blob: 4888e8fed6673797a2360d59617685bdeae81ba7 [file] [log] [blame]
//===- subzero/src/IceConverter.cpp - Converts LLVM to Ice ---------------===//
//
// The Subzero Code Generator
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM to ICE converter.
//
//===----------------------------------------------------------------------===//
#include "IceConverter.h"
#include "IceCfg.h"
#include "IceCfgNode.h"
#include "IceClFlags.h"
#include "IceDefs.h"
#include "IceGlobalContext.h"
#include "IceInst.h"
#include "IceOperand.h"
#include "IceTargetLowering.h"
#include "IceTypes.h"
#include "IceTypeConverter.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include <iostream>
using namespace llvm;
namespace {
// Debugging helper
template <typename T> static std::string LLVMObjectAsString(const T *O) {
std::string Dump;
raw_string_ostream Stream(Dump);
O->print(Stream);
return Stream.str();
}
// Converter from LLVM to ICE. The entry point is the convertFunction method.
//
// Note: this currently assumes that the given IR was verified to be valid PNaCl
// bitcode:
// https://developers.google.com/native-client/dev/reference/pnacl-bitcode-abi
// If not, all kinds of assertions may fire.
//
class LLVM2ICEConverter {
public:
LLVM2ICEConverter(Ice::GlobalContext *Ctx, LLVMContext &LLVMContext)
: Ctx(Ctx), Func(NULL), TypeConverter(LLVMContext) {}
// Caller is expected to delete the returned Ice::Cfg object.
Ice::Cfg *convertFunction(const Function *F) {
VarMap.clear();
NodeMap.clear();
Func = new Ice::Cfg(Ctx);
Func->setFunctionName(F->getName());
Func->setReturnType(convertToIceType(F->getReturnType()));
Func->setInternal(F->hasInternalLinkage());
// The initial definition/use of each arg is the entry node.
for (Function::const_arg_iterator ArgI = F->arg_begin(),
ArgE = F->arg_end();
ArgI != ArgE; ++ArgI) {
Func->addArg(mapValueToIceVar(ArgI));
}
// Make an initial pass through the block list just to resolve the
// blocks in the original linearized order. Otherwise the ICE
// linearized order will be affected by branch targets in
// terminator instructions.
for (Function::const_iterator BBI = F->begin(), BBE = F->end(); BBI != BBE;
++BBI) {
mapBasicBlockToNode(BBI);
}
for (Function::const_iterator BBI = F->begin(), BBE = F->end(); BBI != BBE;
++BBI) {
convertBasicBlock(BBI);
}
Func->setEntryNode(mapBasicBlockToNode(&F->getEntryBlock()));
Func->computePredecessors();
return Func;
}
// convertConstant() does not use Func or require it to be a valid
// Ice::Cfg pointer. As such, it's suitable for e.g. constructing
// global initializers.
Ice::Constant *convertConstant(const Constant *Const) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Const)) {
return Ctx->getConstantSym(convertToIceType(GV->getType()), 0,
GV->getName());
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(Const)) {
Ice::Type Ty = convertToIceType(CI->getType());
if (Ty == Ice::IceType_i64) {
return Ctx->getConstantInt64(Ty, CI->getSExtValue());
} else {
return Ctx->getConstantInt32(Ty, CI->getSExtValue());
}
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Const)) {
Ice::Type Type = convertToIceType(CFP->getType());
if (Type == Ice::IceType_f32)
return Ctx->getConstantFloat(CFP->getValueAPF().convertToFloat());
else if (Type == Ice::IceType_f64)
return Ctx->getConstantDouble(CFP->getValueAPF().convertToDouble());
llvm_unreachable("Unexpected floating point type");
return NULL;
} else if (const UndefValue *CU = dyn_cast<UndefValue>(Const)) {
return Ctx->getConstantUndef(convertToIceType(CU->getType()));
} else {
llvm_unreachable("Unhandled constant type");
return NULL;
}
}
private:
// LLVM values (instructions, etc.) are mapped directly to ICE variables.
// mapValueToIceVar has a version that forces an ICE type on the variable,
// and a version that just uses convertToIceType on V.
Ice::Variable *mapValueToIceVar(const Value *V, Ice::Type IceTy) {
if (IceTy == Ice::IceType_void)
return NULL;
if (VarMap.find(V) == VarMap.end()) {
VarMap[V] = Func->makeVariable(IceTy, V->getName());
}
return VarMap[V];
}
Ice::Variable *mapValueToIceVar(const Value *V) {
return mapValueToIceVar(V, convertToIceType(V->getType()));
}
Ice::CfgNode *mapBasicBlockToNode(const BasicBlock *BB) {
if (NodeMap.find(BB) == NodeMap.end()) {
NodeMap[BB] = Func->makeNode(BB->getName());
}
return NodeMap[BB];
}
Ice::Type convertToIceType(Type *LLVMTy) const {
Ice::Type IceTy = TypeConverter.convertToIceType(LLVMTy);
if (IceTy == Ice::IceType_NUM)
llvm::report_fatal_error(std::string("Invalid PNaCl type ") +
LLVMObjectAsString(LLVMTy));
return IceTy;
}
// Given an LLVM instruction and an operand number, produce the
// Ice::Operand this refers to. If there's no such operand, return
// NULL.
Ice::Operand *convertOperand(const Instruction *Inst, unsigned OpNum) {
if (OpNum >= Inst->getNumOperands()) {
return NULL;
}
const Value *Op = Inst->getOperand(OpNum);
return convertValue(Op);
}
Ice::Operand *convertValue(const Value *Op) {
if (const Constant *Const = dyn_cast<Constant>(Op)) {
return convertConstant(Const);
} else {
return mapValueToIceVar(Op);
}
}
// Note: this currently assumes a 1x1 mapping between LLVM IR and Ice
// instructions.
Ice::Inst *convertInstruction(const Instruction *Inst) {
switch (Inst->getOpcode()) {
case Instruction::PHI:
return convertPHINodeInstruction(cast<PHINode>(Inst));
case Instruction::Br:
return convertBrInstruction(cast<BranchInst>(Inst));
case Instruction::Ret:
return convertRetInstruction(cast<ReturnInst>(Inst));
case Instruction::IntToPtr:
return convertIntToPtrInstruction(cast<IntToPtrInst>(Inst));
case Instruction::PtrToInt:
return convertPtrToIntInstruction(cast<PtrToIntInst>(Inst));
case Instruction::ICmp:
return convertICmpInstruction(cast<ICmpInst>(Inst));
case Instruction::FCmp:
return convertFCmpInstruction(cast<FCmpInst>(Inst));
case Instruction::Select:
return convertSelectInstruction(cast<SelectInst>(Inst));
case Instruction::Switch:
return convertSwitchInstruction(cast<SwitchInst>(Inst));
case Instruction::Load:
return convertLoadInstruction(cast<LoadInst>(Inst));
case Instruction::Store:
return convertStoreInstruction(cast<StoreInst>(Inst));
case Instruction::ZExt:
return convertCastInstruction(cast<ZExtInst>(Inst), Ice::InstCast::Zext);
case Instruction::SExt:
return convertCastInstruction(cast<SExtInst>(Inst), Ice::InstCast::Sext);
case Instruction::Trunc:
return convertCastInstruction(cast<TruncInst>(Inst),
Ice::InstCast::Trunc);
case Instruction::FPTrunc:
return convertCastInstruction(cast<FPTruncInst>(Inst),
Ice::InstCast::Fptrunc);
case Instruction::FPExt:
return convertCastInstruction(cast<FPExtInst>(Inst),
Ice::InstCast::Fpext);
case Instruction::FPToSI:
return convertCastInstruction(cast<FPToSIInst>(Inst),
Ice::InstCast::Fptosi);
case Instruction::FPToUI:
return convertCastInstruction(cast<FPToUIInst>(Inst),
Ice::InstCast::Fptoui);
case Instruction::SIToFP:
return convertCastInstruction(cast<SIToFPInst>(Inst),
Ice::InstCast::Sitofp);
case Instruction::UIToFP:
return convertCastInstruction(cast<UIToFPInst>(Inst),
Ice::InstCast::Uitofp);
case Instruction::BitCast:
return convertCastInstruction(cast<BitCastInst>(Inst),
Ice::InstCast::Bitcast);
case Instruction::Add:
return convertArithInstruction(Inst, Ice::InstArithmetic::Add);
case Instruction::Sub:
return convertArithInstruction(Inst, Ice::InstArithmetic::Sub);
case Instruction::Mul:
return convertArithInstruction(Inst, Ice::InstArithmetic::Mul);
case Instruction::UDiv:
return convertArithInstruction(Inst, Ice::InstArithmetic::Udiv);
case Instruction::SDiv:
return convertArithInstruction(Inst, Ice::InstArithmetic::Sdiv);
case Instruction::URem:
return convertArithInstruction(Inst, Ice::InstArithmetic::Urem);
case Instruction::SRem:
return convertArithInstruction(Inst, Ice::InstArithmetic::Srem);
case Instruction::Shl:
return convertArithInstruction(Inst, Ice::InstArithmetic::Shl);
case Instruction::LShr:
return convertArithInstruction(Inst, Ice::InstArithmetic::Lshr);
case Instruction::AShr:
return convertArithInstruction(Inst, Ice::InstArithmetic::Ashr);
case Instruction::FAdd:
return convertArithInstruction(Inst, Ice::InstArithmetic::Fadd);
case Instruction::FSub:
return convertArithInstruction(Inst, Ice::InstArithmetic::Fsub);
case Instruction::FMul:
return convertArithInstruction(Inst, Ice::InstArithmetic::Fmul);
case Instruction::FDiv:
return convertArithInstruction(Inst, Ice::InstArithmetic::Fdiv);
case Instruction::FRem:
return convertArithInstruction(Inst, Ice::InstArithmetic::Frem);
case Instruction::And:
return convertArithInstruction(Inst, Ice::InstArithmetic::And);
case Instruction::Or:
return convertArithInstruction(Inst, Ice::InstArithmetic::Or);
case Instruction::Xor:
return convertArithInstruction(Inst, Ice::InstArithmetic::Xor);
case Instruction::ExtractElement:
return convertExtractElementInstruction(cast<ExtractElementInst>(Inst));
case Instruction::InsertElement:
return convertInsertElementInstruction(cast<InsertElementInst>(Inst));
case Instruction::Call:
return convertCallInstruction(cast<CallInst>(Inst));
case Instruction::Alloca:
return convertAllocaInstruction(cast<AllocaInst>(Inst));
case Instruction::Unreachable:
return convertUnreachableInstruction(cast<UnreachableInst>(Inst));
default:
report_fatal_error(std::string("Invalid PNaCl instruction: ") +
LLVMObjectAsString(Inst));
}
llvm_unreachable("convertInstruction");
return NULL;
}
Ice::Inst *convertLoadInstruction(const LoadInst *Inst) {
Ice::Operand *Src = convertOperand(Inst, 0);
Ice::Variable *Dest = mapValueToIceVar(Inst);
return Ice::InstLoad::create(Func, Dest, Src);
}
Ice::Inst *convertStoreInstruction(const StoreInst *Inst) {
Ice::Operand *Addr = convertOperand(Inst, 1);
Ice::Operand *Val = convertOperand(Inst, 0);
return Ice::InstStore::create(Func, Val, Addr);
}
Ice::Inst *convertArithInstruction(const Instruction *Inst,
Ice::InstArithmetic::OpKind Opcode) {
const BinaryOperator *BinOp = cast<BinaryOperator>(Inst);
Ice::Operand *Src0 = convertOperand(Inst, 0);
Ice::Operand *Src1 = convertOperand(Inst, 1);
Ice::Variable *Dest = mapValueToIceVar(BinOp);
return Ice::InstArithmetic::create(Func, Opcode, Dest, Src0, Src1);
}
Ice::Inst *convertPHINodeInstruction(const PHINode *Inst) {
unsigned NumValues = Inst->getNumIncomingValues();
Ice::InstPhi *IcePhi =
Ice::InstPhi::create(Func, NumValues, mapValueToIceVar(Inst));
for (unsigned N = 0, E = NumValues; N != E; ++N) {
IcePhi->addArgument(convertOperand(Inst, N),
mapBasicBlockToNode(Inst->getIncomingBlock(N)));
}
return IcePhi;
}
Ice::Inst *convertBrInstruction(const BranchInst *Inst) {
if (Inst->isConditional()) {
Ice::Operand *Src = convertOperand(Inst, 0);
BasicBlock *BBThen = Inst->getSuccessor(0);
BasicBlock *BBElse = Inst->getSuccessor(1);
Ice::CfgNode *NodeThen = mapBasicBlockToNode(BBThen);
Ice::CfgNode *NodeElse = mapBasicBlockToNode(BBElse);
return Ice::InstBr::create(Func, Src, NodeThen, NodeElse);
} else {
BasicBlock *BBSucc = Inst->getSuccessor(0);
return Ice::InstBr::create(Func, mapBasicBlockToNode(BBSucc));
}
}
Ice::Inst *convertIntToPtrInstruction(const IntToPtrInst *Inst) {
Ice::Operand *Src = convertOperand(Inst, 0);
Ice::Variable *Dest =
mapValueToIceVar(Inst, TypeConverter.getIcePointerType());
return Ice::InstAssign::create(Func, Dest, Src);
}
Ice::Inst *convertPtrToIntInstruction(const PtrToIntInst *Inst) {
Ice::Operand *Src = convertOperand(Inst, 0);
Ice::Variable *Dest = mapValueToIceVar(Inst);
return Ice::InstAssign::create(Func, Dest, Src);
}
Ice::Inst *convertRetInstruction(const ReturnInst *Inst) {
Ice::Operand *RetOperand = convertOperand(Inst, 0);
if (RetOperand) {
return Ice::InstRet::create(Func, RetOperand);
} else {
return Ice::InstRet::create(Func);
}
}
Ice::Inst *convertCastInstruction(const Instruction *Inst,
Ice::InstCast::OpKind CastKind) {
Ice::Operand *Src = convertOperand(Inst, 0);
Ice::Variable *Dest = mapValueToIceVar(Inst);
return Ice::InstCast::create(Func, CastKind, Dest, Src);
}
Ice::Inst *convertICmpInstruction(const ICmpInst *Inst) {
Ice::Operand *Src0 = convertOperand(Inst, 0);
Ice::Operand *Src1 = convertOperand(Inst, 1);
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::InstIcmp::ICond Cond;
switch (Inst->getPredicate()) {
default:
llvm_unreachable("ICmpInst predicate");
case CmpInst::ICMP_EQ:
Cond = Ice::InstIcmp::Eq;
break;
case CmpInst::ICMP_NE:
Cond = Ice::InstIcmp::Ne;
break;
case CmpInst::ICMP_UGT:
Cond = Ice::InstIcmp::Ugt;
break;
case CmpInst::ICMP_UGE:
Cond = Ice::InstIcmp::Uge;
break;
case CmpInst::ICMP_ULT:
Cond = Ice::InstIcmp::Ult;
break;
case CmpInst::ICMP_ULE:
Cond = Ice::InstIcmp::Ule;
break;
case CmpInst::ICMP_SGT:
Cond = Ice::InstIcmp::Sgt;
break;
case CmpInst::ICMP_SGE:
Cond = Ice::InstIcmp::Sge;
break;
case CmpInst::ICMP_SLT:
Cond = Ice::InstIcmp::Slt;
break;
case CmpInst::ICMP_SLE:
Cond = Ice::InstIcmp::Sle;
break;
}
return Ice::InstIcmp::create(Func, Cond, Dest, Src0, Src1);
}
Ice::Inst *convertFCmpInstruction(const FCmpInst *Inst) {
Ice::Operand *Src0 = convertOperand(Inst, 0);
Ice::Operand *Src1 = convertOperand(Inst, 1);
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::InstFcmp::FCond Cond;
switch (Inst->getPredicate()) {
default:
llvm_unreachable("FCmpInst predicate");
case CmpInst::FCMP_FALSE:
Cond = Ice::InstFcmp::False;
break;
case CmpInst::FCMP_OEQ:
Cond = Ice::InstFcmp::Oeq;
break;
case CmpInst::FCMP_OGT:
Cond = Ice::InstFcmp::Ogt;
break;
case CmpInst::FCMP_OGE:
Cond = Ice::InstFcmp::Oge;
break;
case CmpInst::FCMP_OLT:
Cond = Ice::InstFcmp::Olt;
break;
case CmpInst::FCMP_OLE:
Cond = Ice::InstFcmp::Ole;
break;
case CmpInst::FCMP_ONE:
Cond = Ice::InstFcmp::One;
break;
case CmpInst::FCMP_ORD:
Cond = Ice::InstFcmp::Ord;
break;
case CmpInst::FCMP_UEQ:
Cond = Ice::InstFcmp::Ueq;
break;
case CmpInst::FCMP_UGT:
Cond = Ice::InstFcmp::Ugt;
break;
case CmpInst::FCMP_UGE:
Cond = Ice::InstFcmp::Uge;
break;
case CmpInst::FCMP_ULT:
Cond = Ice::InstFcmp::Ult;
break;
case CmpInst::FCMP_ULE:
Cond = Ice::InstFcmp::Ule;
break;
case CmpInst::FCMP_UNE:
Cond = Ice::InstFcmp::Une;
break;
case CmpInst::FCMP_UNO:
Cond = Ice::InstFcmp::Uno;
break;
case CmpInst::FCMP_TRUE:
Cond = Ice::InstFcmp::True;
break;
}
return Ice::InstFcmp::create(Func, Cond, Dest, Src0, Src1);
}
Ice::Inst *convertExtractElementInstruction(const ExtractElementInst *Inst) {
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::Operand *Source1 = convertValue(Inst->getOperand(0));
Ice::Operand *Source2 = convertValue(Inst->getOperand(1));
return Ice::InstExtractElement::create(Func, Dest, Source1, Source2);
}
Ice::Inst *convertInsertElementInstruction(const InsertElementInst *Inst) {
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::Operand *Source1 = convertValue(Inst->getOperand(0));
Ice::Operand *Source2 = convertValue(Inst->getOperand(1));
Ice::Operand *Source3 = convertValue(Inst->getOperand(2));
return Ice::InstInsertElement::create(Func, Dest, Source1, Source2,
Source3);
}
Ice::Inst *convertSelectInstruction(const SelectInst *Inst) {
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::Operand *Cond = convertValue(Inst->getCondition());
Ice::Operand *Source1 = convertValue(Inst->getTrueValue());
Ice::Operand *Source2 = convertValue(Inst->getFalseValue());
return Ice::InstSelect::create(Func, Dest, Cond, Source1, Source2);
}
Ice::Inst *convertSwitchInstruction(const SwitchInst *Inst) {
Ice::Operand *Source = convertValue(Inst->getCondition());
Ice::CfgNode *LabelDefault = mapBasicBlockToNode(Inst->getDefaultDest());
unsigned NumCases = Inst->getNumCases();
Ice::InstSwitch *Switch =
Ice::InstSwitch::create(Func, NumCases, Source, LabelDefault);
unsigned CurrentCase = 0;
for (SwitchInst::ConstCaseIt I = Inst->case_begin(), E = Inst->case_end();
I != E; ++I, ++CurrentCase) {
uint64_t CaseValue = I.getCaseValue()->getSExtValue();
Ice::CfgNode *CaseSuccessor = mapBasicBlockToNode(I.getCaseSuccessor());
Switch->addBranch(CurrentCase, CaseValue, CaseSuccessor);
}
return Switch;
}
Ice::Inst *convertCallInstruction(const CallInst *Inst) {
Ice::Variable *Dest = mapValueToIceVar(Inst);
Ice::Operand *CallTarget = convertValue(Inst->getCalledValue());
unsigned NumArgs = Inst->getNumArgOperands();
// Note: Subzero doesn't (yet) do anything special with the Tail
// flag in the bitcode, i.e. CallInst::isTailCall().
Ice::InstCall *NewInst = NULL;
const Ice::Intrinsics::FullIntrinsicInfo *Info = NULL;
if (Ice::ConstantRelocatable *Target =
llvm::dyn_cast<Ice::ConstantRelocatable>(CallTarget)) {
// Check if this direct call is to an Intrinsic (starts with "llvm.")
static const char LLVMPrefix[] = "llvm.";
const size_t LLVMPrefixLen = strlen(LLVMPrefix);
Ice::IceString Name = Target->getName();
if (Name.substr(0, LLVMPrefixLen) == LLVMPrefix) {
Ice::IceString NameSuffix = Name.substr(LLVMPrefixLen);
Info = Ctx->getIntrinsicsInfo().find(NameSuffix);
if (!Info) {
report_fatal_error(std::string("Invalid PNaCl intrinsic call: ") +
LLVMObjectAsString(Inst));
}
NewInst = Ice::InstIntrinsicCall::create(Func, NumArgs, Dest,
CallTarget, Info->Info);
}
}
// Not an intrinsic call.
if (NewInst == NULL) {
NewInst = Ice::InstCall::create(Func, NumArgs, Dest, CallTarget,
Inst->isTailCall());
}
for (unsigned i = 0; i < NumArgs; ++i) {
NewInst->addArg(convertOperand(Inst, i));
}
if (Info) {
validateIntrinsicCall(NewInst, Info);
}
return NewInst;
}
Ice::Inst *convertAllocaInstruction(const AllocaInst *Inst) {
// PNaCl bitcode only contains allocas of byte-granular objects.
Ice::Operand *ByteCount = convertValue(Inst->getArraySize());
uint32_t Align = Inst->getAlignment();
Ice::Variable *Dest =
mapValueToIceVar(Inst, TypeConverter.getIcePointerType());
return Ice::InstAlloca::create(Func, ByteCount, Align, Dest);
}
Ice::Inst *convertUnreachableInstruction(const UnreachableInst * /*Inst*/) {
return Ice::InstUnreachable::create(Func);
}
Ice::CfgNode *convertBasicBlock(const BasicBlock *BB) {
Ice::CfgNode *Node = mapBasicBlockToNode(BB);
for (BasicBlock::const_iterator II = BB->begin(), II_e = BB->end();
II != II_e; ++II) {
Ice::Inst *Inst = convertInstruction(II);
Node->appendInst(Inst);
}
return Node;
}
void validateIntrinsicCall(const Ice::InstCall *Call,
const Ice::Intrinsics::FullIntrinsicInfo *I) {
Ice::SizeT ArgIndex = 0;
switch (I->validateCall(Call, ArgIndex)) {
default:
report_fatal_error("Unknown validation error for intrinsic call");
break;
case Ice::Intrinsics::IsValidCall:
break;
case Ice::Intrinsics::BadReturnType: {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Intrinsic call expects return type " << I->getReturnType()
<< ". Found: " << Call->getReturnType();
report_fatal_error(StrBuf.str());
break;
}
case Ice::Intrinsics::WrongNumOfArgs: {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Intrinsic call expects " << I->getNumArgs()
<< ". Found: " << Call->getNumArgs();
report_fatal_error(StrBuf.str());
break;
}
case Ice::Intrinsics::WrongCallArgType: {
std::string Buffer;
raw_string_ostream StrBuf(Buffer);
StrBuf << "Intrinsic call argument " << ArgIndex << " expects type "
<< I->getArgType(ArgIndex)
<< ". Found: " << Call->getArg(ArgIndex)->getType();
report_fatal_error(StrBuf.str());
break;
}
}
}
private:
// Data
Ice::GlobalContext *Ctx;
Ice::Cfg *Func;
std::map<const Value *, Ice::Variable *> VarMap;
std::map<const BasicBlock *, Ice::CfgNode *> NodeMap;
Ice::TypeConverter TypeConverter;
};
} // end of anonymous namespace
namespace Ice {
void Converter::convertToIce() {
nameUnnamedGlobalAddresses(Mod);
if (!Ctx->getFlags().DisableGlobals)
convertGlobals(Mod);
convertFunctions();
}
void Converter::convertFunctions() {
for (Module::const_iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) {
if (I->empty())
continue;
LLVM2ICEConverter FunctionConverter(Ctx, Mod->getContext());
Timer TConvert;
Cfg *Fcn = FunctionConverter.convertFunction(I);
if (Ctx->getFlags().SubzeroTimingEnabled) {
std::cerr << "[Subzero timing] Convert function "
<< Fcn->getFunctionName() << ": " << TConvert.getElapsedSec()
<< " sec\n";
}
translateFcn(Fcn);
}
emitConstants();
}
} // end of namespace Ice