| /* |
| * Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl> |
| * Copyright (c) 1993 Branko Lankester <branko@hacktic.nl> |
| * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com> |
| * Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl> |
| * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Linux for s390 port by D.J. Barrow |
| * <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "defs.h" |
| #include <signal.h> |
| |
| #ifndef NSIG |
| # warning NSIG is not defined, using 32 |
| # define NSIG 32 |
| #elif NSIG < 32 |
| # error NSIG < 32 |
| #endif |
| |
| /* The libc headers do not define this constant since it should only be |
| used by the implementation. So we define it here. */ |
| #ifndef SA_RESTORER |
| # ifdef ASM_SA_RESTORER |
| # define SA_RESTORER ASM_SA_RESTORER |
| # endif |
| #endif |
| |
| /* |
| * Some architectures define SA_RESTORER in their headers, |
| * but do not actually have sa_restorer. |
| * |
| * Some architectures, otherwise, do not define SA_RESTORER in their headers, |
| * but actually have sa_restorer. |
| */ |
| #ifdef SA_RESTORER |
| # if defined HPPA || defined IA64 |
| # define HAVE_SA_RESTORER 0 |
| # else |
| # define HAVE_SA_RESTORER 1 |
| # endif |
| #else /* !SA_RESTORER */ |
| # if defined SPARC || defined SPARC64 || defined M68K |
| # define HAVE_SA_RESTORER 1 |
| # else |
| # define HAVE_SA_RESTORER 0 |
| # endif |
| #endif |
| |
| #include "xlat/sigact_flags.h" |
| #include "xlat/sigprocmaskcmds.h" |
| |
| /* Anonymous realtime signals. */ |
| #ifndef ASM_SIGRTMIN |
| /* Linux kernel >= 3.18 defines SIGRTMIN to 32 on all architectures. */ |
| # define ASM_SIGRTMIN 32 |
| #endif |
| #ifndef ASM_SIGRTMAX |
| /* Under glibc 2.1, SIGRTMAX et al are functions, but __SIGRTMAX is a |
| constant. This is what we want. Otherwise, just use SIGRTMAX. */ |
| # ifdef SIGRTMAX |
| # ifndef __SIGRTMAX |
| # define __SIGRTMAX SIGRTMAX |
| # endif |
| # endif |
| # ifdef __SIGRTMAX |
| # define ASM_SIGRTMAX __SIGRTMAX |
| # endif |
| #endif |
| |
| /* Note on the size of sigset_t: |
| * |
| * In glibc, sigset_t is an array with space for 1024 bits (!), |
| * even though all arches supported by Linux have only 64 signals |
| * except MIPS, which has 128. IOW, it is 128 bytes long. |
| * |
| * In-kernel sigset_t is sized correctly (it is either 64 or 128 bit long). |
| * However, some old syscall return only 32 lower bits (one word). |
| * Example: sys_sigpending vs sys_rt_sigpending. |
| * |
| * Be aware of this fact when you try to |
| * memcpy(&tcp->u_arg[1], &something, sizeof(sigset_t)) |
| * - sizeof(sigset_t) is much bigger than you think, |
| * it may overflow tcp->u_arg[] array, and it may try to copy more data |
| * than is really available in <something>. |
| * Similarly, |
| * umoven(tcp, addr, sizeof(sigset_t), &sigset) |
| * may be a bad idea: it'll try to read much more data than needed |
| * to fetch a sigset_t. |
| * Use (NSIG / 8) as a size instead. |
| */ |
| |
| const char * |
| signame(const int sig) |
| { |
| static char buf[sizeof("SIGRT_%u") + sizeof(int)*3]; |
| |
| if (sig >= 0) { |
| const unsigned int s = sig; |
| |
| if (s < nsignals) |
| return signalent[s]; |
| #ifdef ASM_SIGRTMAX |
| if (s >= ASM_SIGRTMIN && s <= (unsigned int) ASM_SIGRTMAX) { |
| sprintf(buf, "SIGRT_%u", s - ASM_SIGRTMIN); |
| return buf; |
| } |
| #endif |
| } |
| sprintf(buf, "%d", sig); |
| return buf; |
| } |
| |
| static unsigned int |
| popcount32(const uint32_t *a, unsigned int size) |
| { |
| unsigned int count = 0; |
| |
| for (; size; ++a, --size) { |
| uint32_t x = *a; |
| |
| #ifdef HAVE___BUILTIN_POPCOUNT |
| count += __builtin_popcount(x); |
| #else |
| for (; x; ++count) |
| x &= x - 1; |
| #endif |
| } |
| |
| return count; |
| } |
| |
| const char * |
| sprintsigmask_n(const char *prefix, const void *sig_mask, unsigned int bytes) |
| { |
| /* |
| * The maximum number of signal names to be printed is NSIG * 2 / 3. |
| * Most of signal names have length 7, |
| * average length of signal names is less than 7. |
| * The length of prefix string does not exceed 16. |
| */ |
| static char outstr[128 + 8 * (NSIG * 2 / 3)]; |
| |
| char *s; |
| const uint32_t *mask; |
| uint32_t inverted_mask[NSIG / 32]; |
| unsigned int size; |
| int i; |
| char sep; |
| |
| s = stpcpy(outstr, prefix); |
| |
| mask = sig_mask; |
| /* length of signal mask in 4-byte words */ |
| size = (bytes >= NSIG / 8) ? NSIG / 32 : (bytes + 3) / 4; |
| |
| /* check whether 2/3 or more bits are set */ |
| if (popcount32(mask, size) >= size * 32 * 2 / 3) { |
| /* show those signals that are NOT in the mask */ |
| unsigned int j; |
| for (j = 0; j < size; ++j) |
| inverted_mask[j] = ~mask[j]; |
| mask = inverted_mask; |
| *s++ = '~'; |
| } |
| |
| sep = '['; |
| for (i = 0; (i = next_set_bit(mask, i, size * 32)) >= 0; ) { |
| ++i; |
| *s++ = sep; |
| if ((unsigned) i < nsignals) { |
| s = stpcpy(s, signalent[i] + 3); |
| } |
| #ifdef ASM_SIGRTMAX |
| else if (i >= ASM_SIGRTMIN && i <= ASM_SIGRTMAX) { |
| s += sprintf(s, "RT_%u", i - ASM_SIGRTMIN); |
| } |
| #endif |
| else { |
| s += sprintf(s, "%u", i); |
| } |
| sep = ' '; |
| } |
| if (sep == '[') |
| *s++ = sep; |
| *s++ = ']'; |
| *s = '\0'; |
| return outstr; |
| } |
| |
| #define sprintsigmask_val(prefix, mask) \ |
| sprintsigmask_n((prefix), &(mask), sizeof(mask)) |
| |
| #define tprintsigmask_val(prefix, mask) \ |
| tprints(sprintsigmask_n((prefix), &(mask), sizeof(mask))) |
| |
| void |
| printsignal(int nr) |
| { |
| tprints(signame(nr)); |
| } |
| |
| void |
| print_sigset_addr_len(struct tcb *tcp, long addr, long len) |
| { |
| char mask[NSIG / 8]; |
| |
| /* Here len is usually equals NSIG / 8 or current_wordsize. |
| * But we code this defensively: |
| */ |
| if (len < 0) { |
| printaddr(addr); |
| return; |
| } |
| if (len >= NSIG / 8) |
| len = NSIG / 8; |
| else |
| len = (len + 3) & ~3; |
| |
| if (umoven_or_printaddr(tcp, addr, len, mask)) |
| return; |
| tprints(sprintsigmask_n("", mask, len)); |
| } |
| |
| SYS_FUNC(sigsetmask) |
| { |
| if (entering(tcp)) { |
| tprintsigmask_val("", tcp->u_arg[0]); |
| } |
| else if (!syserror(tcp)) { |
| tcp->auxstr = sprintsigmask_val("old mask ", tcp->u_rval); |
| return RVAL_HEX | RVAL_STR; |
| } |
| return 0; |
| } |
| |
| #ifdef HAVE_SIGACTION |
| |
| struct old_sigaction { |
| /* sa_handler may be a libc #define, need to use other name: */ |
| #ifdef MIPS |
| unsigned int sa_flags; |
| void (*__sa_handler)(int); |
| /* Kernel treats sa_mask as an array of longs. */ |
| unsigned long sa_mask[NSIG / sizeof(long) ? NSIG / sizeof(long) : 1]; |
| #else |
| void (*__sa_handler)(int); |
| unsigned long sa_mask; |
| unsigned long sa_flags; |
| #endif /* !MIPS */ |
| #if HAVE_SA_RESTORER |
| void (*sa_restorer)(void); |
| #endif |
| }; |
| |
| struct old_sigaction32 { |
| /* sa_handler may be a libc #define, need to use other name: */ |
| uint32_t __sa_handler; |
| uint32_t sa_mask; |
| uint32_t sa_flags; |
| #if HAVE_SA_RESTORER |
| uint32_t sa_restorer; |
| #endif |
| }; |
| |
| static void |
| decode_old_sigaction(struct tcb *tcp, long addr) |
| { |
| struct old_sigaction sa; |
| |
| #if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4 |
| if (current_wordsize != sizeof(sa.__sa_handler) && current_wordsize == 4) { |
| struct old_sigaction32 sa32; |
| |
| if (umove_or_printaddr(tcp, addr, &sa32)) |
| return; |
| |
| memset(&sa, 0, sizeof(sa)); |
| sa.__sa_handler = (void*)(uintptr_t)sa32.__sa_handler; |
| sa.sa_flags = sa32.sa_flags; |
| #if HAVE_SA_RESTORER && defined SA_RESTORER |
| sa.sa_restorer = (void*)(uintptr_t)sa32.sa_restorer; |
| #endif |
| sa.sa_mask = sa32.sa_mask; |
| } else |
| #endif |
| if (umove_or_printaddr(tcp, addr, &sa)) |
| return; |
| |
| /* Architectures using function pointers, like |
| * hppa, may need to manipulate the function pointer |
| * to compute the result of a comparison. However, |
| * the __sa_handler function pointer exists only in |
| * the address space of the traced process, and can't |
| * be manipulated by strace. In order to prevent the |
| * compiler from generating code to manipulate |
| * __sa_handler we cast the function pointers to long. */ |
| tprints("{"); |
| if ((long)sa.__sa_handler == (long)SIG_ERR) |
| tprints("SIG_ERR"); |
| else if ((long)sa.__sa_handler == (long)SIG_DFL) |
| tprints("SIG_DFL"); |
| else if ((long)sa.__sa_handler == (long)SIG_IGN) |
| tprints("SIG_IGN"); |
| else |
| printaddr((long) sa.__sa_handler); |
| tprints(", "); |
| #ifdef MIPS |
| tprintsigmask_addr("", sa.sa_mask); |
| #else |
| tprintsigmask_val("", sa.sa_mask); |
| #endif |
| tprints(", "); |
| printflags(sigact_flags, sa.sa_flags, "SA_???"); |
| #if HAVE_SA_RESTORER && defined SA_RESTORER |
| if (sa.sa_flags & SA_RESTORER) |
| tprintf(", %p", sa.sa_restorer); |
| #endif |
| tprints("}"); |
| } |
| |
| SYS_FUNC(sigaction) |
| { |
| if (entering(tcp)) { |
| printsignal(tcp->u_arg[0]); |
| tprints(", "); |
| decode_old_sigaction(tcp, tcp->u_arg[1]); |
| tprints(", "); |
| } else |
| decode_old_sigaction(tcp, tcp->u_arg[2]); |
| return 0; |
| } |
| |
| SYS_FUNC(signal) |
| { |
| if (entering(tcp)) { |
| printsignal(tcp->u_arg[0]); |
| tprints(", "); |
| switch (tcp->u_arg[1]) { |
| case (long) SIG_ERR: |
| tprints("SIG_ERR"); |
| break; |
| case (long) SIG_DFL: |
| tprints("SIG_DFL"); |
| break; |
| case (long) SIG_IGN: |
| tprints("SIG_IGN"); |
| break; |
| default: |
| printaddr(tcp->u_arg[1]); |
| } |
| return 0; |
| } |
| else if (!syserror(tcp)) { |
| switch (tcp->u_rval) { |
| case (long) SIG_ERR: |
| tcp->auxstr = "SIG_ERR"; break; |
| case (long) SIG_DFL: |
| tcp->auxstr = "SIG_DFL"; break; |
| case (long) SIG_IGN: |
| tcp->auxstr = "SIG_IGN"; break; |
| default: |
| tcp->auxstr = NULL; |
| } |
| return RVAL_HEX | RVAL_STR; |
| } |
| return 0; |
| } |
| |
| #endif /* HAVE_SIGACTION */ |
| |
| SYS_FUNC(siggetmask) |
| { |
| if (exiting(tcp)) { |
| tcp->auxstr = sprintsigmask_val("mask ", tcp->u_rval); |
| } |
| return RVAL_HEX | RVAL_STR; |
| } |
| |
| SYS_FUNC(sigsuspend) |
| { |
| tprintsigmask_val("", tcp->u_arg[2]); |
| |
| return RVAL_DECODED; |
| } |
| |
| #ifdef HAVE_SIGACTION |
| |
| /* "Old" sigprocmask, which operates with word-sized signal masks */ |
| SYS_FUNC(sigprocmask) |
| { |
| # ifdef ALPHA |
| if (entering(tcp)) { |
| /* |
| * Alpha/OSF is different: it doesn't pass in two pointers, |
| * but rather passes in the new bitmask as an argument and |
| * then returns the old bitmask. This "works" because we |
| * only have 64 signals to worry about. If you want more, |
| * use of the rt_sigprocmask syscall is required. |
| * Alpha: |
| * old = osf_sigprocmask(how, new); |
| * Everyone else: |
| * ret = sigprocmask(how, &new, &old, ...); |
| */ |
| printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); |
| tprintsigmask_val(", ", tcp->u_arg[1]); |
| } |
| else if (!syserror(tcp)) { |
| tcp->auxstr = sprintsigmask_val("old mask ", tcp->u_rval); |
| return RVAL_HEX | RVAL_STR; |
| } |
| # else /* !ALPHA */ |
| if (entering(tcp)) { |
| printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); |
| tprints(", "); |
| print_sigset_addr_len(tcp, tcp->u_arg[1], current_wordsize); |
| tprints(", "); |
| } |
| else { |
| print_sigset_addr_len(tcp, tcp->u_arg[2], current_wordsize); |
| } |
| # endif /* !ALPHA */ |
| return 0; |
| } |
| |
| #endif /* HAVE_SIGACTION */ |
| |
| SYS_FUNC(kill) |
| { |
| tprintf("%ld, %s", |
| widen_to_long(tcp->u_arg[0]), |
| signame(tcp->u_arg[1])); |
| |
| return RVAL_DECODED; |
| } |
| |
| SYS_FUNC(tgkill) |
| { |
| tprintf("%ld, %ld, %s", |
| widen_to_long(tcp->u_arg[0]), |
| widen_to_long(tcp->u_arg[1]), |
| signame(tcp->u_arg[2])); |
| |
| return RVAL_DECODED; |
| } |
| |
| SYS_FUNC(sigpending) |
| { |
| if (exiting(tcp)) |
| print_sigset_addr_len(tcp, tcp->u_arg[0], current_wordsize); |
| return 0; |
| } |
| |
| SYS_FUNC(rt_sigprocmask) |
| { |
| /* Note: arg[3] is the length of the sigset. Kernel requires NSIG / 8 */ |
| if (entering(tcp)) { |
| printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); |
| tprints(", "); |
| print_sigset_addr_len(tcp, tcp->u_arg[1], tcp->u_arg[3]); |
| tprints(", "); |
| } |
| else { |
| print_sigset_addr_len(tcp, tcp->u_arg[2], tcp->u_arg[3]); |
| tprintf(", %lu", tcp->u_arg[3]); |
| } |
| return 0; |
| } |
| |
| /* Structure describing the action to be taken when a signal arrives. */ |
| struct new_sigaction |
| { |
| /* sa_handler may be a libc #define, need to use other name: */ |
| #ifdef MIPS |
| unsigned int sa_flags; |
| void (*__sa_handler)(int); |
| #else |
| void (*__sa_handler)(int); |
| unsigned long sa_flags; |
| #endif /* !MIPS */ |
| #if HAVE_SA_RESTORER |
| void (*sa_restorer)(void); |
| #endif |
| /* Kernel treats sa_mask as an array of longs. */ |
| unsigned long sa_mask[NSIG / sizeof(long) ? NSIG / sizeof(long) : 1]; |
| }; |
| /* Same for i386-on-x86_64 and similar cases */ |
| struct new_sigaction32 |
| { |
| uint32_t __sa_handler; |
| uint32_t sa_flags; |
| #if HAVE_SA_RESTORER |
| uint32_t sa_restorer; |
| #endif |
| uint32_t sa_mask[2 * (NSIG / sizeof(long) ? NSIG / sizeof(long) : 1)]; |
| }; |
| |
| static void |
| decode_new_sigaction(struct tcb *tcp, long addr) |
| { |
| struct new_sigaction sa; |
| |
| #if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4 |
| if (current_wordsize != sizeof(sa.sa_flags) && current_wordsize == 4) { |
| struct new_sigaction32 sa32; |
| |
| if (umove_or_printaddr(tcp, addr, &sa32)) |
| return; |
| |
| memset(&sa, 0, sizeof(sa)); |
| sa.__sa_handler = (void*)(unsigned long)sa32.__sa_handler; |
| sa.sa_flags = sa32.sa_flags; |
| #if HAVE_SA_RESTORER && defined SA_RESTORER |
| sa.sa_restorer = (void*)(unsigned long)sa32.sa_restorer; |
| #endif |
| /* Kernel treats sa_mask as an array of longs. |
| * For 32-bit process, "long" is uint32_t, thus, for example, |
| * 32th bit in sa_mask will end up as bit 0 in sa_mask[1]. |
| * But for (64-bit) kernel, 32th bit in sa_mask is |
| * 32th bit in 0th (64-bit) long! |
| * For little-endian, it's the same. |
| * For big-endian, we swap 32-bit words. |
| */ |
| sa.sa_mask[0] = sa32.sa_mask[0] + ((long)(sa32.sa_mask[1]) << 32); |
| } else |
| #endif |
| if (umove_or_printaddr(tcp, addr, &sa)) |
| return; |
| |
| /* Architectures using function pointers, like |
| * hppa, may need to manipulate the function pointer |
| * to compute the result of a comparison. However, |
| * the __sa_handler function pointer exists only in |
| * the address space of the traced process, and can't |
| * be manipulated by strace. In order to prevent the |
| * compiler from generating code to manipulate |
| * __sa_handler we cast the function pointers to long. */ |
| if ((long)sa.__sa_handler == (long)SIG_ERR) |
| tprints("{SIG_ERR, "); |
| else if ((long)sa.__sa_handler == (long)SIG_DFL) |
| tprints("{SIG_DFL, "); |
| else if ((long)sa.__sa_handler == (long)SIG_IGN) |
| tprints("{SIG_IGN, "); |
| else |
| tprintf("{%#lx, ", (long) sa.__sa_handler); |
| /* |
| * Sigset size is in tcp->u_arg[4] (SPARC) |
| * or in tcp->u_arg[3] (all other), |
| * but kernel won't handle sys_rt_sigaction |
| * with wrong sigset size (just returns EINVAL instead). |
| * We just fetch the right size, which is NSIG / 8. |
| */ |
| tprintsigmask_val("", sa.sa_mask); |
| tprints(", "); |
| |
| printflags(sigact_flags, sa.sa_flags, "SA_???"); |
| #if HAVE_SA_RESTORER && defined SA_RESTORER |
| if (sa.sa_flags & SA_RESTORER) |
| tprintf(", %p", sa.sa_restorer); |
| #endif |
| tprints("}"); |
| } |
| |
| SYS_FUNC(rt_sigaction) |
| { |
| if (entering(tcp)) { |
| printsignal(tcp->u_arg[0]); |
| tprints(", "); |
| decode_new_sigaction(tcp, tcp->u_arg[1]); |
| tprints(", "); |
| } else { |
| decode_new_sigaction(tcp, tcp->u_arg[2]); |
| #if defined(SPARC) || defined(SPARC64) |
| tprintf(", %#lx, %lu", tcp->u_arg[3], tcp->u_arg[4]); |
| #elif defined(ALPHA) |
| tprintf(", %lu, %#lx", tcp->u_arg[3], tcp->u_arg[4]); |
| #else |
| tprintf(", %lu", tcp->u_arg[3]); |
| #endif |
| } |
| return 0; |
| } |
| |
| SYS_FUNC(rt_sigpending) |
| { |
| if (exiting(tcp)) { |
| /* |
| * One of the few syscalls where sigset size (arg[1]) |
| * is allowed to be <= NSIG / 8, not strictly ==. |
| * This allows non-rt sigpending() syscall |
| * to reuse rt_sigpending() code in kernel. |
| */ |
| print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[1]); |
| tprintf(", %lu", tcp->u_arg[1]); |
| } |
| return 0; |
| } |
| |
| SYS_FUNC(rt_sigsuspend) |
| { |
| /* NB: kernel requires arg[1] == NSIG / 8 */ |
| print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[1]); |
| tprintf(", %lu", tcp->u_arg[1]); |
| |
| return RVAL_DECODED; |
| } |
| |
| static void |
| print_sigqueueinfo(struct tcb *tcp, int sig, unsigned long uinfo) |
| { |
| printsignal(sig); |
| tprints(", "); |
| printsiginfo_at(tcp, uinfo); |
| } |
| |
| SYS_FUNC(rt_sigqueueinfo) |
| { |
| tprintf("%lu, ", tcp->u_arg[0]); |
| print_sigqueueinfo(tcp, tcp->u_arg[1], tcp->u_arg[2]); |
| |
| return RVAL_DECODED; |
| } |
| |
| SYS_FUNC(rt_tgsigqueueinfo) |
| { |
| tprintf("%lu, %lu, ", tcp->u_arg[0], tcp->u_arg[1]); |
| print_sigqueueinfo(tcp, tcp->u_arg[2], tcp->u_arg[3]); |
| |
| return RVAL_DECODED; |
| } |
| |
| SYS_FUNC(rt_sigtimedwait) |
| { |
| /* NB: kernel requires arg[3] == NSIG / 8 */ |
| if (entering(tcp)) { |
| print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[3]); |
| tprints(", "); |
| /* This is the only "return" parameter, */ |
| if (tcp->u_arg[1] != 0) |
| return 0; |
| /* ... if it's NULL, can decode all on entry */ |
| tprints("NULL, "); |
| } |
| else if (tcp->u_arg[1] != 0) { |
| /* syscall exit, and u_arg[1] wasn't NULL */ |
| printsiginfo_at(tcp, tcp->u_arg[1]); |
| tprints(", "); |
| } |
| else { |
| /* syscall exit, and u_arg[1] was NULL */ |
| return 0; |
| } |
| |
| /* |
| * Since the timeout parameter is read by the kernel |
| * on entering syscall, it has to be decoded the same way |
| * whether the syscall has failed or not. |
| */ |
| temporarily_clear_syserror(tcp); |
| print_timespec(tcp, tcp->u_arg[2]); |
| restore_cleared_syserror(tcp); |
| |
| tprintf(", %lu", tcp->u_arg[3]); |
| return 0; |
| }; |
| |
| SYS_FUNC(restart_syscall) |
| { |
| tprintf("<... resuming interrupted %s ...>", |
| tcp->s_prev_ent ? tcp->s_prev_ent->sys_name : "system call"); |
| |
| return RVAL_DECODED; |
| } |