);
1177 SkScalar absY = SkScalarAbs(y);
1178
1179 int pointCount;
1180
1181 // check for (effectively) coincident vectors
1182 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1183 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1184 if (absY <= SK_ScalarNearlyZero && x > 0 &&
1185 ((y >= 0 && kCW_SkRotationDirection == dir) ||
1186 (y <= 0 && kCCW_SkRotationDirection == dir))) {
rmistry@google.comfbfcd562012-08-23 18:09:54 +00001187
reed@android.com8a1c16f2008-12-17 15:59:43 +00001188 // just return the start-point
1189 quadPoints[0].set(SK_Scalar1, 0);
1190 pointCount = 1;
1191 } else {
1192 if (dir == kCCW_SkRotationDirection)
1193 y = -y;
1194
1195 // what octant (quadratic curve) is [xy] in?
1196 int oct = 0;
1197 bool sameSign = true;
1198
1199 if (0 == y)
1200 {
1201 oct = 4; // 180
1202 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1203 }
1204 else if (0 == x)
1205 {
1206 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1207 if (y > 0)
1208 oct = 2; // 90
1209 else
1210 oct = 6; // 270
1211 }
1212 else
1213 {
1214 if (y < 0)
1215 oct += 4;
1216 if ((x < 0) != (y < 0))
1217 {
1218 oct += 2;
1219 sameSign = false;
1220 }
1221 if ((absX < absY) == sameSign)
1222 oct += 1;
1223 }
1224
1225 int wholeCount = oct << 1;
1226 memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1227
1228 const SkPoint* arc = &gQuadCirclePts[wholeCount];
robertphillips@google.come1b75b42013-07-09 15:03:59 +00001229 if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1]))
reed@android.com8a1c16f2008-12-17 15:59:43 +00001230 {
reed@android.com8a1c16f2008-12-17 15:59:43 +00001231 wholeCount += 2;
1232 }
1233 pointCount = wholeCount + 1;
1234 }
1235
1236 // now handle counter-clockwise and the initial unitStart rotation
1237 SkMatrix matrix;
1238 matrix.setSinCos(uStart.fY, uStart.fX);
1239 if (dir == kCCW_SkRotationDirection) {
1240 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1241 }
1242 if (userMatrix) {
1243 matrix.postConcat(*userMatrix);
1244 }
1245 matrix.mapPoints(quadPoints, pointCount);
1246 return pointCount;
1247}
reed@google.comc5187102013-04-12 19:11:10 +00001248
1249///////////////////////////////////////////////////////////////////////////////
1250
reed@google.com17a2c912013-04-16 21:07:27 +00001251// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1252// ------------------------------------------
1253// ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1254//
1255// = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1256// ------------------------------------------------
1257// {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1258//
reed@google.com17a2c912013-04-16 21:07:27 +00001259
1260// Take the parametric specification for the conic (either X or Y) and return
1261// in coeff[] the coefficients for the simple quadratic polynomial
1262// coeff[0] for t^2
1263// coeff[1] for t
1264// coeff[2] for constant term
1265//
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001266static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001267 SkASSERT(src);
1268 SkASSERT(t >= 0 && t <= SK_Scalar1);
skia.committer@gmail.com45fb8b62013-04-17 07:00:56 +00001269
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001270 SkScalar src2w = SkScalarMul(src[2], w);
1271 SkScalar C = src[0];
1272 SkScalar A = src[4] - 2 * src2w + C;
1273 SkScalar B = 2 * (src2w - C);
1274 SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
skia.committer@gmail.com45fb8b62013-04-17 07:00:56 +00001275
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001276 B = 2 * (w - SK_Scalar1);
1277 C = SK_Scalar1;
1278 A = -B;
1279 SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
skia.committer@gmail.com45fb8b62013-04-17 07:00:56 +00001280
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001281 return SkScalarDiv(numer, denom);
1282}
1283
1284// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1285//
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001286// t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1287// t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1288// t^0 : -2 P0 w + 2 P1 w
1289//
1290// We disregard magnitude, so we can freely ignore the denominator of F', and
1291// divide the numerator by 2
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001292//
reed@google.com17a2c912013-04-16 21:07:27 +00001293// coeff[0] for t^2
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001294// coeff[1] for t^1
1295// coeff[2] for t^0
reed@google.com17a2c912013-04-16 21:07:27 +00001296//
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001297static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
1298 const SkScalar P20 = src[4] - src[0];
1299 const SkScalar P10 = src[2] - src[0];
1300 const SkScalar wP10 = w * P10;
1301 coeff[0] = w * P20 - P20;
1302 coeff[1] = P20 - 2 * wP10;
1303 coeff[2] = wP10;
reed@google.com17a2c912013-04-16 21:07:27 +00001304}
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001305
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001306static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001307 SkScalar coeff[3];
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001308 conic_deriv_coeff(coord, w, coeff);
1309 return t * (t * coeff[0] + coeff[1]) + coeff[2];
1310}
1311
1312static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1313 SkScalar coeff[3];
1314 conic_deriv_coeff(src, w, coeff);
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001315
1316 SkScalar tValues[2];
1317 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1318 SkASSERT(0 == roots || 1 == roots);
skia.committer@gmail.com45fb8b62013-04-17 07:00:56 +00001319
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001320 if (1 == roots) {
1321 *t = tValues[0];
1322 return true;
1323 }
1324 return false;
1325}
reed@google.com17a2c912013-04-16 21:07:27 +00001326
reed@google.com0d099552013-04-12 21:55:26 +00001327struct SkP3D {
1328 SkScalar fX, fY, fZ;
skia.committer@gmail.com4bb50b22013-04-13 07:01:15 +00001329
reed@google.com0d099552013-04-12 21:55:26 +00001330 void set(SkScalar x, SkScalar y, SkScalar z) {
1331 fX = x; fY = y; fZ = z;
1332 }
skia.committer@gmail.com4bb50b22013-04-13 07:01:15 +00001333
reed@google.com0d099552013-04-12 21:55:26 +00001334 void projectDown(SkPoint* dst) const {
1335 dst->set(fX / fZ, fY / fZ);
1336 }
1337};
1338
1339// we just return the middle 3 points, since the first and last are dups of src
1340//
1341static void p3d_interp(const SkScalar src[3], SkScalar dst[3], SkScalar t) {
1342 SkScalar ab = SkScalarInterp(src[0], src[3], t);
1343 SkScalar bc = SkScalarInterp(src[3], src[6], t);
1344 dst[0] = ab;
1345 dst[3] = SkScalarInterp(ab, bc, t);
1346 dst[6] = bc;
1347}
1348
1349static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1350 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1351 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1352 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1353}
1354
reed@google.com24bd2102013-05-07 20:42:35 +00001355void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
reed@google.comc5187102013-04-12 19:11:10 +00001356 SkASSERT(t >= 0 && t <= SK_Scalar1);
skia.committer@gmail.com4bb50b22013-04-13 07:01:15 +00001357
reed@google.comc5187102013-04-12 19:11:10 +00001358 if (pt) {
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001359 pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1360 conic_eval_pos(&fPts[0].fY, fW, t));
reed@google.comc5187102013-04-12 19:11:10 +00001361 }
reed@google.com24bd2102013-05-07 20:42:35 +00001362 if (tangent) {
1363 tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1364 conic_eval_tan(&fPts[0].fY, fW, t));
1365 }
reed@google.comc5187102013-04-12 19:11:10 +00001366}
1367
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001368void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
reed@google.com0d099552013-04-12 21:55:26 +00001369 SkP3D tmp[3], tmp2[3];
1370
1371 ratquad_mapTo3D(fPts, fW, tmp);
skia.committer@gmail.com4bb50b22013-04-13 07:01:15 +00001372
reed@google.com0d099552013-04-12 21:55:26 +00001373 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1374 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1375 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
skia.committer@gmail.com4bb50b22013-04-13 07:01:15 +00001376
reed@google.com0d099552013-04-12 21:55:26 +00001377 dst[0].fPts[0] = fPts[0];
1378 tmp2[0].projectDown(&dst[0].fPts[1]);
1379 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1380 tmp2[2].projectDown(&dst[1].fPts[1]);
1381 dst[1].fPts[2] = fPts[2];
1382
mike@reedtribe.org4af62802013-04-13 10:51:51 +00001383 // to put in "standard form", where w0 and w2 are both 1, we compute the
1384 // new w1 as sqrt(w1*w1/w0*w2)
1385 // or
1386 // w1 /= sqrt(w0*w2)
1387 //
1388 // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
1389 //
1390 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1391 dst[0].fW = tmp2[0].fZ / root;
1392 dst[1].fW = tmp2[2].fZ / root;
reed@google.comc5187102013-04-12 19:11:10 +00001393}
mike@reedtribe.org8d551012013-04-14 02:40:50 +00001394
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001395static SkScalar subdivide_w_value(SkScalar w) {
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001396 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001397}
1398
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001399void SkConic::chop(SkConic dst[2]) const {
mike@reedtribe.org8d551012013-04-14 02:40:50 +00001400 SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
1401 SkScalar p1x = fW * fPts[1].fX;
1402 SkScalar p1y = fW * fPts[1].fY;
1403 SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
1404 SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
1405
1406 dst[0].fPts[0] = fPts[0];
1407 dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
1408 (fPts[0].fY + p1y) * scale);
1409 dst[0].fPts[2].set(mx, my);
1410
1411 dst[1].fPts[0].set(mx, my);
1412 dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
1413 (p1y + fPts[2].fY) * scale);
1414 dst[1].fPts[2] = fPts[2];
1415
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001416 dst[0].fW = dst[1].fW = subdivide_w_value(fW);
mike@reedtribe.org8d551012013-04-14 02:40:50 +00001417}
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001418
mike@reedtribe.org97514f22013-04-27 18:23:16 +00001419/*
1420 * "High order approximation of conic sections by quadratic splines"
1421 * by Michael Floater, 1993
1422 */
mike@reedtribe.orgaf5c5062013-04-30 02:14:58 +00001423#define AS_QUAD_ERROR_SETUP \
1424 SkScalar a = fW - 1; \
1425 SkScalar k = a / (4 * (2 + a)); \
1426 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1427 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1428
1429void SkConic::computeAsQuadError(SkVector* err) const {
1430 AS_QUAD_ERROR_SETUP
1431 err->set(x, y);
1432}
1433
1434bool SkConic::asQuadTol(SkScalar tol) const {
1435 AS_QUAD_ERROR_SETUP
1436 return (x * x + y * y) <= tol * tol;
mike@reedtribe.org97514f22013-04-27 18:23:16 +00001437}
1438
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001439int SkConic::computeQuadPOW2(SkScalar tol) const {
mike@reedtribe.orgaf5c5062013-04-30 02:14:58 +00001440 AS_QUAD_ERROR_SETUP
1441 SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
1442
1443 if (error <= 0) {
mike@reedtribe.org97514f22013-04-27 18:23:16 +00001444 return 0;
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001445 }
mike@reedtribe.org97514f22013-04-27 18:23:16 +00001446 uint32_t ierr = (uint32_t)error;
mike@reedtribe.orgaf5c5062013-04-30 02:14:58 +00001447 return (34 - SkCLZ(ierr)) >> 1;
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001448}
1449
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001450static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001451 SkASSERT(level >= 0);
mike@reedtribe.orgaf5c5062013-04-30 02:14:58 +00001452
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001453 if (0 == level) {
1454 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1455 return pts + 2;
1456 } else {
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001457 SkConic dst[2];
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001458 src.chop(dst);
1459 --level;
1460 pts = subdivide(dst[0], pts, level);
1461 return subdivide(dst[1], pts, level);
1462 }
1463}
1464
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001465int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
mike@reedtribe.orgaf5c5062013-04-30 02:14:58 +00001466 SkASSERT(pow2 >= 0);
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001467 *pts = fPts[0];
reed@google.comaebfa7e2013-04-15 15:23:38 +00001468 SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
mike@reedtribe.org3df87cb2013-04-15 15:20:52 +00001469 SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1470 return 1 << pow2;
1471}
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001472
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001473bool SkConic::findXExtrema(SkScalar* t) const {
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001474 return conic_find_extrema(&fPts[0].fX, fW, t);
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001475}
1476
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001477bool SkConic::findYExtrema(SkScalar* t) const {
mike@reedtribe.org6862cba2013-05-08 01:55:49 +00001478 return conic_find_extrema(&fPts[0].fY, fW, t);
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001479}
1480
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001481bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001482 SkScalar t;
1483 if (this->findXExtrema(&t)) {
1484 this->chopAt(t, dst);
1485 // now clean-up the middle, since we know t was meant to be at
1486 // an X-extrema
1487 SkScalar value = dst[0].fPts[2].fX;
1488 dst[0].fPts[1].fX = value;
1489 dst[1].fPts[0].fX = value;
1490 dst[1].fPts[1].fX = value;
1491 return true;
1492 }
1493 return false;
1494}
1495
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001496bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
mike@reedtribe.org0c5c3862013-04-17 01:21:01 +00001497 SkScalar t;
1498 if (this->findYExtrema(&t)) {
1499 this->chopAt(t, dst);
1500 // now clean-up the middle, since we know t was meant to be at
1501 // an Y-extrema
1502 SkScalar value = dst[0].fPts[2].fY;
1503 dst[0].fPts[1].fY = value;
1504 dst[1].fPts[0].fY = value;
1505 dst[1].fPts[1].fY = value;
1506 return true;
1507 }
1508 return false;
1509}
1510
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001511void SkConic::computeTightBounds(SkRect* bounds) const {
mike@reedtribe.org5c082a12013-04-17 02:25:33 +00001512 SkPoint pts[4];
1513 pts[0] = fPts[0];
1514 pts[1] = fPts[2];
1515 int count = 2;
1516
1517 SkScalar t;
1518 if (this->findXExtrema(&t)) {
1519 this->evalAt(t, &pts[count++]);
1520 }
1521 if (this->findYExtrema(&t)) {
1522 this->evalAt(t, &pts[count++]);
1523 }
1524 bounds->set(pts, count);
1525}
1526
mike@reedtribe.org28552e12013-04-26 00:58:29 +00001527void SkConic::computeFastBounds(SkRect* bounds) const {
mike@reedtribe.org5c082a12013-04-17 02:25:33 +00001528 bounds->set(fPts, 3);
1529}